
Internet of Threads
Renzo Davoli

Computer Science and Engineering Department
University of Bologna

Bologna, Italy
Email: renzo@cs.unibo.it

Abstract—In the beginning, Internet and TCP/IP protocols
were based on the idea of connecting computers, so the address-
able entities were networking adapters. Due to the evolution of
networking and Internet services, physical computers no longer
have a central role. Addressing networking adapters as if they
were the true ends of communication has become obsolete. Within
Internet of Threads, processes can be autonomous nodes of the
Internet, i.e., can have their own IP addresses, routing and QoS
policies, etc. In other words, the Internet of Threads definition
enables networked software appliances to be implemented, These
appliances are processes able to autonomously interoperate on the
network, i.e., the software counterpart of the Internet of Things
objects. This paper will examine some usage cases of Internet of
Threads, discussing the specific improvements provided by the
new networking support. The implementation of the Internet of
Threads used in the experiments is based on Virtual Distributed
Ethernet (VDE), Contiki and View-OS. All the software presented
in this paper has been released under free software licenses and
is available for independent testing and evaluation.

Keywords-Internet; IP networks; Virtual Machine Monitors

I. INTRODUCTION

The Internet was designed to connect computers or, more
precisely, networking controllers. In fact, IP addresses were
assigned, and most of the time are still assigned, to the
hardware interfaces [1].

In a typical situation when a client application wants to
connect to a server daemon it first uses a Domain Name
Server (DNS) to resolve a logical name of the server to
an IP address. Usually the DNS maps the logical name,
which is a readable specification of the required service (e.g.,
www.whitehouse.gov or ftp.ai.mit.edu), to the IP address of a
hardware network controller of a computer able to provide the
requested service.

By Internet of Threads (IoTh) we mean the ability of
processes to be addressable as nodes of the Internet, i.e., in
IoTh processes play the same role as computers, being IP
endpoints. They can have their own IP addresses, routing and
QoS policies, etc.

On IPv4, IoTh usage can be limited by the small number
of available IP addresses overall, but IoTh can reveal all its
potential in IPv6, whose 128-bit long addresses are enough to
give each process running on a computer its own address.

This change of perspective reflects the current common per-
ception of the Internet itself. Originally, Internet was designed
to connect remote computers using services like remote shells
or file transfers. Today most of the time users are mainly

interested in specific networking services, no matter which
computer is providing them. So, in the early days of the
Internet, assigning IP addresses to the networking controllers
of computers was the norm, while today the addressable entity
of the Internet should be the process which provides the
requested service.

For a better explanation, let us compare the Internet to a
telephone system. The original design of the Internet in this
metaphor corresponds to a fixed line service. When portable
phones were not available, the only way to reach a friend
was to guess where he/she could be and try to call the
nearest line. Telephone numbers were assigned to places,
not to people. Today, using portable phones, it is simpler to
contact somebody, as the phone number has been assigned to
a portable device, which generally corresponds to a specific
person.

In the architecture of modern Internet services there are
already exceptions to the rule of assigning IP addresses to
physical network controllers.

• Virtual Machines (VM) have virtual network controllers,
and each virtual controller has its own IP address (or
addresses).

• Each interface can be assigned several IP service oriented
addresses. For example, if a DNS maps www.mynet.org
to 1.2.3.4, and ftp.mynet.org to 1.2.3.5, it is possible to
assign both addresses to the same controller. Services can
be assigned to a specific process using the bind system
call.

• Linux Containers (LXC), as well as Solaris Zones [2], [3],
allow system administrators to create different operating
environments for processes running on the same operating
system kernel. Among the other configurable entities for
containers, it is possible to define a specific network
support, and to create virtual interfaces of each container
(flag CLONE NEWNET of clone(2)). The definition
and configuration of network containers, or zones, are
privileged operations for system administrators only.

The paper will develop as follows: Section II introduces the
design and implementation of Ioth, followed by a discussion in
Section III. Related work is described in Section IV. Section V
is about usage cases. Section VI discusses the security issues
reated to IoTh and Section VII provides some performance
figures of a proof-of-concept implementation. The paper ends
with some final considerations about future work.

100Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

Fig. 1. Different perspectives on the networking support: the standard OS support is on the left side, IoTh is on the right side

II. DESIGN AND IMPLEMENTATION OF IOTH

The role and the operating system support of the Data-
Link networking layer must be redesigned for IoTh. Processes
cannot be plugged to physical networking hubs or switches
as they do not have hardware controllers (In the following
the term switch will be used to reference either a switch
or a hub. as the difference is not rlevant to the discussion).
On the other hand, it is possible to provide processes with
virtual networking controllers and to connect these controllers
to virtual switches. Figure 1 depicts the different perspectives
on the networking support. The focus of Fig. 1 is to show
how IoTh changes the Operating System (OS) support for
networking: what is provided by the hardware vs. what is
implemented in software, what is shared throughout the system
vs what is process specific and what is implemented as kernel
code vs. what runs in user mode.

The typical networking support is represented on the left
side of Fig.1. Each process uses a networking Application
Program Interface (API), usually the Berkeley sockets API [4],
to access the services provided by a single shared stack, or by
one of the available stacks for zones or LXC (see Section I).
The TCP-IP stack is implemented in the kernel and directly
communicates with the data-link layer to exchange packets
using the physical LAN controllers.

In IoTh, represented on the right side of the Figure, un-
privileged processes can send data-link packets using virtual
switches, able to dispatch data-link packets from process to
process and between processes and virtual interfaces (e.g.,
tuntap interfaces) of the hosting OS. Virtual switches can
also be interfaced to physical networking controllers, but this
latter operation is privileged and requires specific capabilities
(CAP NET ADMIN).

So, the hardware-software boundary has been moved down-
wards in the IoTh design. In fact, the data-link networking
(commonly the Ethernet) includes software components in
IoTh, i.e., virtual switches, for unprivileged user processes. In
IoTh the virtual switches are shared components between user
processes, while the TCP-IP stacks (or, in general, the upper
part of the networking stack, from the networking layer up)
are process specific. It is also possible for a group of processes
to share one TCP-IP stack, but in the IoTh design this is just

an implementation choice and no longer an OS design issue
or system administration choice.

The kernel/user-mode code boundary is flexible in IoTh:
both the virtual ethernet switches and the TCP-IP stacks can
be implemented in the kernel or not. A virtual switch can be a
standard user-mode process or a kernel service, while a TCP-
IP stack is a library that can be implemented in the kernel to
increase its performance.

III. DISCUSSION

All the concepts currently used in Local Area Neworking
can be applied to IoTh networking.

Virtual switches define virtual Ethernets. Virtual Ethernets
can be bridged with Physical Ethernets, so that workstations,
personal computers or processes running as IoTh nodes are
indistinguishable as endnodes of Internet communication. Vir-
tual Ethernets can be interconnected by Virtual Routers. It is
possible to use DHCP to assign IP addresses to processes,
to use IPv6 stateless autoconfiguration, to route packets using
NAT, to implement packet filtering gateways, etc.

IoTh can support the idea of network structure consolidation
in the same way that the Virtual Machines provided the idea
of Server consolidation. Complex networking topologies can
be virtualized, thus reducing the costs and failure rates of a
hardware infrastructure. IoTh adds one more dimension to this
consolidation process: it is possible by IoTh to virtualize not
only each server as such, but also the pre-existing network
infrastructure.

Network consolidation is just an example of IoTh as a tool
for compatibility with the past. In this example each process
joining the virtual networks is just a virtual machine or a
virtual router or firewall. The granularity of an Internet node is
flexible in IoTh. A virtual machine can be an Internet node, but
each browser, bit-torrent tracker, web server or mail transport
agent (MTA) can be an Internet node, too.

By IoTh, TCP-IP networking also becomes an Inter Process
Communication (IPC) service. A process can have its own IP
address(es) and can interoperate with other processes using
standard protocols and standard ports. Several processes run-
ning on the same host can use the same port, since each one
uses different IP addresses. The same IPC protocols can be
used regardless of the host on which the process is running:

101Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

nothing changes, whether the communicating processes are
running on the same host or on different, perhaps remote,
computers. This allows a simpler migration of services from
one machine to another.

Each process in IoTh can use Internet protocols as its user
interface. This means, for example, that it is possible to create
programs which register their IP addresses in a dynamic DNS,
and which have their web user interface accessible through a
standard browser.

IoTh is, from this perspective, the software counterpart
of Internet of Things (IoT [5]). In IoT hardware gadgets
are directly connected to the network. They interact between
objects and with the users through standard Internet protocols.
IoTh applies the same concept to processes, i.e., to software
objects as if they were virtual IoT gadgets. These IoTh-enabled
processes using internet protocols to interoperate can be called
networked virtual appliances. If they were implemented on
specific dedicated hardware objects, they would become things
according to the definition of IoT.

