
End-user’s Service Composition in Ubiquitous Computing using Smartspace
Approach

M. Mohsin Saleemi
Turku Centre for Computer Science (TUCS)

Åbo Akademi University
Turku, Finland

msaleemi@abo.fi

Johan Lilius
Department of Information Technologies

Åbo Akademi University
Turku, Finland

johan.lilius@abo.fi

Abstract—This paper presents our architecture and overall
process for creating end-user service compositions using
smartspace appraoch. We have used OWL-S ontology
language to describe the service capabilities semantically.
We implemented the composition algorithm as the planning
strategy for automatic service composition. This composition
conforms to semantic graph-based techniques where atomic
services are composed iteratively based on OWL-S service
properties. We also presented a concrete example to show how
this algorithm automatically discovers and composes services
in a sequence that fulfills end-user’s requests.

Keywords-smartspace; ubiquitous computing; composition.

I. INTRODUCTION

Recent advances in information and communication tech-
nologies have made available a wide range of devices and
services to their users and hence making a device, service
and information rich environment for them. It helps simpli-
fying and managing our complex lives, e.g., the ubiquitous
smartphone that manages our calender, contacts and task
list and helps us keep our lives organized, or the Personal
Video Recorder (PVR) whose time-shift functionality allows
us to watch TV programming when we want, not at the
time prescribed by the broadcaster. However each of these
devices is basically an island, with no proper connectivity
between the applications. In order to take full advantage,
devices need to interact with each other to perform different
tasks. The problem thus is the closed and proprietary device
architectures which have limitations in terms of scalability
and interoperability. By exposing the internal data and func-
tionality of the devices and ensuring interoperability of data,
a whole new universe of applications will be possible. For
example, your smartphone could notice that your favorite
program will start in 5 minutes, based on your profile
information or a fan page on facebook and the TV guide
available on the broadcaster’s web page. Then, it could use
GPS to find that you are not at home, and deduces that it
needs to start the PVR at home. Another example could
be the composition of available services to form a complex
composite service which is not otherwise possible.

To enable these kinds of cross-domain scenarios, there
are many technical and conceptual problems to be solved.
One way to address these issues is through the notion of a
smartspace. A Smartspace is an abstraction of space that
encapsulate both the information in a physical space as
well as access to this information allowing devices to join
and leave the space. In this way, smartspace becomes a
dynamic environment whose membership changes over time
when the set of entities interact with it to share information
between them. For example, communication between the
mobile phone and the PVR in the above scenario does not
happen point-to-point but happens through the smartspace
whose members are the mobile phone and the PVR. These
device functionalities are available to the other elements of
the members of the smartspace as services.

We have developed a prototype service composition ar-
chitecture that supports service composition in smartspace
environment. The system is able to achieve the desired user-
tailored goals by composing the combination of available
services in the smartspace. As part of our solution, we
introduce a composition algorithm that find a set of can-
didate services which could be part of the composition. The
complete realization is obtained by grounding of the selected
services.

The rest of the paper is structured as follows. Section II
describes the smart-m3 which is the underlying architecture
of our work. In Section III, we presented the application
development approach for smart-m3. This section also pro-
poses our concept of service to the smart-m3 architecture
and provides an example to illustrate the idea. In Section
IV, we specify the service description language and the
service composition. We then present our proposed system
architecture of service composition in Section V. Section VI
illustrates the implementation details of the example scenario
of service composition using the language translation ser-
vice. Section VII presents related research and we conclude
the paper and give directions for the future work in Section
VIII.

