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Abstract—In this paper, we explore the performance po-
tential of dynamic (runtime) web service selection within the
scope of Service Oriented Architecture (SOA). The web service
selection is executed by a service orchestrator (request dispa-
tcher) which is responsible to deliver composite web services
at desired quality levels for the orchestrator’s clients. We
investigate service response times for the case where SOA state–
of–the–art static web service composition is used and for the
case where dynamic web service selection is applied. Modelling
request scheduling at individual web services as Processor
Sharing queueing systems, simulation results are presented
for different runtime selection strategies in scenarios ranging
from the “ideal” situation (up–to–date state information, no
background traffic) to more realistic scenarios in which state
information is stale and/or background traffic is present. In
particular, we show the effectiveness of a selection strategy
based upon the “synthesis” of Join the Shortest Queue and
Round Robin strategies. For some specific scenarios we derive
and validate insightful approximate formulae for the resulting
response times. Our investigations quantify the performance
gains that can be achieved by dynamic service selection
compared to static (a–priori) service selection currently used.

Keywords-Service Oriented Architecture, Join the Shortest
Queue, Processor Sharing, Response Time, Background Traffic,
Stale Information.

I. INTRODUCTION

The composition of web services within a SOA environ-
ment could be static or dynamic. With static composition
the concrete services are determined and integrated into the
specification at design time. With dynamic composition on
the other hand, at design–time there is only a specification
of the required abstract services given. The concrete services
are then integrated at runtime.

For both static and dynamic composition, the choice of
concrete services for a particular abstract service may be
based on non–functional parameters. Examples of such pa-
rameters are availability, throughput, response time, security
and cost. References [4], [21], [23] and [24] discuss the
problem of static QoS–aware service composition in detail.

As an extension, [4] considers sub–optimal algorithms to
enable fast replacement of underperforming services.

Existing SOA–based solutions for web services do not
support dynamic web service selection ([12], [13]). Dynamic
selection provides flexibility and therefore has advantages
with respect to availability and reliability compared to a
static approach. Another possible advantage of dynamic
service selection is performance improvement, i.e., achieving
a decrease in the requests’ response times by exploiting
statistical variations in the loads at the various concrete
services. This paper aims at investigating the potential
performance gain of dynamic, runtime web service selection
for service composition within the scope of SOA, evaluating
different selection strategies.

As a starting point, we assume that a set of concrete
services is a-priori selected per abstract service, which is in
contrast with a-priori selecting a single concrete service per
abstract service in the case of static composition. Therefore,
the discovery mechanisms ([19]) and their performance are
outside the scope of this paper. As an example, in Figure 1,
the choice of a particular concrete service (from the set
of selected concrete services) is made by the dispatcher
at runtime on a per–client request basis for a composite
web service consisting of N services that are invoked
consecutively. In each consecutive step i, i = 1, 2, . . . , N ,
exactly 1 out of Ki concrete services is invoked by the
dispatcher, where Ki represents the number of choices in
step i. In this example, the total response time RTtotal is the
sum of the individual response times RTi. Within SOA the
dispatcher is part of the orchestrator, which typically runs
in the domain of the composite service provider.

The main research question addressed in this paper is
what is the performance potential of dynamic web service
selection versus static selection? As outlined above, dynamic
web service selection is made from Ki pre-selected concrete
services for each step i (note that this pre-selection is
beyond the scope of this paper). We focus on the achievable
performance gain of dynamic selection in case of a single
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abstract service (i.e., N = 1 in Figure 1). This analysis
will give us also an indication of the potential gain for a
composite service that consists of more abstract services
(N > 1). Besides, analysis for the case N = 1 is more
feasible than for the general case N > 1. Specific research
questions addressed in the paper are: what is the influence of
the number of pre-selected concrete services, which stateless
and statefull dispatching algorithms perform well, which
gains are achievable, and what is the impact of practical
conditions such as background traffic and delayed state
information on these gains?

