
An Optimized Port Allocation Mechanism in the 

Context of A+P for Public IPv4 Address Sharing 
 

Xiaohong Deng, Lan Wang, Daqing Gu  

Orange Labs Beijing 

France Telecom Group, Beijing, China 

{xiaohong.deng; lan.wang; daqing.gu}@orange-ftgroup.com 

 

 

 
Abstract—the IANA free pool of IPv4 addresses will be exhausted 

soon, how to use scarce IPv4 public addresses more efficiently 

while migrating to IPv6 is a challenge. A+P is recommended as a 

complementary method to Dual-stack Lite which aims at address 

public IPv4 address sharing problem in the context of IPv6 

migration. Since A+P suffers from inflexible port allocation, this 

paper introduces an optimized A+P port allocation mechanism 

which allows customers negotiate IP-addresses of desired sharing 

ratios on their requirement. Moreover it enables A+P NAT using 

random source port selection algorithm which significantly 

improves security by preventing attacker's easy guessing the five-

tuple. The test result shows that this mechanism enables great 

randomness of source ports selection behavior on A+P NAT. 

Keywords—IPv6 migration; Dual-stack Lite; A+P; Port 

randomization. 

I.  INTRODUCTION 

The IANA pool for global public IPv4 address allocation is 
forecasted to exhaust by mid-2011.And IPv4-only legacies are 
ubiquitous crossing telecom infrastructure. Since IPv6 and 
IPv4 are incompatible protocols, IPv6 could not replace IPv4 
in order to solve the public IPv4 exhaustion problem 
immediately. Instead, both protocols will co-exist for a long 
period of time. With public IPv4 address sharing solutions, 
higher utilization ratio of available public IPv4 addresses can 
be achieved. These solutions can be deployed before the 
majority of the Internet becomes IPv6-capable and most 
communications could be done through IPv6. 

A. IPv4 Address Sharing Solutions  

Several solutions have been proposed in IETF to address 
IPv4 address shortage while migrating to IPv6, such as 
NAT444 [1], A+P [2], Dual-stack Lite [3]. Recently, IETF 
reached a consensus on Dual-Stack Lite as a promising 
solution. It provides the broad band service provider a scalable 
and easy way to introduce IPv6 while keeping IPv4 
reachability to its customers. In Dual-Stack Lite, IPv4 
addresses among customers are shared using two technologies:  
IP in IP (IPv4-in-IPv6) and NAT.  A+P is similar to Dual-
Stack Lite, the difference is that A+P NAT locates at the 
customer premises, while Dual-Stack Lite NAT locates at the 
carrier network. 

Many applications require ALG to work through a NAT. 
At the same time, more and more applications expect 
incoming connections, such as peer-to-peer ones. Making sure 
those subscriber-provided services working properly in a 
Dual-stack Lite environment is important. Unfortunately, 
service providers are not in the position of provisioning such 
applications and ALGs. In this case, in [3], A+P is 
recommended as a complementary method to Dual-stack Lite 
in order to deal with the subscriber-provided services' ALG 
issues, which would break some subscriber-provided services 
if ALG issues are not well treated. Reserving certain ports 
under the control of customers is one way to enable the 
Customer Premises Equipment (CPE) A+P NAT to process 
this kind of traffic. Figure 1 shows an example: Ports 5002-
5004 are reserved for A+P NAT; Incoming packet that falls 
into the A+P ports range bypasses the Dual-stack Lite Carrier 
Grade NAT (CGN), and directly is sent to the tunnel endpoint, 
an A+P aware CPE, from the Address Family Transition 
Router (AFTR). CPE then locally NAT the packet to internal 
hosts, otherwise the incoming packet will traverse the AFTR's 
NAT. 

 

Figure 1.  ISP portal address & port control table 

 

 

B. Motivation and Objectives 

Firstly, dynamic port assignment is used in Dual-stack Lite 
mode to maximize the address sharing ratio. On the other hand, 
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A+P mode allocates ports in a cookie-cutter fashion, i.e., a 
range of ports are pre-allocated to each CPE. Concerns have 
been raised when public IPv4 addresses are shared among a 
large mount of CPE, while only a limited N number of TCP or 
UDP port numbers are available per CPE in average. In fact, 
pre-allocating N ports is not encouraged according to several 
service providers' report: the average number of connections 
per customer is the single digit, while thousands or tens of 
thousands of ports could be used in a peak by any single 
customer browsing a number of AJAX/Web 2.0 sites. If a 
smaller number of ports per CPE ( N in the hundreds) are 
allocated, it is expected that customer's applications could be 
broken in a random way over time. If a large number of ports 
per CPE are allocated ( N in a few thousands), the address 
sharing ratio will be decreased. Furthermore, customers may 
require different amount of ports, for example, enterprise 
customers may expect more ports to support simultaneous 
sessions; some customers have many terminals connected to 
CPE which may require more ports. 