214

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

Figure 1. Smart-M3 Architecture

II. SMART-M3 ARCHITECTURE

The Smart-M3 architecture [9][2] provides a particular
implementation of smartspace where the central repository
of information is the Semantic Information Broker (SIB).
The smart-M3 space is composed of one or more SIBs where
information may be distributed over several SIBs for the later
case. The set of SIBs in a M3 space are completely routable
and the devices see the same information, hence it does not
matter to which particular SIB in a M3 space a device is
connected. The information is accessed and processed by
the entities called Knowledge Processors (KPs). KPs interact
with the M3 space by inserting, retrieving or querying
the information in any of the participating SIBs using
access methods defined by the Smart Space Access Protocol
(SSAP). Smart-M3 provides information level interoperabil-
ity to the objects and devices in the physical space by
defining common information representation models such as
the Resource Description Framework (RDF). In this way, it
provides a device, vendor and domain independent solution
for interoperability. Since smart-M3 does not constrain to
a specific structure of information, it enables the use of
ontologies to express the information and relations in an
application. The ontology enables the KPs to access and
process the information related to their functionality from
the M3 space and hence it directs the KPs through the space.
Figure 1 shows the overall Smart-M3 architecture.

III. APPLICATION DEVELOPMENT FOR SMART-M3

We chose the ontology-driven application development
approach for smart-M3 and developed tools [7] for mapping
of ontologies to Object Oriented Programming (OOP). Our
approach consists of two parts. The first part is the generator
that creates a static API from an OWL ontology. This
mapping is done according to a set of static mappings.
These mappings generate native Python classes, methods
and variable declarations which can then be used by the
KP developer to access the data in the SIB as structured
and specified in the OWL ontology. The second part is the
middleware layer which abstracts the communication with
the SIB. Its main functionality to the generated API is triple

handling. This consists of inserting, removing and updating
triples and committing changes to the smartspace. It also
provides functionality for synchronous and asynchronous
querying. Our approach enables application developers to
use the generated API to develop new KPs and applications
without worrying about the SIB interface as the generated
API takes care of the connection to the SIB each time an
object is created.

In this application development approach, the concept of
application is not the traditional control-oriented application
running on a single device but the application is constructed
from a number of independently operated KPs which may
run on different devices and group together to be perceived
as a single application. For instance, chat, calendar synchro-
nization and multiplayer games are examples of applications
using this approach where a set of KPs each handling a
single task run on multiple smart devices and coordinate and
interact with each other through the SIB to make a complete
application. This coordination between KPs are done in the
form of data exchange through the SIB where KPs subscribe
to or query for specific data to perform their specified task.
Application ontologies are used to describe data in the SIB
and directs the KPs to access and manipulate data related to
their functionality.

We have taken the following approach to define our
system.

The Knowledge processor (KP) is a single stateless soft-
ware entity that reads or writes to the SIB either directly
or by subscription. Each KP performs one piece of func-
tionality. The functionality can have different forms and
granularities. For example, we can identify device function-
ality which involves internal device resources such as a KP
performing an MPEG encoding function within a PVR to
convert analog signal to digital, or it can be a functionality
related to computing of user data such as a KP translating
a message from one language to another or a KP accessing
calendar data in your smartphone. The KPs are accessible
by other entities in the system only through the SIB.

The Application is the composition of behaviors of the
KPs. The application exhibits the total functionality that is
of interest to the user. We see applications as possible real-
world scenarios that are activated by a particular set of KPs.
For example, the scenario of the PVR and the smart phone
described in the last section is an application ” Record if I
am not in home ” using our approach. This application is
built up by a number of KPs including a set of calendar KPs
running in the smartphone and a set of PVR KPs running
in the PVR to handle its tasks and functionality. The KPs
running in the smartphone includes, for instance, a KP for
reading calendar data, a KP for accessing profile information
to check for favorite program, a KP for accessing the TV
electronic program guide to check the schedule, and a KP for
GPS data to find out the current location. The KPs running
in the PVR includes, for instance, a KP to turn the PVR

215

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

Figure 2. Application Scenario

on or off, a PVR tuner KP that receives the signals, an
encoder KP that converts analog signal to digital, a KP
to record digital stream to the internal hard drive of the
PVR. These sets of KPs in the smartphone and the PVR
coordinate by exchanging information through the smart-
M3 space to enable this application. From the perspective
of an application programmer, the PVR and the smartphone
are two the entities in this application that need to be
deployed. From deployment point of view, the PVR and the
smartphone need to have the capability to tell the smartspace
what is available and achievable. In order to make this
declaration in a more common and well defined way, the
idea of service comes in.

