
A New Approach to NGN Evaluation Integrating Simulation and Testbed
Methodology

Marcial P Fernandez
Universidade Estadual do Ceará (UECE)

Fortaleza, Brazil
marcial@larces.uece.br

Sebastian Wahle
Fraunhofer FOKUS
Berlin, Germany

sebastian.wahle@fokus.fraunhofer.de

Thomas Magedanz
Technische Universität Berlin

Berlin, Germany
tm@cs.tu-berlin.de

Abstract—Since the beginning of Internet, network re-
searchers have been proposing methodologies and tools to
facilitate the design and development of new protocols for
Internet. Analytical modeling, network simulation, network
emulation, and more recently, testbeds, are being used in these
researches. However, there are advantages and disadvantages
in all these methodologies making difficult to decide on the
ideal methodology and tool. In this paper, we propose a
new methodology to evaluate Next Generation Networks that
permits the integration of design, development and test of a new
protocol or network service using different tools. The approach
was demonstrated by designing a simple example of a network
service.

Keywords-Next Generation Networking (NGN); Network Eval-
uation; Network Simulation; Network Emulation.

I. INTRODUCTION

Design, development, and validation of networks proto-
cols and services are important research issues. Generally,
for analysis and comparison of different mechanisms and
algorithms, five techniques are applied: analytical modeling,
network simulation, network emulation, testbed and real-
world experiments. Over the past 50 years, these method-
ologies were used to develop the protocols used on the
Internet today. Although these techniques are known for
many years, the predominant use of each technique over the
years is dependent upon computer capacity. The potentials
and limitations of these methods have been widely discussed
by Jain [1].

Concerning the techniques being used currently, simula-
tion, emulation and testbed, we can say that the first is the
most distant from reality but is the easiest to work with,
while the latter is the closest to real world but it is the most
difficult for researchers to use. Regarding costs, simulation
is cheaper than emulation and testbed. But because it is
close to the real world, testbeds are hard to do, expensive,
have a fixed topology, fixed environment, and it is difficult
to create new impairment scenarios (broken link, routing
table errors, high drops). These objectives further evolved
towards refinement of experimentally-driven research as a
visionary multidisciplinary research, defining the challenges
for and taking advantage of experimental facilities, realized
by means of iterative cycles of research, oriented towards

the design and large-scale experimentation of new and
innovative paradigms for the Future Internet - modeled as a
complex distributed system.

A good methodology for the development of protocols
and network services would be the use of both approaches:
simulation and testbed. The first step, simulation, could be
used to test and debug the first prototype, taking advantage of
the facility of creating scenarios, traffic sources and network
failures. In the second step, we could consider carrying
out experiments on a testbed, now taking advantage of
the reality offered by this methodology. Thus, it becomes
very interesting to create a tool that permits the integration
of these two methodologies to make the work of network
researchers easier.

In this paper, we present a new tool to provide inte-
grated simulation/experimentation environment to permit to
develop protocols and services with four main contributions:
provide a unifying approach to simulation/experimentation
that makes the transition easy from simulation to network
testbeds; provide a graphical interface to facilitate the topol-
ogy creation and traffic definition; provide analysis tools
to permit comparison of simulation and experimentation
results; offer a layered and modular architecture to permit to
evaluate specific parts without modification on the testbed
facilities.

The rest of the paper is structured as follows. In Section
II, we present some related works, Section III introduces the
network research methodology and in Section IV we present
our proposed methodology. Section V shows the proposal
evaluation and the results and, finally, Section VI concludes
the paper.

II. RELATED WORKS

Netbed/Emulab is a network testbed project, aiming to
give network researchers an environment to develop, debug,
and evaluate networked systems. Emulab project started as a
emulation facility at the University of Utah [2], and consists
of a cluster of emulation devices running an ns-2 (Network
Simulator Version 2) script [3]. One of the main contribution
of this project was the ns-2 to emulation mapping [4].
The following works focused on implementing network

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

Figure 1. Network research methodology

emulation facilities on PlanetLab testbed [5] [6]. Other
contribution of this project was the importance of simulation
and emulation integration on network experimentation [7].
The Flexlab is a new framework that combines overlay
and emulation testbeds (PlanetLab + Emulab), running an
application within the emulation testbed and uses its load to
measure the overlay network [8].