IV. RELATED WORK

IoTh uses and integrates several concepts and tools already
available in the literature and in free software repositories.

A. Virtual Ethernet Services

IoTh is based on the availability of virtual data-link layer
networking services, usually virtual Ethernet services, as Eth-
ernet is the most common data-link standard used.

The idea of a general purpose virtual Ethernet switch for
virtual machines has been implemented by some projects:

• VDE [6] is a general purpose, distributed support for
virtual networking. A vde switch is the virtualized coun-
terpart of an Ethernet switch. virtual machines (or virtual
appliances) can be connected to a vde switch using the
vde plug library. Remote vde switches can be connected
together to form extended LANs. VDE is a service for
users: the activation of a VDE switch, the connection
of a VM to a switch, or the interconnection of remote
switches, are all unprivileged operations. VDE provides
support for VLANs, fast spanning trees for link fault
tolerance, remote management of switches, etc.

• OpenVswitch [7] is a virtual Ethernet switch for VMs
implemented at kernel level. OpenVswitch has VLAN
and QoS support. It has been designed to be a fast,
flexible support for virtual machines running on the same
host. It does not support distributed virtual networks, and
requires root access for its configuration.

• Vale [8] is a very fast support for virtual networking,
based on the netmap [9] API. It uses shared memory
techniques to speed-up the communication between the
VMs. Vale, like OpenVswitch, does not directly support
distributed networks and must be managed by system
administrators.

B. TCP-IP stacks

As described in the introduction, the TCP-IP networking
stack is generally unique in a system and it is considered as
a shared systemwide service provided by the kernel. Adam
Dunkels wrote two general purpose and free licensed TCP-
IP stacks for embedded systems: uIP [10] and LWIP (Light
Weight IP) [11]. uIP is a very compact stack for microcon-
trollers having limited resources, while LWIP is a more com-
plete implementation for powerful embedded machines. LWIP
was initially designed for IPv4, but a basic support for IPv6
has recently been added. In 2005, when LWIP did not support
IPv6 yet, VirtualSquare labs created a fork of LWIP named
LWIPv6 [12]. LWIPv6 then evolved independently and is now
a library supporting both IPv4 and IPv6 as a single hybrid
stack, i.e., differently from the dual-stack approach, LWIPv6
manages IPv4 packets as a subcase of IPv6 packets. When
LWIPv6 dispatches an IPv4 packet it creates a temporary IPv6
header, used by the stack, which is deleted when the packet is
delivered. LWIPv6 is also able to support several concurrent
TCP-IP stacks. It has features like packet filtering, NAT (both
NATv4 and NATv6), slirp (for IPv4 and IPv6).

C. Process/OS interface

In this work we use two different approaches to interface
user processes with virtual stacks and virtual networks. A
way to create networked software appliances is to run entire
operating systems for embedded computers as processes on a
server. Contiki[13], or similar OSs, can be used to implement
new software appliances from scratch. This approach cannot
be used to interface existing programs (e.g., an existing web
server like Apache) to a virtual network, unless the software
interface for networking is completely rewritten to support
virtual networking.

ViewOS[14] is a partial virtualization project. View-OS
virtualizes the system calls generated by the programs, so
unmodified binary programs can run in the virtualized envi-
ronment. ViewOS supports the re-definition of the networking
services at user level. Server, client and peer-to-peer programs
can run transparently on a View-OS machine as if they were
running just on the OS, but using a virtualized stack instead
of the kernel stack.

Another project provides network virtualization in the
NetBSD environment: Rump Anykernel[15]. The idea of
Rump is to provide user mode environments where kernel
drivers and services can run. Rump provides a very useful
structure for kernel code implementation and debugging, as
entire sections of the kernel can run unmodified at user level.
In this way it is possible to test unstable code without the risk
of kernel panic.

At the same time, Rump provides a way to run kernel
services, like the TCP-IP stack, at user level. It is possible
to reuse the kernel code of the stack as a networking library
or as a networking deaemon at user level.

102Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

D. Multiple Stack support

Some IoTh applications require the ability for one process
to be connected to several TCP-IP stacks at the same time.
The Berkeley sockets API has been designed to support only
a single implementation for each protocol family.