We propose to introduce the notion of service in Smart-
M3 approach as a group of KPs that has a coherent set of
functionality. We see a service as an interface to functionality
that you can get through the smartspace. For example, the
PVR in our example provides recording functionality and
has a number of KPs each performing its specified function
to implement the overall concept of TV recording. We see
this as a PVR service which can be described by a service
description language, e.g., OWL-S [1] and then be published
in the smartspace to be available for the other KPs that are
working within the application. They can call this service
and add its functionality in the application without knowing
how it actually works. The PVR service can be seen as a
form of API where this API can have a number of other PVR
functions as well which are not used in our scenario, e.g.,
you can use the audio-out jacks on the PVR to send the audio
portion of programs and movies straight to the home stereo,
which may produce better sound quality than the television.
This functionality can be implemented by adding additional
KPs. The coordination of functionality between the coherent
set of KPs is done in the SIB. A single KP can always be
seen as a service. The services can be stateless or state-full
depending on their functionality. If a service is composed
of only one KP that handle one specific task then it will
be stateless. In our example application scenario, instead
of having individual KPs for handling calendar activities
in the application, a set of KPs dealing with calendar data
group together to be perceived as a calendar service. These

calendar and PVR services are exploited by other KPs in
this application, e.g., the KP handling GPS data to check
whether it needs to activate the PVR to record a specific
TV program. In this way, each service can act as a service
provider, exposing its functionality to other KPs and services
via the smartspace, and can act as a service requester,
incorporating data and functionality from other services.
These services are internal to the application, but can be
reused by other applications after describing the properties
and capabilities of the services using well defined service
description languages.

TABLE I
CONCEPTS

Knowledge pro-
cessor

Service Application

Stateless entity Stateless /stateful Stateless /stateful
Handles one task Composition of

KPs
Composition of
services and/or
KPs

Read/write to the
SIB

Described by
description
languages

Represents over-
all functionality

Can be discov-
ered and reused

The SIB offers a persistent data storage back-end and is
thought of as a dump and plain database that just gives
access to the data. It does not provide any kind of services
where some control structure and computations are involved.
The coherent set of KPs provide the capabilities to enable
services to the SIB in addition to just ’finding’ the infor-
mation. In this way, some computation and control structure
is added as the services which have well defined interface
and implemented by the set KPs using the object oriented
programming approach. By storing the service descriptions
in the SIB, it becomes possible to query the Smartspace for
its Services. These services can be later discovered, invoked
and reused by the other entities in the system. Hence we
believe that the notion of service in this context provides
advantages to the original smart-M3 approach.

IV. SERVICE COMPOSITION

The basic idea of composition is to use semantically
related services in the system in such a way that their
combination provides the desired goals which are not oth-
erwise possible. For example, consider a scenario where
a number of language translation services are available in
a system each translating from one specific language to
another. If the system receives a translate service request
to a language that is not already available, it should be
able to find the services that can combine to fulfill the
request. This gives a broader view of service composition
that also includes service discovery. The process of service
composition is thus, to select a set of services which
can possibly fulfill the request (Service discovery process)

216

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

and to compose these candidate services to form a single
service. All of these tasks are done with the help of service
specification languages that describe the services and enable
automated or assisted searching of services that participate
in the composition process. We propose to use OWL-S
language for this purpose. There are several reasons for
choosing OWL-S for service description. Firstly, OWL-S
enables declarative advertisement of service properties and
capabilities that can be used for automatic service discovery.
Secondly, as we are using OWL ontologies for the domain
concepts and application development for the Smart-M3,
OWL-S describes the services in terms of capabilities based
on OWL ontologies. Thirdly, OWL-S provides specification
of prerequisites of individual services and a language for
describing service compositions and data flow interactions.
OWL-S can be used to construct complex composite services
using OWL-S control constructs such as sequence, split,
split-join, if-then-else, iterate, choice and loops. Currently
we use only sequence construct in our application which
requires a list of components to be done in an order where
the output of the component A is compatible with the input
of component B and so on.