 

Secondly, a number of "blind" attacks can be performed 
against the TCP and similar protocols by identifying the 
transport protocol instance, i.e., the five-tuple (Protocol, Source 
Address, Destination Address, Source Port, Port). Since A+P 
pre-allocates N (N<65,536, usually less than several thousands 
in order to achieve a large sharing ratio more than a single 
digit) ports to CPE, it is more easy to guess the five-tuple and 
in turn increase the probability of successful attacks.  

 

This paper proposes a optimized port allocation mechanism 
for A+P which aims at addressing those two defects of A+P by 
two efforts, 1) providing customer oriented differentiated 
services for A+P to allow customer negotiate IP-addresses of 
desired sharing ratios based on their requirement; 2) providing 
a source port randomization algorithm to achieve better 
security by preventing attacker's easy guessing the five-tuple. 

 

C. Orgnaization 

The rest of this paper is organized as follows. Section II 
introduces related works; Section III presents our proposed 
optimized port allocation mechanism. The simulation results 
are discussed in Section IV. Finally, this paper is concluded in 
Section V. 

 

 

II. RELATED WORK 

 
Several methods have been proposed for allocating A+P 

parameters. In [4], DHCPv4 Options for allocating port 
restricted public IPv4 address and a range of ports are defined. 
Two IPCP Options, Port Range Value Option and Port Range 
Mask Option to convey one range of ports (either contiguous or 
not contiguous) pertaining to a given IP address have been 

discussed in [5]. These two IPCP Configuration Options 
provide a way to negotiate the Port Range to be used on the 
customer Premises.  The sender can use the Configure-Request 
message to carry request which Port Range associated with a 
given IP address is desired, or to request the peer providing the 
configuration, the peer then can provide this information by 
NAKing the option, and returning a valid Port Range 
associated with an IP address. 

Both of these methods propose A+P port allocation 
mechanism and negotiation process, either by using DHCP 
semantics or by PPP IPCP negotiation. Neither of them 
addresses the problem described in Section I. 

 

III. OPTIMIZED A+P PORT ALLOCATION MECHANISM 

Firstly, a mechanism was designed to allow service 
provider provisioning the differentiated qualities of service by 
allocating different sharing ratio IP-addresses to different 
customer. As customer gets better service with lower sharing 
ratio IP-address, the one demanding better service pays more 
for the lower sharing ratio IP-address. The operator could 
configure IP-addresses pools with different service levels 
depends on different sharing ratios. As illustrated in Table I, it 
shows an example seven service level IP-addresses pools was 
configured according to seven sharing ratios.  With sharing 
ratios varies from 1 to 64, which means available ports for each 
customer varies from 65,536 to 64, the service level decrease 
from level 0 to level 6. Level 0 provides one unshared global 
IP-address to customer as nowadays operator does. Each 
customer could request different service level IP-address 
according to their requirements on quality of service, which 
depends on the sharing ratio, the lower sharing ratio, the higher 
quality of service with higher price. 

TABLE I.  AN EXAMPLE OF  SERVICE LEVEL ADDRESS POOLS 

Service level address 

pools 

Sharing ratio Available 

ports  

Level 6 address pool  64 1024 

Level 5 address pool 32 2048 

Level 4 address pool 16 4096 

Level 3 address pool 8 8192 

Level 2 address pool 4 16384 

Level 1 address pool 2 32768 

Level 0 address pool 1 65,536 

 

Secondly, to provide a way for customer to generate 
random ports while guaranteeing them in customer restricted 
port range, the core idea is simple: Choosing M bits to from a 
customer ID bits for a set of customers which sharing the same 
IP-address, and then identifying the customers in the same set 
by allocating unique M bits customer ID values. Hence the M 
bits customer ID could guarantee the ports inside the customer 
restricted port range. With regard to each shared IP-address, as 
its sharing ratio is given, the number of customer ID bits M is 
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decided by
ioSharingrat