ViewOS and LWIPv6 use an extension of the Berkeley
Socket API, msocket[16], providing the support for multiple
protocol stacks for the same protocol family.

V. USAGE CASES

This section describes some general usage cases of IoTh.
A complete description of the experiments, including all the
details to test the results, can be found in the Technical Report
[17].

A. Client Side usage cases

• Co-existence of multiple networking environments. This
feature can be used in many ways. For example, it is
possible to have a secure VPN connected to the internal
protected network of an institution or a company (an
intranet) on which it is safe to send sensitive data and
personal information, and a second networking environ-
ment to browse the Internet.
As a second example, technicians who need to track
networking problems may find it useful to have some
processes connected to the faulty service, while a second
networking environment can be used to look for informa-
tion on the Internet, or to test the faulty network by trying
to reach the malfunctioning link from the other end.

• Creation of networking environments for IPC. Many
programs have web user interfaces for their configuration
(e.g., CUPS or xmbc). Web interfaces are highly portable
and do not require specific graphics libraries to run.
Using IoTh it is possible to create several Local Host
Networks (LHN), i.e., virtual networks for IPC only, to
access the web interfaces of the running processes. LHN
can have access protection, e.g., an LHN to access the
configuration interface of critical system daemons can be
accessible only by root owned processes. All daemons
can have their own IP address, logical name and run their
web based configuration interface using port 80.

B. Server side usage cases

• Virtual hosting is a well-known feature of several net-
working servers: the same server provides the same kind
of service for multiple domains. IoTh generalizes this
idea. It is possible to run several instances of the same
networking daemon, giving each one its IP address. It is
possible to run several pop, imap, DNS, web, MTA, etc..
deamons, each one using its own stack. All the deamons
will use their standard port numbers.

• Service migration in IoTh is as simple as stopping the
daemon process on one host and starting it on another
one. In fact, a deamon process can have its embedded
networking stack, so its IP address and its routing rules
are just configuration parameters of the daemon process

itself. A VDE can provide a virtual Ethernet for all the
processes running on several hosts. Stopping the daemon
process on one server and activating it later on a second
server providing the same VDE is, in the virtual world,
like unplugging the Ethernet cable of a computer from a
switch and plugging it into a port of another switch of
the same LAN (the ports of both switches have the same
untagged VLAN).

• With IoTh it is possible to design network daemons
which change their IP addresses in a dynamic way.
One Time IP address (OTIP) applies to IP addresses
the same technique used for passwords in One Time
Password (OTP) services. In OTP, the password to access
a service changes over time and the client must compute
the current password to be used to access the service.
This is common for protecting on-line operations on bank
accounts. OTIP uses the same concept to protect private
services accessible on the Internet. A deamon process
changes its IP address dynamically over time and all its
legitimate users can compute its current IP address using
a specific tool, and connect. Port scan traces and network
dumps cannot provide useful information for malicious
attacks because all the addresses change rapidly. A public
demo of OTIP was given during FOSDEM2012[18].

C. Other usage cases

IoTh allows us to use several networking stacks. These
stacks can be several instances of the same stack, or different
stacks. In fact, it is possible to have different implementations
of TCP-IP stacks or stacks configured in different ways,
available at the same time. Processes can choose which one
is best suited to their activities.

This feature can be used in different ways:
• Using an experimental stack as the single, shared stack

of a remote computer can partition the remote machine
in cases of a malfunctioning of the stack itself. IoTh
enables the coexistence of the stack under testing with
a reliable production stack, which can be used as a safe
communication channel.

• Processes can have different networking requirements.
For example, communicating peers on a high latency link
need larger buffers for the TCP sliding window protocol.
It is possible to configure each stack and fine tune its
parameters for the requirements of each process, as each
process can have its own stack.

VI. SECURITY CONSIDERATIONS

Several aspects of security must be taken into consideration
in IoTh.

It is possible to limit the network access possibilities of
an IoTh process and restrict the network services it can use.
In fact, each IoTh process must be connected to a virtual
local network to communicate, and virtual local networks have
access control features. In VDE, for example, the permission
to access a network is defined using the standard access
control mechanisms of the file system. The interaction between

103Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

TABLE I
COMPARISON IN BANDWIDTH (MB/S) BETWEEN A KERNEL STACK AND IOTH

10MB kernel 10MB IoTh 20MB kernel 20MB IoTh 40MB kernel 40MB IoTh
localhost 116 29.9 118 35.9 136 37.4
network 1Gb/s 104 41.9 112 49.0 112 51.7
network 100Mb/s 11.2 11.0 11.1 11.0 11.1 11.0

processes connected to a VDE and the other networks (or the
entire Internet) can be regulated by specific configurations of
the virtual routers used to interconnect that VDE.