The OWL-S provides three levels for service description:
Service Profile, Process Model and Service Grounding. The
Service Profile provides a general description for advertising,
discovering and composition of the services. It includes
both functional properties of services, IOPE (inputs, out-
puts, preconditions and effects) and nonfunctional service
properties (name, text description, category and additional
service parameters). The Process Model gives information
about how a service performs its operation and describes
the steps that should be done for the execution of the
service. These steps include transformation of the set of
inputs into the set of outputs and state transitions from
one state to another when the service is carried out. The
Service Grounding gives details about how to access a
service using the specific message formats and platform
provided protocols, for example, the Simple Object Access
Protocol (SOAP) and HTTP used in accessing web services
and the SSAP protocol in our case of the smartspace based
applications. As the Service Profile describes the functional
description that will be used in the service discovery and
composition, we will only focus on Service Profile in this
paper.

V. SYSTEM ARCHITECTURE

We have proposed a service composition framework for
the smart-M3 approach. The architecture of the framework
is presented in Figure 3. The goal is to enable both the
end-users and the application designers to use the system
for service discovery and composition in smart-M3 based
application development. The functionalities supported by
this framework are publishing the service descriptions in the
SIB, searching the services relevant to a query or application

based on these descriptions, and composing the compatible
services to form a single service to fulfill a given request.
The framework consists of the following six layers.

1. User/Application Layer: The goal of this layer is to
handle interaction with the end-users. It consists of user
level application and the graphical user interface (GUI). The
system is expected to receive the request from the end-
users in the form-based query mechanism. It can then be
converted to the OWL-S representation by the Interpretation
layer of the system. The end-user interacts with the system
using the application GUI that consists of a user query form.
The end-user submits its request by filling the query form
and specifies the desired goal in terms of its functional
parameters. These parameters would be in the form of inputs,
outputs, conditions and goals. This request enables the end-
user to specify what he wants the service to do for him
while abstracting the implementation of the service. For
example, if a user wants to use the system for a language
translation service, he submits the request in terms of the
source language, the destination language, the goal and/or
some precondition by using the end-user query form. The
user will totally be unaware if the result of the request
comes from a single service or composition of two or several
services.

2. Interpretation layer: This layer is responsible for
mapping the end-user’s intent in some well defined notion,
the OWL-S service ontology in our case. After the end-
user specifies the desired goal using the application GUI in
user/application layer, the user’s request is converted into
its equivalent form of the OWL-S service ontology by the
interpreter agent in this layer. In this way, the end-users do
not require to have extensive knowledge about the ontologies
as the system handles their requests in natural language. The
service descriptions in the request is then matched with the
available services in the system to find out if the request
can be fulfilled. This layer also contains a composition
KP which is responsible for making the compositions of
the available services if the request is not fulfilled by a
single service. This composition KP relies on the Service
Discovery component in the Semantic Service Layer. The
Service Discovery component selects a set of services from
the available services and passes this information to Service
Composition which generates the composition by specifying
the order in which each service is to execute to form a single
composite service to fulfill the request. As the system is
capable of interpreting OWL-S, the applications can also be
given as OWL-S.