2log . In order to facilitate the reuse of 

existing Port Randomization algorithms, two parameters are 
derived, customer ID pattern and customer ID value, customer 
ID pattern is derived from setting the customer ID bits to '1' 
and the left bits to '0', customer ID value is derived from setting 
the Customer ID bits to a unique value allocated from the 
operator side and the left bits to '1'.  An example is shown in 
Figure 2, a Level 6 address pool of sharing ratio 64 for a 
sharing IP-address-A is selected, and then 6 bits are chosen as 
Customer ID bits, which are the 3rd, 4th, 7th, 9th, 10th, 12th   
bit. All the customers sharing IP-address-A get 
"0000101101001100" as customer ID pattern, and each of them 
get a unique customer ID value. As shown in Figure 3, take the 
customer#5 for example, for a random generated port, just take 
a bitwise AND operation with customer ID pattern and then 
take a bitwise OR operation with customer ID value of 
customer#5, the result port would be inside the customer#5 
restricted port range. Hence it's easy for customer NAT reusing 
the port randomization algorithms referred in [6], it could be 
done by slight modification to the existing port randomization 
algorithms. Take the Algorithm 1: Simple port randomization 
algorithm [6] for example, the Figure 4 shows the A+P simple 
port randomization algorithm, only one line code was inserted 
to the original simple port randomization algorithm. 

 

 

 

Figure 2.  Customer ID pattern and customer ID value 

 

To ensure the customer NAT could generate as random 
ports as possible to prevent attackers, three heuristic rules to 
choose M bits of Customer ID are proposed: 

1) To avoid allocate a range of continuous ports to 

customer, the location of M bits for the Customer ID Pattern 

should not take place in the most significant bits.   

2) To avoid allocating only even ports to customers with 

the least significant bit '0' or only odd ports to customers with 

the least significant bit '1', M bits Customer ID Pattern should 

not involve the least significant bit.  

3) To avoid allocating a regular range of ports to 

customer, the location of M bits for the Customer ID Pattern 

should not take place in the continuous bits. 
 

Pseudocode for Customer ID Pattern bits chosen is shown 
in the Figure 5. 

 

Figure 3.  Calculate port inside the customer restricted port range 

 

 

 

Figure 4.  A+P simple port randomization algorithm 

 

Customer could get IP-address in desired sharing ratio by 
negotiating Customer ID pattern with operator, the negotiation 
could be done by several ways, either by negotiating DHCPv4 
Option for allocating port restricted public IPv4 address 
defined in [4], or by negotiating PPP IPCP Options defined in 
[5] after Softwire [7] is established and IPCP reaches the 
Opened state. The negotiation process is out of scope. 

Note that customers sharing the same IP address share the 
same customer ID pattern; however customers  with different 
IP addresses, no matter if they are using the same sharing ratio, 
are using different customer ID patterns which is granted by 
random customer ID choosing algorithm. 

 

/* A+P Ephemeral port selection function */ 

 
num_ephemeral = max_ephemeral - min_ephemeral + 1; 

next_ephemeral = min_ephemeral + (random() % 

num_ephemeral); 

next_ephemeral_in_range = next_ephemeral || 

customer_ID_pattern & customer_ID_value 

count = num_ephemeral; 

do { 

if(five-tuple is unique) 

return next_ephemeral_in_range; 

if (next_ephemeral == max_ephemeral) { 

next_ephemeral = min_ephemeral; 

} else { 

next_ephemeral++; 

} 

count--; 

} while (count > 0); 

return ERROR; 
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Figure 5.  Customer ID choosing algorithm 

 

IV. EVALUATION  

 