Notice that existing dispatching strategies, e.g., Round-
Robin (RR), Bernoulli, Join the Shorted Queue (JSQ), are
included in our analysis. In the literature, these dispatching
strategies are mostly investigated in the context of systems
with First Come First Served (FCFS) queues, but hardly for
systems with Processor Sharing (PS) queues, as considered
in this paper. Note that in the current context the PS
services model is more realistic than FCFS, see e.g., [10]. In
addition, we consider background traffic and delayed state
information.

We summarize the main contributions of this paper as
follows:

1) Quantification of the achievable gain versus the num-
ber K of pre-selected concrete services by a fair
comparison with respect to the base case of static web
service selection.

2) Quantification of the achievable gain in terms of re-
sponse times when background traffic is present at the
pre-selected concrete services for different dispatching
strategies.

3) Quantification of the achievable gain in terms of
response times in case of delayed state information.

In order to investigate the above–mentioned potential per-
formance gains several assumptions have been made, which
allow us to quantify the “ideal” system performance. In that
sense our analysis should be understood as a “baseline”
analysis. Besides, the assumptions are made with the goal to
represent our findings in an unequivocal way. Our analysis
makes a significant step towards analysis of models that
take into account more practical conditions regarding the
observed system.

The remainder of this paper is organized as follows.
First, in Section II, we describe the performance model and
explain the underlying assumptions that capture the essential
system characteristics needed for our study. Next, in Section
III, we discuss literature related to our work. In Section
IV, our simulation results and results obtained by analytical
modelling are presented, and we discuss and explain the
observations. Finally, in Section V, we draw conclusions
and give suggestions for further research.
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Figure 1. Illustration of dynamic SOA–based web service composition.
A request by the client is served by one of the K1 implementations of
abstract service AWS1, then by one of the K2 implementations of abstract
service AWS2, and so on, until client request is completed and response
is sent back. Note that every client request may be served by a different
chain of concrete web services (CWS).

II. MODEL DESCRIPTION

We consider one abstract service with K concrete service
implementations as given in Figure 2. There are two classes
of incoming service requests:

• Foreground service requests are received by the dis-
patcher, which decides at runtime to which of the K
service instances a particular request is assigned for
getting the required service. The foreground requests
arrive to the dispatcher according to a Poisson process
[15] with rate Λ and have exponentially distributed
service requirements with mean 1

µ . The rate at which
foreground traffic requests are offered (by the dispa-
tcher) to service i is denoted by λFTi, i = 1, 2, . . . ,K.

• Background service requests arrive at service instance
i according to a Poisson process with rate λi, i =
1, 2, . . . ,K, respectively. The background service re-
quests are exponentialy distributed with mean 1

µi
, i =

1, . . . ,K. The background traffic arrival processes are
independent from each other and are also independent
from the foreground arrival process.

Request scheduling at each service instance is modelled by
a processor sharing infinite–capacity single server queue.
Served requests leave the system.

Obviously, the achievable performance gain of dynamic
service selection compared to a pure static approach depends
heavily on the nature of the workload fluctuations at the
different service instances. It is clear that in the case of
slowly and independently varying loads (e.g., due to fluctu-
ations in the service demand over the day) high performance
gain can relatively easy be achieved. However, in such cases
the runtime character of dynamic service selection may be
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Figure 2. Performance model for the case of a single abstract service with
K different implementations (concrete services).

an “overkill” and the performance gain could largely also
be obtained by less flexible service selection approaches.
Therefore, the present paper focuses on exploiting workload
fluctuations at the services instances that occur at relatively
small time scales mainly caused by the random behaviour
of individuals in a large population of potential users. In
that perspective, and to keep the parameter space manage-
able, we will assume that the model is symmetric, i.e.,
λi = λBT, µi = µ, i = 1, 2, . . . ,K. The utilization per
service i, i = 1, 2, . . . ,K is then defined as ρtot = λtot

µ ,
where λtot is the rate of the aggregated (foreground and
background) traffic, i.e., λtot = λFTi + λi = λ + λBT.
The stability condition per service requires that the expected
number of requests per service remains finite, i.e., ρtot < 1.