PL-VINI [9] is an implementation of VINI on PlanetLab.
It runs on each PlanetLab slice providing network resources
like link delay, link drop and routing. PL-VINI provides
a realistic and controlled environment for evaluating new
Internet protocols and services. Some features that could
be evaluated in PL-VINI are: routing software, traffic loads
and network events. To provide researchers flexibility in de-
signing their experiments, VINI supports arbitrary network
topologies on a shared physical infrastructure.

NEPI [10] is a framework proposal that makes the exe-
cution of a network experiment possible in different tools,
e.g., simulation, emulation, and testbed. NEPI focuses on
executing experiments using multiple tools separately and
together in order to improve researchers productivity. The
tool was implemented in Python and has a script and a GUI
interface.

III. NETWORK RESEARCH METHODOLOGY

The rationale was thus clear: to create a dynamic between
elaboration, realization, and validation by means of iterative
cycles of experimentation. Nevertheless the “validation by
experimentation” objective opens a broad spectrum of exper-
imentation tools (in large sense) ranging from simulation to
real system experimentation. Our thesis is that “elaboration”
requires validation by means of more abstract tools (not
only because their resulting cost is lesser but because such
tools produce results verifying all conditions explained here
below) followed by progressive addition of realism as part of
the experimented system to ultimately reach so called field
trials with real systems. Thus, systematic experimentation is
a continuum (Figure 1).

1) “Computer Communication/Networking” is character-
ized by two fundamental dimensions: distribution of a large

number of dynamically interacting (non-atomic) components
and the variation of their inner properties that in its turn
influences these interactions. Thus compared to computer
science, the distribution/interaction and the large number
of elements composing the system add two fundamental
dimensions to computer science “paradigms”.

2) On the other hand, one shall characterize the output of
experimentation: in order to ensure verifiability, reliability,
repeatability, and reproducibility of the experimental results.
Ensure these properties implies in provide strict control
to the experimental conditions (parametrization, i/o, and
running). Verifying the repeatability, reproducibility, and
reliability conditions ensures generalization of experimental
results, and verifiability of their credibility.

3) Different experimental tools can be used. As stated
above their selection is neither arbitrary nor religious: it
depends on the experimental objective and maturity of the
experimented corpus. Nevertheless, each of them needs to
ensure that the conditions defined here above are verified.
However it is clear that fulfilling these conditions does not
come at the same cost for the same level of abstraction.
Validation of a new algorithm would be better conducted
on a simulation platform (after formal verification) not
only because their resulting cost is lesser but because such
tools produce results verifying all conditions explained here
above. Emulation experiments can lead to reproducible and
repeatable results but only if “conditions” and “executions”
can be controlled. Realism can thus be improved compared
to simulation (in particular for time-controlled executions of
protocol components on real operation system).

A. Simulation

Network simulation is a technique in which a software
simulates the behavior of a network and its components
(routers, hosts, links, protocols, etc) by calculating the
interaction between them using mathematical models. Most
network simulators use discrete-event simulation, in which
a list of events are processed according to a virtual time,
independently of the computer’s clock where the simulator
software is running. Then, a simulation produces the same
result in different computers. Since the beginning of Internet,
network simulators have been an invaluable tool for network
researchers.

The ns-3 is a discrete-event network simulator, intended
to replace the traditional ns-2 simulator [3]. The first release
of ns-3 was published in July of 2008 and it has been
improved and extended since then. Since it was proposed,
ns-3 concept was to be a simulator capable to interact with
real world. Some improvements pointed in this direction,
e.g., the ns-3 API is a Unix socket-like API, to permit easy
migration from simulated code to real-system code, and the
Network Simulation Cradle (NSC) allows ns-3 using the
Linux TCP/IP stack.