A. TCP/UDP Source Port Considerations 

 
Since a successful attack against the TCP or UDP requires 

the attacker to have knowledge of a valid five-tuple (protocol, 
source IP address, source port, destination IP address, and 
destination port). The protocol, source and destination IP 
addresses are obvious as they are the specific services the 
attacker will be spoofing.  The destination port is also obvious, 
the attacking aims at well-known services, which announce 
well-known ports to public. The only difficult part of guessing 
this is the TCP/UDP source port, since it different for each new 
TCP/UDP session.  As for TCP RESET attack, the attacker 
could assume the destination port of 179 for BGP, as for 
Domain Name System (DNS) cache poisoning attack, it could 
assume the destination port of 53 (the port number IANA has 
assigned for DNS). For an attacker, additional requirement of a 
correct source port would increase the difficulty of the attack 
by a factor or 16.  Random source ports would increasing the 

numerical attack space “from 
322  to

482 ”, hence increase the 
difficulty of an attack.  Unfortunately, even if random source 
ports are supported by implementations, routers or gateway 
devices that perform network address translation (NAT), often 
rewrite source ports for tracking NAT session. When some 
NAT devices modify source ports without random source port 
selection algorithms, it will increase the risk of successful 
attacks.  

 

The following section will evaluate port randomization of 
A+P NAT with or without our proposed mechanism and its 
impact on the DNS cache poisoning attacks. 

B. DNS Cache Poisoning Attacks 

DNS servers usually store results in a cache to speed further 
lookups for efficiency, which makes DNS server vulnerable to 
DNS cache poisoning attacks. DNS cache poisoning is a 
maliciously created that provides data to a caching name server 
that did not originate from authoritative DNS sources. Once a 
DNS server has received such non-authentic data and caches it, 
it is considered poisoned. The answers from a poisoned DNS 
server cannot be trusted. The clients may be redirected to 
malicious web sites that will try to steal clients' identity or 
infect clients' computers with malware. 

DNS requests contain a 16-bit transaction IDs, used to 
identify the response associated with a given request. Unless 
the attacker can successfully predict the value of the transaction 
IDs and return a reply first, the server won't accept the 
attacker's response as valid. Even if it may be possible to guess 
these transaction ID values in advance, but as long as the server 
randomizes the source port of the request, the attack may 
become more difficult, since the fake response must be sent to 
the exactly same port that the request originated from. The 
essence of the problem is that DNS resolvers don't always use 
enough randomness in their transaction IDs and query source 
ports. Increasing the randomness of transaction IDs and query 
source ports may increase the difficulty of a successful 
poisoning attack. United States Computer Emergency 
Readiness Team (US-CERT)'s Vulnerability Note VU#800113 
describes deficiencies in the DNS protocol and 
implementations that can facilitate cache poisoning attacks. 
Most implementations do NOT randomise the port number. In 
most cases, the same port number 53 was always used. 

As stated above, some DNS implementations use a number 
of mechanisms to protect themselves from the attacks. First of 
all, queuing received request eliminates the possibility of 
birthday attack. Secondly, sending the request from the random 
dynamic UDP port and accepting only answers to this source 
port. In consequence the probability of successful attack is 
significantly decreased because the attacker has to guess two 
16-bits numbers (both UDP port number and transaction ID). 
Because these numbers are independent the success probability 

would be in this case P =
N2

1

, where N is in practice near 32 
(IANA has reserved 0 through 1023 for The Well Known 
Ports, not all 65,536 could be Ephemeral Port). Even if the 
attacker uses a high speed connection, the probability of 
success is relatively small, because the attacker is not able to 

generate about 
322  fake answers in time when DNS is waiting 

for the reply from the authoritative DNS. 

 

Therefore, upgrading DNS server and DNS resolver to 
implementations of good randomness is essential to defence 
against DNS Cache Poisoning Attack. However when DNS 
resolver behinds  routers, firewalls, or other gateway devices 

/* Heuristic algorithm for Customer ID bits chosen  */ 

 
M = log2(SHARING_RATIO); 

Genbits: 

/*Guarantee Heuristic rule 1 and  Heuristic rule 2*/ 

for (i = 0; i < M;) 

{ 

bits[i] = GenRandomBit(); 

if(bits[i] == 0 || bit[i] = =15); else i++; 

} 

/*Sort array in decreasing order in order to match the 

condition for rule 3*/ 
Sort(bits);  

/*Guarantee Heuristic rule 3*/ 

for (i = 1; i < M;) 

{ 

if(bits[i-1] = = bits[i]+1) i++; 

else break; 

} 

if(i= =M) goto Genbits; 

return bits; 
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that perform network/port address translation (NAT), if the 
NAT device does not implement random ephemeral port 
selection algorithms, consequently it will remove source port 
randomness implemented by DNS server and stub resolvers. 
Experiments have been conducted to evaluate if A+P NAT 
bring deficiency of port randomness when a DNS resolver 
behinds a NAT. 