Ignoring possible delays due to the queueing and pro-
cessing at the dispatcher, as well as network delay, arriving
service requests are instantaneously forwarded to one of the
K service instances according to the dispatching strategy.
Various strategies can be used for selection of one of the
K service instances upon arrival of a new request. The
dispatching strategies could be roughly divided into two
categories, namely stateless and statefull. Decision making is
independent of the system state information for the stateless
strategies. Conversely, decision making takes into account
(stale) system state information for statefull strategies. The
delay in obtaining the information per service instance is
represented by parameter ∆i, i = 1, 2, . . . ,K. In this paper
we have adopted the case when system state information
(queue length, response time, etc.) is collected periodically
with the same period ∆ > 0. This information gathering
may require sending separate requests (“probes”) by the
dispatcher to all of the K web services, and collecting
information in such a manner introduces an overhead to the
system, which influences system performance. This issue as
well as using other ways to collect system state information
are beyond the scope of this paper. The update period ∆
has been related to the intensity of the aggregated traffic as
∆ = D · 1

λtot
. where D is integer. All dispatching decisions

between time instances ti = i ·∆ and ti+1 = (i+1) ·∆, i =
0, 1, 2, . . . are made based on the system state information
obtained at ti. The dispatching strategies considered for
this paper are Bernoulli (BL), Round-Robin (RR), Join the
Shortest Queue (JSQ) and a combination of the latter two,
JSQ–RR. Bernoulli and RR are typical examples of stateless
strategies while JSQ and JSQ–RR are examples of statefull
dispatching strategies. In case of the Bernoulli strategy, the
requests are randomly distributed over the queues, i.e., a
newly arriving request is assigned to queue i, i = 1, . . . ,K,
with probability 1

K . This case is used as representation of
the performance for the static SOA service selection. For
RR, the k–th request is assigned to queue (kmodK)+1. In
JSQ, the request is assigned to the queue with the smallest
number of requests waiting to be served. Ties are resolved by
randomly assigning the request to one of the shortest queues.
In case when system state information delay is present in
the system, an additional statefull dispatching strategy could
be defined, namely JSQ–RR. For JSQ–RR, once the actual
system information is obtained, the queues are sorted in non–
descending order by the queue lengths. Any request coming
to the dispatcher between two state updates is then assigned
following the RR scheme, i.e., the first request is assigned
to the queue with smallest queue length, the second request
is assigned to the queue with smallest queue length from the
remaining queues, etc.

III. RELATED WORK

In this section, we give a short overview of papers related
to different aspects (e.g., web service selection, composition,
performance) of the runtime web service selection in SOA.
However, each of these papers treats only a (different) subset
of issues relating to runtime web service selection. The
analysis of potential performance improvements of different
dispatching strategies, based on PS modelling of the request
scheduling at web service(s) within SOA, which includes
impact of stale system state information and/or background
traffic is, to our best knowledge, non–existent.

A. Web service selection and composition

In [13], an overview of common misconceptions about
SOA is given. Among others, the issue of dynamic selec-
tion of web services is identified, and it is indicated that
current SOA solutions lack advanced automatic discovery
and composition of web services at runtime.

A lot of attention within SOA community has been ded-
icated to static QoS–aware composition problem, see e.g.,
[4], [21], [23] and references therein. The problem of static
QoS–aware composition is known to be NP–hard, see [24],
where two service selection approaches for constructing
composite services have been proposed: local optimization
and global planning.

In paper [20], several architectures and their respective
models that assist in dynamic invocation of web services

81

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-124-3



are discussed. These models allow the client to dynamically
select the current best web service, based on certain non–
functional criteria (availability, reliability, and estimated
response time). These clients gather runtime web service
information, evaluate the performance of the previously used
web services, and may share this information with other
clients. The selection decision is let to the clients, which
contain intelligent agents and therefore the complexity of
the clients increases. The inherent problem is that different
clients may decide to use the same web service, which would
eventually result in worsened performance e.g., due to the
overload of the targeted web service.