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

B. Emulation

The Emulation is the technique where a network is
simulated in a real hardware and software. The emulation
platform implements virtual network topologies and scenar-
ios over real hardware and protocols, i.e., that experiments
can be executed in real hardware, use real operating systems
and protocols, run their real applications, and obtain actual
(not simulated) performance measures. Although emulation
is much closer to real environment than simulation, the
links should be simulated in order to create delay and
communication impairments (noise, drops, etc). Sanaga et.al.
[11] shows the difficulties to emulate a network link.

IV. A NEW METHODOLOGY FOR NETWORK RESEARCH
AND EXPERIMENTATION

The development of new protocols and services for Inter-
net requires a series of procedures before it can be used
in the real world. The first one is to verify whether it
works, i.e., the protocol or service performs what we want.
Then we must explore the parameter space to find the best
configuration to achieve the best trade-off. Thus, if the
protocol or service is working, we must verify that it will
not kill the network. Finally, we need to perform a couple of
experiments to see the overall performance, and scalability.
The network research environment must provide:

Reality: the proposal should be tested in real environ-
ment.

Configuration: large scale experiments require a lot of
configuration.

Instrumentation: need to gather data about the behavior
of the experiment to figure out what happened.

Fidelity: did the experiment really capture the effects
you are really interested in?

Reproducibility: scientific methodology means that you
must publish reproducible results.

The methods currently used to develop protocols and
services for Internet are the simulation and the emulation
testbed. However, there are advantages in both of them, not
found in the other, so instead of comparing both method-
ologies, we associate them. The first step, simulation, allows
easy creation of different scenarios, as well as different types
of traffics. As the prototype is running on a computer, we
can create a series of experiments that will allow evaluation
of the prototype operation in many different situations.
The simulation makes easy the creation of impairment in
environment, such as link break, link degradation (increased
of drop rate), very long delays, routing instability, evaluating
the prototype in very adverse situations.

Simulation provides facility to change the source code
(we do not need to change any code in multiple remote
machines, only on the simulation server) also facilitating
the prototype development. The code can be changed and
tested very quickly. Another advantage of simulation is
the possibility of taking execution snapshots, e.g., we can

simply put a printf in simulated code. In a testbed, it is
often difficult to change the code and create mechanisms
for collecting information, making the code debug hard.
Since the simulator environment is controlled, it is possible
to obtain the repeatability necessary to validate a scientific
work. The creation of traffic sources statistically distributed
in a controlled environment allows repeatability, which is
very difficult to obtain in a testbed due to the difficulty
to reproduce the same situation and events in a certain
moment. However, simulations tend to be unrealistic. The
packets do not pass through a real network, so even if it used
sophisticated simulation tools, it continues far from reality
in some scenarios. Emulation can provide a more realistic
environment because it uses real machines and real operation
system. But it is also difficult to emulate the reality, e.g,
Sanaga et al [11] shows the difficulties to emulate an Internet
path.

Nowadays testbeds are presented as the ideal methodology
to develop and test protocols and services for the Internet.
As it is an extract from a real network, tests are performed
in an actual infrastructure. The possibility of setting up
paths and the monitoring tools offer a control degree that
allows the creation of specific test situations. But as it is
a separated experimental environment, there is no risk to
damage the production network. Despite its proximity to
the real world, Testbeds are not the ideal tool. Setting up a
testbed is complex and may require individual configuration
of each resource. The repeatability of an experiment is
difficult to be achieved, given the environment unpredictabil-
ity. Another difficulty is to perform measurements on a
testbed compared to simulation, usually performed through
measurement points placed on routing devices. Most of
testbed provides the collecting of statistics information (e.g.,
sFlow) or collecting flow traces (e.g., pcap format).