It is also possible to consider the positive effects of IoTh
with respect to protection from external attacks. Port scanning
[19] is a method used by intruders to get information about a
remote server, planned to be a target for an attack. A port scan
can reveal which deamons are currently active on that server,
then which security related bugs can be exploited.

This attack method is based on the assumption that all
the deamons are sharing the same IP stack and the same IP
addresses. This assumption is exactly the one negated by IoTh.
Port scanning is almost useless in IoTh, since an IP address
is daemon specific, so it would reveal nothing more than the
standard ports used for that service. When IoTh is applied to
IPv6, the process IP address on a VDE network can have a
64-bit prefix and 64 bits for the node address. A 64-bit address
space is too large for a brute force address scan to be effective.

There are also other aspects of security to be considered re-
garding the effects of IoTh on the reliability of the hosting sys-
tem. Daemon processes run as unprivileged user processes in
IoTh. They do not even require specific capabilities to provide
services on privileged ports (CAP NET BIND SERVICE to
bind a port number less than 1024). The less privileged a
daemon process is, the smaller the damages it may cause in
cases when the daemon is compromised (e.g., by a buffer
overflow attack).

VII. PERFORMANCE OF IOTH

IoTh provides a new viewpoint on networking. As this paper
has shown in the previous sections, IoTh allows a wide range
of new applications. IoTh flexibility obviously costs in terms
of performance. A fair analysis of IoTh performance has to
consider the balance between the costs of using this new
feature and the benefits it gives. In the same way processes run
faster on an Operating System not supporting Virtual Memory,
but, for many applications, the cost of Virtual Memory is
worthwhile because you can run a greater number of processes.
The IoTh approach can co-exist with the standard management
of IP addresses and services. System administrators can decide
which approach is more suitable for each service.

Table I shows the comparison of the bandwidth of a TCP
connection between the Linux Kernel TCP-IP stack implemen-
tation and a IoTh implementation based on VDE and LWIPv6.
The test set includes the measure of the bandwidth for file
transfers of 10MB, 20MB and 40MB between processes
running on the same host, on hosts connected by a 100Mb/s
LAN and by a 1Gb/s LAN. The test environment consists of
two GNU-Linux boxes (Debian SID distribution), Linux 3.2

Fig. 2. A graphical view of Table I data

kernel, NetXtreme BCM5752 controller, dual core Core2Duo
processor running at 2Ghz, HP ProCurve Switches 1700 and
1810G. The files have been transferred using wget.

From the table and from the graph of Fig. 2 it is possible to
see that IoTh can reach a sustained load of about 50MB/s, so
the overhead added by the new approach is appreciable only
on very fast communication lines. On a 100Mb/s LAN the
difference is minimal. The improved performance for larger
file transfers is caused by the constant startup cost (socket
opening, http protocol, etc) which is distributed on a longer
operation. On localhost or on fast networks, the bandwidth of
IoTh is about a quarter to a half of the bandwidth reached by
the kernel.

It is worth considering that, in this test, both VDE and
LWIPv6 run at user level. These are the performance values
of the less efficient implementation structure of IoTh. Kernel
level implementations of the TCP-IP stack library, and of the
virtual networking switch engine, will increase the perfor-
mance of IoTh.

VIII. CONCLUSION AND FUTURE WORK

IoTh opens up a range of new perspectives and applications
in the field of Internet Networking.

IoTh unifies the role of networking and IPC, so it can
play an important role in the design of future applications:
distributed applications and interoperating processes can use
the same protocols to communicate.

The challenge of supporting new IoTh based services creates
a need to analyze the TCP-IP protocols, in order to evaluate if
and how these protocols, designed for physical networks, need
to be modified or updated to be effective in IoTh. An example
of a question that needs to be evaluated is whether the DNS
protocol can have specific queries or features for IoTh.

On the other hand, IoTh requires an efficient infrastructure,
able to provide a virtual networking (Ethernet) service to

104Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

processes. The research should also consider new efficient
ways of interconnecting the local virtual networks to provide
a better usage of virtual links, both for efficiency and for fault
tolerance.