The framework proposed in [14] enables quality–driven
web service selection, based upon evaluation of the QoS
of a vast number of web services. The fair computation
and enforcing of QoS of web services takes place when
making the web service selection. In order to provide fair
computation the feedback from clients is gathered.

B. Performance of dispatching strategies

Performance of dispatching strategies in multi–server sys-
tems has been a topic that received a lot of attention within
the queueing theory research community. Specifically, a lot
of work has been done for systems with First Come First
Served (FCFS) scheduling at the queues, e.g., in [3] and [6].
In the most of the papers written for JSQ/FCFS, explicit
results for response times are given only for the case K = 2
servers, an exponential job size distribution and the mean
response time metric, [9]. The performance of the JSQ/FCFS
strategy for K > 2 servers has been analysed in [17]
where the approximation of the mean response time for K
homogeneous servers is given. In [18], an extension to this
approximation has been given, however, the approximation
is less accurate as the requests’ size variability increases.

Opposite to the JSQ/FCFS systems, JSQ/PS systems have
not received so much attention. The notable exceptions are
[2], and, more recently, [10] where approximate analysis
of JSQ in the PS server farm model for general job size
distributions is presented. The queue length of each queue
in the system is approximated by a one–dimensional Markov
chain, and based on this approximation the distribution
of the queue length at each queue is determined. In [1],
the authors investigate optimal dispatching strategies for a
multi–class multi–server PS systems with a Poisson input
stream, heterogeneous service rates, and a server-dependent
holding cost per unit time.

C. Performance of dispatching strategies with stale system
information or background traffic

In [16], the problem of dispatching with stale system
status information (server load) is analysed in case of FCFS.
Servers’ status information is periodically updated and three
strategies are compared: random selection, selection of the

server with the least load (based on the stale system infor-
mation), and random selection of a small subset of servers
and then selecting the least loaded of the chosen servers
(based on up-to-date information about their loads). It is
shown that the latter strategy mostly outperforms the other
ones, even for a small randomly chosen subset of e.g.,
two servers, while the overhead (due to processing and
information retrieval) remains limited. In [5], the authors
present a strategy that routes the jobs to the server with
expected shortest FCFS queue. The decisions are made
based on stale information and elapsed time since the last
state update. This strategy works well, but does not always
minimise the average response time.

In [11], a dispatching policy based on splitting foreground
traffic according to a predefined rule described by a certain
parameter vector is analysed while background traffic is
modelled as independent Poisson processes with different
rates. Due to the assumptions made each of the N servers in
isolation can be represented as a two–class M/G/1 PS queue.
The approximation of the response times is deduced for the
case of light foreground traffic and an optimal parameter
vector is found.

IV. PERFORMANCE ANALYSIS

In this section, we present and discuss simulation results
for the runtime service selection strategies described in
Section II in order to investigate their performance potential.
For some special scenarios we also present numerical results
obtained from analytical modelling.

The simulations were performed using the simulation tool
implemented in Java programming language, and using the
Java library for stochastic simulation (SSJ) [8]. In order to
make the simulations less sensitive to the startup transient,
the number of foreground traffic arrivals per simulation has
been set to at least 0.5 · 106. Besides, in order to improve
the accuracy, we have trimmed simulation results for certain
number of foreground traffic arrivals at the end of the arrival
process.

We have considered four main categories of simulation
scenarios:
• Baseline scenarios – these simulations were performed

for the system without background traffic and with up-
to-date system state information. The simulation results
are given in subsection IV-A.

• Scenarios with stale system state information – these
simulations were performed for the system without
background traffic in which system state information
is only periodically updated i.e., the dispatching pro-
cess does not (always) use up-to-date information. The
results are presented in subsection IV-B.