As Testbeds could be categorized as an Overlay Emu-
lation, i.e., Testbeds run over production networks. It is
difficult to evaluate routing mechanisms, because we use
the real network routing environment. This imposes limit
to evaluate tests of low level protocols (layers 2 and 3).
The implementation of the Click routing engine in testbed
performs poorly [9].

Our proposal is to offer an integrated tool to evaluate
Internet protocols and services joining simulation and emu-
lation in a testbed. Figure 2 shows a diagram of the proposed
solution. We can visualize the two prototype development
steps, the first running in a simulation and the second
running in a testbed. In the first step, the designer can debug
the code in different environments. By the end of this step
the code has been debugged and probably, it does not have
serious flaws. As we run the experiment in simulation, we
can test in a vast range of topologies and network scenarios
in order to validate the proposal and explore the parameter
space. In the second step, we need to test the code on
a testbed, closer to reality. At this point we can make a

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

Figure 2. Proposed methodology

fine debug and fine parameters tuning in an (almost) real
environment. As we saw, the testbed has less resources to
capture information, but now we should be satisfied with
some statistical traffic information.

A. Teagle Framework

Orchestration

Engine

Portal

Policies

Test

Suites

Results

Info / Data

Models
R

e
p

o
s
ito

ry

G
a

te
w

a
y

SPEC

TG

REP

T1

TEAGLE

R
e

p
o

s
ito

ry

POL

VCT Tool &

Request

Processor

Teagle

Gateway

Policy Engine

PTM

Customer

REP

POL

U1
Registries:

VCTs

Resources

PTMs

IDM

RA

RA

RA

R

R

R

T2

Figure 3. Teagle architecture

Reference [12] defines a federation model and framework
that allows users to get access to distributed resources and
group them into a virtual environment, which is called Vir-
tual Customer Testbed (VCT). Teagle as a control framework
and collection of central federation services helps the user
in configuring and reserving a desired set of resources.
Resources are offered by participating organizations across
Europe.

On the federation layer, our Teagle framework implemen-
tation offers several services to the user and other framework
entities, such as the registry and a common information
model. Teagle allows browsing through the federation of-
ferings, enables the definition of VCTs, and executes their

provisioning. Figure 3 shows the Teagle architecture that is
detailed in [12].

B. Teagle VCT Tool

The Teagle VCT offers a graphical tool (GUI) that permits
the user describe the network topology and parameters
to simulation and testbed evaluation. Before starting the
experiment description, the user needs to define the kind of
experiment: simulation or testbed. Then, Teagle framework
will create a simulation script or a testbed setup file. The
user can design the test topology using a set of graphical
objects interconnected by arrows. Three different compo-
nents to design an experiment were defined in Teagle VCT:
Resource, Connector, and Monitor.

1) Resource: Resource represents a functional unit in a
network system. A Resource could be a hardware device,
like a Node or Link, or a software entity, like a protocol or
a traffic generator. A Resource has Attributes and Events.

• Attribute is the configuration parameter of a Resource,
which can be defined before the experiment and can be
changed while the experiment is running. An example
of attribute is the node IP address or the link bandwidth.
In some Resource is possible to define the experiment
planning, i.e., the sequence of values in experiments
that should be performed, e.g., packet length of 100,
500 and 1000 bytes.

• Events is the set of timed events that will happen during
the experiment. The Event time is based on virtual time
independent from the real time. An example of Event
is the start and stop time to transmit a traffic or to
interrupt a link.

The Figure 4 shows the Resource Application configu-
ration and the Event definition of a specific Application.
The Application Client box has a cfg button that permits
the configuration of its attributes like ClientType (Sink or
Echo), Packet Length, Data Rate, and Port. The cfg windows
also defines the Experiment Planning, i.e., the definition of
various experiments will be executed. In this example, we
use five different Random Seeds, five different Data Rates,
from 10 pkt/s to 50 pkt/s, and three different packet lengths,
500, 1000, and 1500 bytes. It is important to notice that the
total quantity of experiments, simulation or testbed, will be
the combination of all different attributes, in our example
5 ∗ 5 ∗ 3 = 75 experiments. The rules button defines the
Events that will happen in this Application, e.g., the data
stream starts at 2.0 sec and stops at 14.0 sec.