All the software presented in this paper has been released
under free software licenses and has been included in the
Virtual Square tutorial disk image [20]. This disk image can
be used to boot a Debian SID GNU-Linux virtual machine.
All the software tools and libraries used in this paper have
already been installed and the source code of everything not
included in the standard Debian distribution is also available
in the disk image itself.

ACKNOWLEDGMENTS

I would like to express my gratitude to all the software
designers and developers of the VirtualSquare Lab who have
shared my daydreaming about the virtualization of everything,
patiently following all my brainstorming.

REFERENCES

[1] J. Postel, “DoD standard Internet Protocol,” RFC 760, Internet
Engineering Task Force, Jan. 1980, obsoleted by RFC 791, updated
by RFC 777. [Online]. Available: http://www.ietf.org/rfc/rfc760.txt
04.15.2013

[2] D. Price and A. Tucker, “Solaris zones: Operating system support
for consolidating commercial workloads,” in Proceedings of the 18th
USENIX conference on System administration, ser. LISA ’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 241–254.

[3] LXC team, “lxc linux containers,” http://lxc.sourceforge.net/ 04.15.2013.
[4] IEEE and The Open Group, “Posix.1 2008,”

http://pubs.opengroup.org/onlinepubs/9699919799/ 04.15.2013.
[5] K. Ashton, “That ‘Internet of Things’ thing,” RFID Journal, vol. 22, pp.

97–114, 2009.
[6] R. Davoli, “Vde: Virtual distributed ethernet,” in Proceedings of the First

International Conference on Testbeds and Research Infrastructures for
the DEvelopment of NeTworks and COMmunities, ser. TRIDENTCOM
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 213–
220.

[7] Open vSwitch team, “Open vswitch,” http://openvswitch.org/
04.15.2013.

[8] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual machines,”
University of Pisa, Italy, Tech. Rep., 2012. [Online]. Available:
http://info.iet.unipi.it/∼luigi/papers/20120608-vale.pdf 04.15.2013

[9] L. Rizzo, “Revisiting network i/o apis: the netmap framework,” Com-
mun. ACM, vol. 55, no. 3, pp. 45–51, 2012.

[10] A. Dunkels, “Full tcp/ip for 8-bit architectures,” in Proceedings of the 1st
international conference on Mobile systems, applications and services,
ser. MobiSys ’03. New York, NY, USA: ACM, 2003, pp. 85–98.

[11] A. Dunkels, L. Woestenberg, K. Mansley, and J. Monoses, “Lwip,”
http://savannah.nongnu.org/projects/lwip 04.15.2013.

[12] R. Davoli, “Lwipv6,” http://wiki.virtualsquare.org/wiki/index.php/LWIPV6
04.15.2013, 2007.

[13] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proceedings
of the 29th Annual IEEE International Conference on Local Computer
Networks, ser. LCN ’04. Washington, DC, USA: IEEE Computer
Society, pp. 455–462.

[14] L. Gardenghi, M. Goldweber, and R. Davoli, “View-os: A new unifying
approach against the global view assumption,” in Proceedings of the 8th
international conference on Computational Science, Part I, ser. ICCS
’08, 2008, pp. 287–296.

[15] A. Kantee, “Flexible operating system internals: The design and imple-
mentation of the anykernel and rump kernels,” 2012, doctoral Disserta-
tion, Aalto Univerisity, Finland.

[16] R. Davoli and M. Goldweber, “msocket: multiple stack support for the
berkeley socket api,” in SAC ’12: Proceedings of the 27th Annual ACM
Symposium on Applied Computing, 2012, pp. 588–593.

[17] R. Davoli, “Internet of threads, technical report,”
http://www.cs.unibo.it/∼renzo/iothtr.pdf 04.15.2013, Computer Science
and Engineering Department. University of Bologna, Tech. Rep., 2013.

[18] ——, “Video of the public ”internet of threads” demo, fosdem 2012,”
http://video.fosdem.org/2012/maintracks/k.1.105/Internet of Threads.webm
04.15.2013, 2012.

[19] Fyodor Vaskovich (Gordon Lyon), “The art of port scanning,” Phrack,
vol. 7, no. 51, 1997.

[20] R. Davoli, “Virtual square tutorial disk image,”
http://wiki.virtualsquare.org/wiki/index.php/Virtual Square Tutorial Disk Image
04.13.2013.

105Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