• Scenarios with background traffic – these simulations
were performed for the system with up-to-date system
state information and different intensities of back-
ground traffic. In addition to the simulations we derived
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an analytical approach to study the performance for
these scenarios. The results are presented in subsection
IV-C.

• Scenarios with background traffic and stale system state
information. The simulation results are presented in
subsection IV-D.

A. Baseline scenarios

The goal of these simulation scenarios was to establish the
performance results in case when there is no background
traffic and system state information is up-to-date at the
dispatcher.

In Figure 3, we show mean response times for different
dispatching strategies (JSQ, RR, BL) as a function of the
number of concrete services, K and for different values
of utilization per service, ρtot. The utilization per service
is kept constant in order to have a fair assessment of the
impact of K; otherwise, an increase of K would simply be
interpreted as capacity add-on to the system. Since JSQ–RR
is identical to JSQ when up-to-date system state information
is available at the dispatcher, the results for JSQ–RR are
not shown. For ρtot = 0.8, the mean response time for
JSQ strategy with K = 4 services is around 66% of mean
response time for the same strategy when K = 2. Similarly,
in case of JSQ with K = 8 and K = 16 services, response
times are 49% and 40% of the response time for K = 2,
respectively. In case when one of the K services becomes
unavailable, the performance of the system (response time)
does not deteriorate dramatically, as long as the utilization
per queue remains (approximately) the same. The utilization
per queue can be kept the same when, e.g., K + 1 services
are pre–selected, of which given (fixed choice) K services
are used for dispatching. The remaining (K + 1th) service
is placed ”on hold” and when one of the chosen K services
becomes unavailable, it is immediately replaced.

Figure 4 shows relative comparisons between JSQ and BL
(with BL as the baseline) and JSQ and RR strategies (with
RR as the baseline), respectively. Statefull strategy (JSQ) is
superior to either of the stateless strategies (BL, RR), which
confirms that more (and accurate) state information made
available to the dispatcher leads to better decision making.

The potential performance improvements in the first case
range from 28% to 46% for K = 2, depending upon the
utilization per queue, ρtot and are in the range from 49% to
86% for K = 16. What is also of interest is when do the
gradient of the performance improvement is highest, taking
into account the increase of the number of services. From
Figure 4 we see that this is the case when the number
of services increases from 2 to 4. The gradient of the
gains is (significantly) smaller when the number of services
increases from 4 to 8 or 8 to 16, respectively. Based on these
simulation results, we can draw the following conclusions:
• Large performance improvements compared to the sta-

tic service selection are possible with relatively small

values of K.
• The largest relative improvements of response time for

number of services, K > 1, are obtained when we
increase the number of services that are used from 2 to
4.

B. Scenarios with stale system state information

The goal of these simulations was to analyse the impact of
the stale system state information to the response time of the
system for different dispatching strategies. No background
traffic has been assumed. The simulations were performed
only for the statefull strategies, i.e., JSQ (see Figure 5) and
JSQ–RR, see Figure 6. The response times for stateless
strategies, RR and BL, are not affected by (stale) system
state information, and are shown for comparison as well.

From Figure 5 we see that, for relatively small values
of parameter D that determines the update interval, JSQ
still performs better than RR or BL dispatching strategy.
However, as expected, when parameter D increases perfor-
mance of JSQ deteriorates e.g., for D = 20 response time
for JSQ is worse than either RR or BL for almost complete
range of parameter ρtot. In case when D →∞, the system
state information is obtained just once, and then all arrivals
are “blindly” assigned to the queue which had the smallest
queue length when system state information was obtained.
In that case, the service composition in this case is static,
and the system model reduces to a M/M/1/PS queue with
arrival rate Λ and mean service time µ.

We have also investigated the behaviour of the JSQ–RR
strategy for systems with stale state information. Figure 6
shows that, as expected, JSQ–RR strategy is less sensitive
to stale information than “blind” JSQ strategy. For example,
when D = 10 and ρtot = 0.7, response times for Bernoulli,
RR, JSQ and JSQ–RR are 2250 ms, 1515 ms, 3200 ms
(!) and 1350 ms, respectively. For comparison, the response
time for JSQ without stale information and the same ρtot is
approximately 1020 ms.