2) Connector: Connector is a representation of an inter-
connection from a Resource to another Resource. For ex-
ample, the Resource Node is connected to Resource Link
to build the topology. It is important to notice that the
Connector is an abstract component only to permit joining
different Resources, i.e., a Link is a Resource not a Con-
nector although we use a Link to connect routers.

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

Figure 4. Teagle VCT Application configuration

Figure 5. Creating a new application on Teagle VCT

3) Monitor: Monitor is a special Resource used to mon-
itor the experiment and collect information about the ex-
periment. However, Monitor does not interfere in network
experiment. We consider using a pcap collector that collects
useful information at simulation environment and also at
testbed environment.

C. Creating a new protocol or service

The key feature of Teagle is the development and test
of new protocols and services. For that, you can create a
new module that will implement the desired protocol or
service. Suppose that the user will design an application
level module.

Figure 5 shows the definition of the MyApplication mod-
ule that uses TCP protocol. The configuration sets the
protocol port and the filename that contains the C code of
the test protocol. The interface with Teagle is based on the
Unix Socket, so the protocol implementation should be very
similar to actual interface. To facilitate the development, a

Figure 6. Test topology to validate the proposal

code template with the interface definition and the sugges-
tion of the most common methods is provided.

D. Mapping Teagle to ns-3

The Network Simulator version 3 – ns-3 – was chosen
as simulation framework. This version uses a network inter-
face similar to Unix Socket, making easy the Teagle VCT
translation to simulation script and Testbed configuration
specification. However, the use of ns-3 as a standard tool
to Teagle does not invalidate the creation of simulation
models in other simulators, if it provides an abstract interface
based on Sockets. The Teagle components are similar to ns-3
modules, then the translation is almost direct.

E. Mapping Teagle to Testbed

The Teagle platform aims to coordinate the execution of
experiments in a Testbed federation. So naturally, an exper-
iment specification in Teagle can be converted directly to
Testbed configuration. However, an application performance
validation tests requires more functionality than the standard
Testbed platform can offer. Teagle offers the opportunity to
create new functionality in a testbed in order to expand the
scope of testing to be performed.

F. Analysis of results

Carrying out experiments on two methodologies and tools
from a unique specification is not difficult because the
components used are similar (nodes, protocols, applications).
The great problem is the analysis of the results produced
in different environments. However, the ns-3 simulator can
produce a file in pcap format. In the testbed, it is possible
to capture traffic in pcap format using tools like tcpdump.
Comparing both pcap files is possible to analyze the results
and the conclusions.

V. PROPOSAL EVALUATION AND RESULTS

Aiming to validate the proposed model, we created a
simple test scenario that would allow to run a prototype
testing. This experiment does not intend to validate a pro-
tocol or service, but it only intends to demonstrate the
proposed methodology validation. The testing scenario is

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

 100

 200

 300

 400

 10 20 30 40 50

T
hr
o
u
g
h
p
u
t

(
K
b
p
s
)

Rate (pkt/s)

Simulation
Testbed

Figure 7. Bandwidth test result

shown in Figure 6, demonstrating a simple application with a
background traffic. We have two nodes connected with a link
and two applications: one is the proposed protocol running
over TCP and a background application over UDP protocol.
We run 10 experiments on both environment, simulation and
testbed, and confidence interval is calculated.

The result graph is shown in Figure 7. The simulation
environment is more controlled than the testbed environment
and results tend to be different even with the same param-
eters. However, although we might have expected that the
testbed results are not identical to the simulation, the results
are very similar, mostly inside the confidence interval.