3. Semantic Service layer: The semantic Service layer
handles the description, discovery and publishing of ser-
vices. End-users can use the system to find out if it is
able to do a particular thing such as translating from one
language to another. There is another broader way in which
services are written in OWL-S and need to be interpreted and
executed by the system. For example, the PVR service and

217

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

the calendar service are provided by their service providers
in OWL-S and the end-user application ’Record if I am
not in home’ interpret and execute these predefined OWL-S
services in the system. As described in Section 3, a coherent
set of KPs makes a service, e.g., the PVR service includes
several KPs each performing a single task. Moreover, each
KP handling a single task can also be seen as a service,
e.g., each KP translating from one language to another
is regarded as a separate service. In order to make these
services available to the other entities in the system and to
facilitate service composition, each of these services must
be described using OWL-S. The semantic service layer is
responsible for these service descriptions. After describing
each service, the services need to be published. The service
provider describes service functionality and other informa-
tion which must be converted in OWL-S in order to store
and publish in the SIB. The Service Discovery is done after
services have been described and published and return a list
of services as a result to the composition KP.

4. KP Layer: The KP layer is the low level layer which
is responsible for bindings of the KPs. Each KP handles one
task or functionality and interact with the repository to read
and write required data. An end-user application contains
a series of actions that need to be performed to fulfill its
desired goal. These actions are actually implemented by the
KPs in the system.

5. Middleware Layer: The middleware layer contains
all the necessary components that are required to access the
devices and services in the smartspace. It includes DIEM
Mediator that provides a smartspace independent interface
for accessing certain functionality of the SIB. This interface
encapsulates the communication of KPs with the SIB and
provides modularization. It provides the functionality of
triple handling and synchronous and asynchronous querying.
The middleware layer may optionally include other 3rd party
middleware solutions such as UPnP middleware.

6. System Layer: The system layer consists of the SIB
which acts as a persistent data storage for the information in
the form of RDF triples. This layer also contains the oper-
ating system and other local device resources and provides
a native interface to the upper layers.

In this system we are proposing the OWL-S language as
a kind of interoperability format for KP-based smartspace
applications. The notion of service in this kind of applica-
tions gives a well defined interface which provides benefits
over traditional Smart-M3 application development approach
which is based on only KPs. These benefits include, for
instance, description, discovery and composition in a more
structured way.

By stroing the service descriptions in the SIB, it becomes
possible to query the smartspace for its services. From a
programming point of view, the notion of services is a
structuring mechanism that groups together several different
KPss to abstract individual calls from the API of a device

Figure 3. Structure of the System

that is present in the Smartspace. We make a dedicated space
in the SIB, that can be used for registering the services.
In this case the SIB will be the central part and all the
requests and responses of the services will go through the
SIB. For example, when a service requester submits a query
to the SIB, the SIB will interpret the query and determine
the match using the semantic description of services. After
selecting the matching service it will construct a query to the
service provider agent. The service provider agent interprets
this query from the SIB, performs the service execution and
generates a response to the SIB. The SIB interprets this
response, transforms it to the response understood by the
requester and sends it to the service requester.

VI. EXAMPLE SCENARIO: LANGUAGE TRANSLATION

To illustrate the approach, we consider the following
service composition scenario where many KPs in the system
coordinate each other to fulfill the end-user’s request that
is not possible with a single KP. The scenario is the lan-
guage translation function which translate from one source
language to the target language. Suppose we have many
KPs in the system where each is capable of translating
one particular language to another. We call each of the
translate functions as a Service. An end-user uses the system
and sends the query to translate a particular message in a
source language, for instance, Finnish to a target language,
for instance, Urdu. Since each KP has to perform its own
dedicated single task, there is no KP that directly satisfies
this request. In other words, there is no single service in
the system that can perform this task. In this case, the
system is able to find appropriate composition of different

218

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

services to satisfy the user’s request. The system performs
this composition automatically hence the end-user does not
need to worry about invoking each individual service that
takes part in the composite service.