Based on the simulations which results are presented at
Figure 5 and Figure 6 we can draw the following conclu-
sions:
• When D → 0 JSQ–RR is identical to JSQ and when
D → ∞, JSQ–RR is identical to the common RR
strategy.

• With respect to the response time, the JSQ–RR strategy
is never worse than RR, regardless of the delay within
the system. This makes JSQ–RR appealing strategy for
systems with delay without background traffic.

C. Scenarios with background traffic

In the previous simulation scenarios we have assumed that
the concrete services were used by the foreground traffic
clients only. In what follows we look into the situation when
background traffic is present as well, and the dispatcher has
up-to-date system state information.
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Figure 3. Comparison of mean response times for JSQ, RR and BL strategies for different number of services K and different values of ρtot. There is
no system state information delay and only foreground traffic is present in the system.
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Figure 4. Relative comparison of mean response times between JSQ and BL (left) and JSQ and RR (right) strategies for different number of services K
and different values of ρtot. The system state information is up-to-date and only foreground traffic is present in the system.
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not present and the number of services, K = 4.

Our simulations and analysis are directed to answering
the question of the impact of the background traffic to
the response times. The simulations results are shown in
Figure 7 for K = 4 services and BL, RR, and JSQ
strategies. Since the system state information is assumed to
be instantaneously available, JSQ–RR is identical to JSQ,
and therefore not shown. We have recorded the response
times of the foreground requests only. For given utilization
per queue ρtot, and dispatching strategy, foreground traffic
percentage of ρtot has been varied from as little as 10%

0

1000

2000

3000

4000

5000

6000

7000

8000

5 15 25 35 45 55 65 75 85 95

Percentage of foreground traffic (%)

R
es

po
ns

e 
tim

e 
(m

se
c)

BL, ρ_tot=0.9
RR, ρ_tot=0.9
JSQ, ρ_tot=0.9
BL, ρ_tot=0.7
RR, ρ_tot=0.7
JSQ, ρ_tot=0.7

Figure 7. Response times for BL, RR and JSQ strategies for scenario with
background traffic and no information delay. Utilization per queue ρtot is
0.7 or 0.9, and number of services K = 4.

(i.e., 90% background traffic) to 99% (i.e., 1% background
traffic). Apart from the case of the Bernoulli dispatching
strategy when response times are constant, as expected, from
Figure 7 it follows:
• In case of the Round-Robin strategy response times de-

crease as the percentage of foreground traffic increases.
It seems that response times dependency from the given
percentage is linear.

• In case of the JSQ strategy response times show linear
non-increasing dependency from the given percentage
of foreground traffic. The decrease of the response
time is limited by 15% for the considered cases. It
seems that the JSQ strategy is not much sensitive to
the background traffic.

The intuitive explanation for the decreasing nature of
response times in case of RR and JSQ strategies may be
given as the following – the response time in the case of
these two strategies is biggest for the smallest percentage
of foreground traffic, due to the fact that only foreground
traffic is “intelligently” assigned to one of the queues.

Response time for JSQ with low foreground traffic load:
Let us now consider the situation where the foreground traf-
fic constitutes only a small percentage of the total traffic. We
will analyse the mean response time of a tagged foreground
traffic arrival. According to the JSQ policy this arrival will
be dispatched to the queue (out of K queues) with the
smallest length. Since the foreground traffic is negligible
and the background traffic arrival processes are i.i.d., the
random processes representing the queue lengths are also
independent from each other and behave as the queue
length of an M/M/1 PS queueing model with load ρtot.
The queue length distribution for this model is geometric
with parameter ρtot, see [22]. Hence, the probability that
the queue selected for the tagged foreground job contains n
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(background) jobs is given by:

Pr{n jobs in selected queue} =
(
1− ρKtot

)
(ρKtot)

n.