 

C. Comparison of DNS Port Randomness in Three NAT 

Scenarios 

There is a web-based DNS randomness test tool on the 
Domain Name System Operations Analysis and Research 
Centre (DNS-OARC) [8] to help user estimate if their name 
servers are vulnerable to DNS Cache Poisoning Attacks. This 
estimation was based on the randomness score of source port 
and Transaction ID Randomness of DNS resolver. We use the 
djbdns [9] which sends requests form various source ports and 
only accepts answers sent to source port, and put it behind 
NAT devices to test if there is potential randomness deficiency 
that A+P NAT may bring in.  

 

Three scenarios are given for comparison: In scenario A, 
DNS resolver behinds a NAT implementing "simple port 
randomization" algorithm recommended in [6]; in scenario B, 
DNS resolver behinds a NAT implementing "A+P simple port 
randomization algorithm" due to our optimized A+P port 
allocation; in scenario C, DNS resolver behinds an A+P NAT 
implementing "port increment by 1" algorithm. The estimation 
result shows that our "A+P simple port randomization 
algorithm" inherits greater randomness than the algorithm1 
recommended in [6]. As shown in Figure 6 and Figure 7, both 
of them are evaluated as GREAT source port randomness. On 
the contrary, the traditional A+P NAT "Increment by 1 
algorithm" removed source port randomness implemented by 
the tested DNS server, and is evaluated as POOR source port 
randomness as shown in Figure 8. 

 

 

 
 

Figure 6.  Evaluation DNS randomness in Scenario A 

 

 

Figure 7.  Evaluation DNS randomness in Scenario B 

 

 
 

Figure 8.  Evaluation DNS randomness in Scenario C 

 

The scatter diagram of 25 sampled ports of scenario A, 
scenario B and scenario C are shown in Figure 9-11 
respectively. The source ports generated by "Simple port 
randomization NAT" and "A+P simple port randomization 
NAT" are well distributed, varies from lower bound to upper 
bound; while "A+P port increment by 1 NAT" generates 
sequential ports in a very limited range from 30900 to 30925. 
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Figure 9.  Sampled ports from DNS randomness test in Scenario A 
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Figure 10.  Sampled ports from DNS randomness test in Scenario B 
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Figure 11.  Sampled ports from DNS randomness test in Scenario C 

 

 

Furthermore, more ports are sampled and Standard 
Deviation (STDDEV) is used as a measure of randomness as 
indicated in [8]. The port randomness in scenario A-C are 
tested. Table II shows the relationship of Port Randomness 
Score and STDDEV range. In each experiment, the same 
numbers of ports were sampled for scenario A-C, and the 
samplings repeat six times. Figure 12-15 shows the STDDEV 
comparison of the three scenarios when 100, 500, 1000, 5000 
ports were sampled respectively, From these four figures, we 
can see that "Simple port randomization NAT" and "A+P 
simple port randomization NAT" almost have the same good 
performance on STEDEV, while "A+P port Increment by 1 
NAT" is far underperformance. 

TABLE II.  PORT RANDOMNESS SCORE  

 
Port Randomness Score STDDEV Range 

GREAT 3980 - 20,000+ 

GOOD 296 - 3980 

POOR 0 - 296  
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Figure 12.  STDDEV Comparison of 100 ports 
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Figure 13.  STDDEV Comparison of 500 ports 
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Figure 14.  STDDEV Comparison of 1000 ports 
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Figure 15.  STDDEV Comparison of 2000 ports 

V. CONCLUSION 

This work introduces an optimized port allocation 
mechanism for A+P enhancement which has two key features: 
1) it provides customer oriented differentiated services by 
allowing customer negotiates IP-addresses of desired sharing 
ratios based on their requirement; 2) it supports port 
randomization. The test result shows that, without our 
mechanism, "A+P port incremental by 1 NAT" brings 
randomness deficiency to DNS server and consequently makes 
DNS server vulnerable to DNS poisoning attacks, while our 
"A+P simple port randomization NAT" has as great 
randomness as " simple port randomization NAT " which 
doesn't bring randomness deficiency to DNS server. Hence this 
work mitigates A+P's two major defects coming along with 
allocating ports in cookie-cutter fashion. 
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