A. Composition Algorithm

We have implemented a composition algorithm for service
composition. The algorithm is implemented in python as we
have only a python version of the SIB interface available at
the time of writing this paper. The algorithm follows the
Breath First search pattern to find all the candidate services
that can be included in the composition. The Breath First
search gives better results as it moves horizontally across
each search path and finds the solution with the fewest
possible services and does not face looping problem. As
the SIB can read and write only RDF data, our algorithm
use the same format to interact with the SIB to insert
and query the RDF triples. The algorithm works in two
parts. In the first part, the services which can be included
in the composition are separated. In the second part, the
composition is constructed based on the selected services
using the approach that begins with inputs and preconditions
and works forward in the direction of outputs and effects.
This shows that each and every service should be described
semantically in terms of its inputs, outputs, preconditions
and possible effects in order to make this algorithm work.
Our algorithm always finds a composition solution if it is
available unless there are infinite services. If the composition
is not possible from the available services in the system,
it returns the message that the user’s request cannot be
fulfilled. The proposed algorithm can be evaluated based
on its completeness and optimality. The time and space
complexity depends on the particular service compositions.
As our focus in this project are the smart devices, we have
implemented the algorithm in a way that reduces the space
complexity by ceasing the algorithm at some depth to avoid
memory overflow. However, there will be compromises in
terms of completeness because the algorithm may not find
the solution within that search path.

When an end-user requests a specific service by making
a query, the algorithm starts with checking the inputs and
preconditions of the requested service and matching these
parameters with the available services. All the services
which have similar inputs and precondition parameters as
the requested service may be possible candidates for service
composition and are selected. The algorithm then works
by constructing a graph of the services in a forward chain
pattern by checking the outputs and effects of the previously
selected services. This process continues until it reaches to
the service having desired output. This service is placed at
the leaf node of the graph and the composition is returned
by traversing the graph.

B. Example

We use the example of language translation to illustrate
the applicability of the proposed algorithm. We assume that
the system has a range of different services provided by
indiviasual KPs where each KP performs only one task.
An end-user wants to use the system to send the meeting
invitations to all members of the project in their mother
tounge. The original invitation is in the Finnish Language.
The user sends the request to the system by using some
GUI to translate the particular Finnish text into the desired
language, for example Urdu. Suppose that there are many
different KPs, each providing a translation service from
one particular language to another. The Service handler
takes this request and prepares the semantic description of
this request in terms of inputs, outputs, preconditions and
effects. In general, Inputs and Outputs are subclasses of
a general class Parameter in the OWL-S service ontology.
Every parameter has a type that can be specified using
a URI to uniquely identify it. The type can either be a
Class or a Datatype such as a number, a string etc. The
Preconditions and effects represent more specific functional
properties to easily discover the services. For example,
assume the service request is to translate from a source
language to a particular target language with the input and
the requested output of type string. There might be services
in the system that have the same input/output type but their
goals and preconditions are different, such as a dictionary
service which has precondition of the same input and output
language.

This information is derived from the service profiles of
each of the available services. The profile gives the details
about each service. The following OWL-S statements shows
the general profile of the language translation service.
<profile:Profile rdf:ID="Lang">
<profile:serviceName
rdf:datatype="http://www.w3.org/...#string">
Lang Trans
</profile:serviceName>
<profile:hasPrecondition
rdf:resource="#Lang_precond"/>
<profile:hasInput>
<process:Input rdf:ID="message">
<process:parameterType rdf:datatype=
"http://www.w3.org/...#anyURI">
http://...#Message
</process:parameterType>
</process:Input>
</profile:hasInput>
....
</profile:Profile>

These parameters are then matched with the available
services in the system to find out if there is any single
service that matches all these parameters. If there is any,
a message is sent to its respective KP to execute the service
using the text as input and the results are returned to the end-
user. If there is no such match found, then the composition
algorithm starts with finding all the services which has

219

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

the same input, preconditions and effects as the requested
service i.e the services accepting Finnish language as input,
having different input and output languages as preconditions
and translation as the goal/effect. These services could be the
possible candidates for the composition and hence separated
by constructing a graph with each node representing a
service in the same horizontal level. Suppose that the system
finds the following services in this step.