Once the tagged arrival is placed to a particular queue, that
queue further behaves as an “ordinary” M/M/1 PS queue
with utilization ρtot = λBT

µ , as the foreground traffic is
negligibly small.

Now, let us denote by Xn(τ) the random variable whose
distribution is that of the “delay” experienced by the tagged
arrival if it would have service requirement τ and arrives
when there are n background jobs in the queue. The total
time spent in the system for the tagged arrival (i.e., response
time) is then Xn(τ) + τ .

From the detailed analysis of the M/M/1 PS queue in [7],
it follows that (cf. Eq. (33) in [7]):

E{Xn(τ)} =
ρtotτ

1− ρtot
+[n(1− ρtot)− ρtot]·

1− e−(1−ρtot)µτ

µ(1− ρtot)2
.

Since the r.v. Xn(τ) is conditioned by n, the mean E{X(τ)}
is given by the following equation

E{X(τ)} =
∞∑
n=0

(
1− ρKtot

)
(ρKtot)

n · E{Xn(τ)},

which leads to

E{X(τ)} =
ρtotτ

1− ρtot
+
ρKtot − ρtot

1− ρKtot

· 1− e−(1−ρtot)µτ

µ(1− ρtot)2
.

The overall mean response time for the tagged arrival is
given by

RT =
1
µ

+
∫ ∞

0

E{X(τ)}d(1− e−µτ ),

which finally gives

RT =
1
µ

+
ρtot

µ(1− ρtot)
+
ρKtot − ρtot

1− ρKtot

· 1
µ(1− ρtot)

· 1
2− ρtot

.

This equation gives a surprisingly simple relationship be-
tween the response time for the foreground traffic, the
number of services K, the utilization per queue ρtot and
the mean of the foreground job sizes 1

µ .
These formulae have been deduced under the assumption

that foreground traffic intensity is negligible compared to
background traffic. Inspired by the numerical results in
Figure 7 we investigated whether this response time formula
could be used as an approximation for larger values of
the percentage of the foreground traffic. A first comparison
between our approximate formula and simulations, taking
the simulations as the baseline, is given in Table I. The
comparison indicates that:
• As expected, for a fixed number K of concrete ser-

vices, the difference between our analytical results and
simulation increases when the percentage of foreground
traffic becomes larger. This is because our formula has

been deduced under the assumption that there is only
one foreground traffic arrival.

• Roughly speaking, the error of our approximate formula
increases as the number of services K increases (and
all other parameters remain the same).

• The relative difference between our formula and sim-
ulation increases when ρtot increases and all other
parameters remain the same

TABLE I
RELATIVE COMPARISON BETWEEN THE RESPONSE TIMES OBTAINED BY

SIMULATIONS AND RESPONSE TIMES CALCULATED USING THE
FORMULA.

K = 2 K = 4 K = 8
FG traffic (%) → 5 10 5 10 5 10
ρtot = 0.5 0.1% 0.19% 0.5% 1.6% 1.8% 1.5%
ρtot = 0.7 1.1% 1.7% 1% 1.3% 2.4% 8.2%
ρtot = 0.9 1.7% 4.6% 5.2% 8.6% 5.0% 13.5%

D. Scenarios with background traffic and stale system state
information

For these scenarios we have conducted simulations in
order to investigate which factor has more impact to the
response time: delayed system state information or back-
ground traffic.

The simulation results presented in Figure 8 for the JSQ–
RR strategy, apply to the case when ρtot is fixed at 0.7
and the number of services K = 4. Results are shown
for four different values of the parameter D representing
the system state information delay: D ∈ {1, 2, 5, 10}.
As for the case with up-to-date system state information
(D = 0) considered in the previous subsection, we see
that the response time as function of the percentage of
foreground traffic has a decreasing trend. Obviously, when
background traffic diminishes, the response time approaches
the values obtained for the scenarios without background
traffic considered in subsection IV-B. However, all together,
it is hard to determine from this figure which of the two
factors has predominant influence on the response time.