VI. CONCLUSION AND FUTURE WORKS

This paper presented a new methodology for developing
and testing protocols and services using simulation and
testbed. A single interface for the end user is the Teagle tool,
Teagle Simulation and Emulation, enabling it to perform a
test in simulation and emulation from the same specification
in Teagle-VCT GUI. In both experiments, the technique
chosen to collect and evaluate the results of the protocol
under test performance and operation was the pcap files.
They were generated by ns-3 and collected in the testbed
using tcpdump software. To demonstrate the feasibility, a
prototype model was developed using the Network Simulator
ns-3 and the PANLAB testbed. The results were analyzed
by comparing the pcap files generated in both experiments,
which demonstrated the feasibility of the proposed model.

As future work, we wish to improve the collection of
information in pcap files, which produces large files that
require much processing capacity to analyze. One possibility
is defining a filter to choose the specific information before
the test that we want to collect in Teagle-VCT. It will
reduce the amount of information stored. The Teagle-VCT
specification translation considered only basic objects, so it
becomes necessary to increase the amount of new objects to
allow more functionality to the researcher.

REFERENCES

[1] R. Jain, The art of computer systems performance analysis:
techniques for experimental design, measurement, simulation,
and modeling. Wiley New York, 1991.

[2] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An
integrated experimental environment for distributed systems
and networks,” in Proc. of the Fifth Symposium on Operating
Systems Design and Implementation. Boston, MA: USENIX
Association, Dec. 2002, pp. 255–270.

[3] T. Henderson, S. Roy, S. Floyd, and G. Riley, “ns-3 project
goals,” in Proceeding from the 2006 workshop on ns-2: the
IP network simulator. ACM, 2006, p. 13.

[4] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the net-
work testbed mapping problem,” ACM SIGCOMM Computer
Communication Review, vol. 33, no. 2, p. 81, 2003.

[5] K. Webb, M. Hibler, R. Ricci, A. Clements, and J. Lepreau,
“Implementing the Emulab-PlanetLab portal: Experience and
lessons learned,” in Proc. WORLDS, 2004.

[6] M. Stoller, J. Duerig, S. Guruprasad, T. Stack, K. Webb, and
J. Lepreau, “Large-scale virtualization in the emulab network
testbed,” in USENIX Annual Technical Conference, Boston,
MA, 2008.

[7] S. Guruprasad, R. Ricci, and J. Lepreau, “Integrated net-
work experimentation using simulation and emulation,” in
Testbeds and Research Infrastructures for the Development
of Networks and Communities, 2005. Tridentcom 2005. First
International Conference on, 2005, pp. 204–212.

[8] R. Ricci, J. Duerig, P. Sanaga, D. Gebhardt, M. Hibler,
K. Atkinson, J. Zhang, S. Kasera, and J. Lepreau, “The
Flexlab approach to realistic evaluation of networked sys-
tems,” in Proc. of the Fourth Symposium on Networked Sys-
tems Design and Implementation (NSDI 2007), Cambridge,
MA, 2007.

[9] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rex-
ford, “In VINI veritas: realistic and controlled network ex-
perimentation,” in Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols for
computer communications. ACM, 2006, p. 14.

[10] M. Lacage, M. Ferrari, M. Hansen, T. Turletti, and W. Dab-
bous, “Nepi: using independent simulators, emulators, and
testbeds for easy experimentation,” SIGOPS Oper. Syst. Rev.,
vol. 43, no. 4, pp. 60–65, 2010.

[11] P. Sanaga, J. Duerig, R. Ricci, and J. Lepreau, “Modeling
and emulation of Internet paths,” in Proceedings of the
6th USENIX symposium on Networked systems design and
implementation. USENIX Association, 2009, pp. 199–212.

[12] S. Wahle, B. Harjoc, K. Campowsky, and T. Magedanz,
“Pan-European testbed and experimental facility federation–
architecture refinement and implementation,” International
Journal of Communication Networks and Distributed Systems,
vol. 5, no. 1, pp. 67–87, 2010.

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