S1: <Input:Fin><Output:Spa><Effect:translation>
S2: <Input:Fin><Output:Eng><Effect:translation>
S3: <Input:Fin><Output:Ger><Effect:translation>

The algorithm constructs the graph by placing ’Fin’ at
the root and Swe, Eng and Ger as its immediate children.
It then checks each immediate children by checking their
outputs and effects and putting each matching services under
their respective nodes. Suppose the following services are
retrieved in this step.

S4: <Input:Spa><Output:Eng><Effect:translation>
S5: <Input:Ger><Output:Dek><Effect:translation>
S6: <Input:Eng><Output:Urd><Effect:translation>
S7: <Input:Eng><Output:Fre><Effect:translation>
S8: <Input:Eng><Output:Swe><Effect:translation>
S9: <Input:Ger><Output:spa><Effect:translation>

The algorithm then checks if the composition is possible
from the selected services as the original requested output
(Output: Urd) is found in this step. It traverses the graph to
reach the root (Input: Fin) and finds the path. The resulting
composition S2->S6 is returned to the service handler. It
is important to note that based on the selected services,
there is another composition possible for the same request
<Input:Fin ><Output:Urd >which is S1->S4->S6. The
algorithm always returns the composition which involves
fewer services. If the service composition is not found in
this step, the algorithm continues working until it reaches the
desired output or there is no composition possible from the
available services. For the later case, the algorithm returns
a message of ’composition not possible’ to the service
handler. The algorithm can run indefinitely if there is very
large number of services and it does not find any suitable
composition to fulfill the request. This means that we need
to apply some end point to limit the number of times it
executes to reduce the memory and bandwidth requirements
of smart devices. Figure 4 represents the results of the
service composition using our algorithm.

The composite service produced by the composition of
atomic services can then be described semantically so that
it can be discovered or take part in other compositions
later. This way, we are able to provide services that are not
actually included in the system.

C. Service Grounding and Execution

After the service composition is created, the next step is to
execute these services in order to get the desired goals. The
service grounding prescribes the details of how to access

Figure 4. Composition results

the services in the composition such as message formats,
protocols and invocation methods etc. used to interact with
the composed services. It specifies a link between semantic
and non-semantic description elements of the services. The
grounding can include some or all of the following elements

Non-semantic elements:

ServiceName -> Name of the service
ServiceType -> Type of the service
KPInfo -> Information of KP providing service

Semantic elements:

ServiceInput -> Input of the service
ServiceOutput -> Output of the service
InputType -> Type of the Input parameter
OutputType -> Type of the output parameter
Preconditions -> Conditions met before execution
ServiceEffects -> goal of the service
MessageFormat -> Format acceptable by KPs
Protocols -> protocols to interact with the SIB
ServiceOntology -> specifies relations

As in our system implementation, every co-ordination
between the KPs goes through the SIB, the execution of
the services in the composition is done by invoking each
individual service and passing data between the services in
the order specified by the composition using the grounding
elements described above. This invocation is accomplished
by sending the messages to the service provider agents
in their acceptable formats. This approach can undergo
scalability problems in case of an excessive message and
data passing between a large number of services in the
composition such as in sensor applications.