In order to investigate whether delayed system state
information or intensity of the background traffic has more
impact to the system performance, we compare results from
Figure 8 (RTBG+∆) to results when only stale information
is present (RT∆). The comparison is presented at Figure 9
and represents the ratio r = RTBG+∆

RT∆
for different values

of the system state information delay parameter D. The
ratio r is lower bounded by 1, and when r → 1 delay has
more influence on RTBG+∆ than background traffic. The
following conclusions can be made from Figure 9:
• The larger D, the more influence has the background

traffic on RTBG+∆. Suppose that the percentage of the
foreground (background) traffic in the system is fixed.
As D increases, the interval when state information is
collected becomes larger. The larger the interval, the
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Response time for JSQ-RR with background traffic and stale information, 
rho_tot=0.7
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Figure 8. Response times for JSQ–RR strategy in case of the scenario with
background traffic and stale information, with parameter D ∈ {1, 2, 5, 10}.
Utilization per queue, ρtot is 0.7, the number of services is K = 4.
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Figure 9. Ratio of response times between the system with background
traffic and stale information and the system with stale information only.
The dispatching strategy is JSQ–RR. Utilization per queue is ρtot = 0.7
and the number of services is K = 4.

more background traffic arrivals to a queue between
two state information updates. The response time of the
tagged foreground arrival will therefore be influenced
by more background arrivals.

• For smaller values of parameter D, the relative change
of ratio r is smaller. For example, when D = 1 the ratio
changes from 1.88 (30% foreground traffic) to 1.28
(90% foreground traffic), compared to change from
2.41 to 1.31 when D = 10, respectively. This means
that absolute influence of background traffic is smaller
for smaller values of D. The smaller the period of the
system state information update, less background traffic
arrivals are probable within one such period.

V. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the performance po-
tential of dynamic, run-time web service selection within
SOA, under various assumptions regarding the available
system state information and/or presence of background
traffic. Using simulation and analytical modelling it has been
shown that, compared to static (a–priori) service selection,
considerable performance improvements are possible, even
when the state information is stale and/or background traffic
is present. These improvements result from exploiting work-
load fluctuations that occur at relatively small time scales
mainly caused by the random behaviour of potential clients.

The main results of the paper could be summarized as the
following:

1) Quantification of the achievable gain versus the num-
ber K of pre-selected concrete services by a fair
comparison with respect to the base case of static
web service selection. For relatively small numbers
of K, e.g., K = 4 or K = 8, significant response
time reductions are obtainable.

2) Quantification of the achievable gain in terms of
response times when background traffic is present at
the pre-selected concrete services for different dis-
patching strategies. We show that the response time
performance of JSQ is quite robust with respect to
the presence of background traffic. An insightful ap-
proximate formula for the response time under the
JSQ dispatching strategy is derived for cases where
the background traffic is dominant.

3) Quantification of the achievable gain in terms of
response times in case of delayed state information.
A stateless dispatching algorithm such as RR always
improves upon the base case. Statefull dispatching
algorithms such as JSQ should be carefully applied as
can potentially perform worse than the base case when
delay is present. However, a combination of RR and
JSQ, referred to as JSQ-RR, always improves on RR
and hence the base case, even if the delay of the system
status updates tends to infinity. In fact, the response
time performance of JSQ-RR is upper bounded by the
performance of RR, and lower bounded by JSQ.

Nevertheless, the promising results raise several research
questions still to be answered, e.g.:
• What is the performance under more general assump-

tions regarding the requests’ arrival processes and their
service requirements?

• What is, eventually, the impact of the resulting overhead
(due to making the required system state information
available) on the performance?

• What is the performance of alternative runtime dis-
patching strategies that don’t introduce additional over-
head, e.g. dispatching strategies based on response
times from previously assigned jobs instead of explicit
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(“stale”) system information?
• What is the performance of the observed dispatching

strategies when the service composition comprises mul-
tiple abstract services?
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