220

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

VII. RELATED WORK

There are different approaches and architectures that ad-
dress the issue of service composition. These approaches can
be classified using several service composition features such
as automatic composition [8], semi-automated composition
[10], end-user interaction [11] and service specification
lanaguage [6] etc. In [3], the authors give a comparison
of different service composition approaches. A middleware
solution for end-user application composition is provided
in [5]. Other approaches of flexible service composition
in mobile environments are described in [4][12]. While
existing research efforts deal with theses issues separately,
there has been very limited work in ubiquitous service
compositions in smart environment. In [13], the authors
proposed a system consisting of a middleware and user-level
tools that enable the end-users to combine, configure and
control the services using their smart home devices. Each
home device has interfaces and the end-user selects some
devices and the system generates a set of compositions of
selected devices in a way that these devices can collaborate
to generate applications by using the domain knowledge and
user inputs. This composition may result in an arrangement
that has no meanings. They have used the Depth First
Search (DFS) algorithm for generating the composition.
The drawback with this algorithm is that it does not know
which composition is better and which composition does
not make sense. In our approach, each service is described
semantically and this service description is stored in the
SIB. It gives the advantage of query and accessibility of
the services from the smartspace.

VIII. CONCLUSION

In this paper, we expressed our ideas for providing ser-
vices to the smart-m3 approach. These services are provided
by means of sets of Knowledge Processors. We presented
the system architecture and example services to illustrate our
approach. A service composition algorithm is also presented
with a concrete example. For future work, we are aiming to
implement an efficient algorithm for discovering the services
in the big search space of smart-m3. Furthermore, we need
to use the ontology hierarchy to restrict the set of services
considered for matching.

ACKNOWLEDGMENT

The research work presented in this paper is based on the
ICT-SHOCK DIEM (Devices and Interoperability Ecosys-
tem) project and the authors would like to acknowledge all
the partners of this project.

REFERENCES

[1] Owl-s services: http://www.daml.org/services/owl-s/. Ac-
cessed: October 2010.

[2] Smart-m3 software at sourceforge.net, release 0.9.4beta, may
2010. [online]: http://sourceforge.net/projects/smart-m3/. Ac-
cessed: October 2010.

[3] J. Bronsted, K. M. Hansen, and M. Ingstrup. A survey of
service composition mechanisms in ubiquitous computing. In
Ubicomp 2007, pages = 87-92.

[4] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha. Service
composition for mobile environments. Mob. Netw. Appl.,
10:435–451, August 2005.

[5] O. Davidyuk, N. Georgantas, V. Issarny, and J. Riekki.
MEDUSA: Middleware for End-User Composition of Ubiq-
uitous Applications. In Handbook of Research on Ambient
Intelligence and Smart Environments: Trends and Perspec-
tives. IGI Global, 2010.

[6] J. Dong, Y. Sun, S. Yang, and K. Zhang. Dynamic web
service composition based on owl-s. Science in China Series
F: Information Sciences, 49:843–863, 2006. 10.1007/s11432-
006-2026-2.

[7] A. Kaustell, M. M. Saleemi, T. Rosqvist, J. Jokiniemi, J. Lil-
ius, and I. Porres. Framework for smart space application
development. In Proceedings of the International Workshop
on Semantic Interoperability, IWSI, 2011.

[8] S. Majithia, D. W.Walker, and W.A.Gray. Automated web
service composition using semantic web technologies. In
Proceedings of the International Conference on Autonomic
Computing (ICAC04).

[9] I. Oliver and J. Honkola. Personal semantic web through a
space based computing environment. In Proceedings of the
2nd IEEE International Conference on Semantic Computing,
2008.

[10] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composi-
tion of web services using semantic descriptions. In In Web
Services: Modeling, Architecture and Infrastructure workshop
in ICEIS 2003, pages 17–24, 2002.

[11] Z. Song, Y. Labrou, and R. Masuoka. Dynamic service
discovery and management in task computing. In Mobile
and Ubiquitous Systems: Networking and Services, MOBIQ-
UITOUS 2004., 2004.

[12] M. Valle, F. Ramparany, and L. Vercouter. Flexible compo-
sition of smart device services. In The 2005 International
Conference on Pervasive Systems and Computing(PSC-05),
Las Vegas, pages 27–30, 2005.

[13] P. Wisner and D. N. Kalofons. A framework for end-user
programming of smart homes using mobile devices. In Pro-
ceedings of the Consumer Communications and Networking
Conference, CCNC, 2007.

221

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

