
An Optimized Port Allocation Mechanism in the

Context of A+P for Public IPv4 Address Sharing

Xiaohong Deng, Lan Wang, Daqing Gu

Orange Labs Beijing

France Telecom Group, Beijing, China

{xiaohong.deng; lan.wang; daqing.gu}@orange-ftgroup.com

Abstract—the IANA free pool of IPv4 addresses will be exhausted

soon, how to use scarce IPv4 public addresses more efficiently

while migrating to IPv6 is a challenge. A+P is recommended as a

complementary method to Dual-stack Lite which aims at address

public IPv4 address sharing problem in the context of IPv6

migration. Since A+P suffers from inflexible port allocation, this

paper introduces an optimized A+P port allocation mechanism

which allows customers negotiate IP-addresses of desired sharing

ratios on their requirement. Moreover it enables A+P NAT using

random source port selection algorithm which significantly

improves security by preventing attacker's easy guessing the five-

tuple. The test result shows that this mechanism enables great

randomness of source ports selection behavior on A+P NAT.

Keywords—IPv6 migration; Dual-stack Lite; A+P; Port

randomization.

I. INTRODUCTION

The IANA pool for global public IPv4 address allocation is
forecasted to exhaust by mid-2011.And IPv4-only legacies are
ubiquitous crossing telecom infrastructure. Since IPv6 and
IPv4 are incompatible protocols, IPv6 could not replace IPv4
in order to solve the public IPv4 exhaustion problem
immediately. Instead, both protocols will co-exist for a long
period of time. With public IPv4 address sharing solutions,
higher utilization ratio of available public IPv4 addresses can
be achieved. These solutions can be deployed before the
majority of the Internet becomes IPv6-capable and most
communications could be done through IPv6.

A. IPv4 Address Sharing Solutions

Several solutions have been proposed in IETF to address
IPv4 address shortage while migrating to IPv6, such as
NAT444 [1], A+P [2], Dual-stack Lite [3]. Recently, IETF
reached a consensus on Dual-Stack Lite as a promising
solution. It provides the broad band service provider a scalable
and easy way to introduce IPv6 while keeping IPv4
reachability to its customers. In Dual-Stack Lite, IPv4
addresses among customers are shared using two technologies:
IP in IP (IPv4-in-IPv6) and NAT. A+P is similar to Dual-
Stack Lite, the difference is that A+P NAT locates at the
customer premises, while Dual-Stack Lite NAT locates at the
carrier network.

Many applications require ALG to work through a NAT.
At the same time, more and more applications expect
incoming connections, such as peer-to-peer ones. Making sure
those subscriber-provided services working properly in a
Dual-stack Lite environment is important. Unfortunately,
service providers are not in the position of provisioning such
applications and ALGs. In this case, in [3], A+P is
recommended as a complementary method to Dual-stack Lite
in order to deal with the subscriber-provided services' ALG
issues, which would break some subscriber-provided services
if ALG issues are not well treated. Reserving certain ports
under the control of customers is one way to enable the
Customer Premises Equipment (CPE) A+P NAT to process
this kind of traffic. Figure 1 shows an example: Ports 5002-
5004 are reserved for A+P NAT; Incoming packet that falls
into the A+P ports range bypasses the Dual-stack Lite Carrier
Grade NAT (CGN), and directly is sent to the tunnel endpoint,
an A+P aware CPE, from the Address Family Transition
Router (AFTR). CPE then locally NAT the packet to internal
hosts, otherwise the incoming packet will traverse the AFTR's
NAT.

Figure 1. ISP portal address & port control table

B. Motivation and Objectives

Firstly, dynamic port assignment is used in Dual-stack Lite
mode to maximize the address sharing ratio. On the other hand,

73

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

A+P mode allocates ports in a cookie-cutter fashion, i.e., a
range of ports are pre-allocated to each CPE. Concerns have
been raised when public IPv4 addresses are shared among a
large mount of CPE, while only a limited N number of TCP or
UDP port numbers are available per CPE in average. In fact,
pre-allocating N ports is not encouraged according to several
service providers' report: the average number of connections
per customer is the single digit, while thousands or tens of
thousands of ports could be used in a peak by any single
customer browsing a number of AJAX/Web 2.0 sites. If a
smaller number of ports per CPE (N in the hundreds) are
allocated, it is expected that customer's applications could be
broken in a random way over time. If a large number of ports
per CPE are allocated (N in a few thousands), the address
sharing ratio will be decreased. Furthermore, customers may
require different amount of ports, for example, enterprise
customers may expect more ports to support simultaneous
sessions; some customers have many terminals connected to
CPE which may require more ports.

Secondly, a number of "blind" attacks can be performed
against the TCP and similar protocols by identifying the
transport protocol instance, i.e., the five-tuple (Protocol, Source
Address, Destination Address, Source Port, Port). Since A+P
pre-allocates N (N<65,536, usually less than several thousands
in order to achieve a large sharing ratio more than a single
digit) ports to CPE, it is more easy to guess the five-tuple and
in turn increase the probability of successful attacks.

This paper proposes a optimized port allocation mechanism
for A+P which aims at addressing those two defects of A+P by
two efforts, 1) providing customer oriented differentiated
services for A+P to allow customer negotiate IP-addresses of
desired sharing ratios based on their requirement; 2) providing
a source port randomization algorithm to achieve better
security by preventing attacker's easy guessing the five-tuple.

C. Orgnaization

The rest of this paper is organized as follows. Section II
introduces related works; Section III presents our proposed
optimized port allocation mechanism. The simulation results
are discussed in Section IV. Finally, this paper is concluded in
Section V.

II. RELATED WORK

Several methods have been proposed for allocating A+P

parameters. In [4], DHCPv4 Options for allocating port
restricted public IPv4 address and a range of ports are defined.
Two IPCP Options, Port Range Value Option and Port Range
Mask Option to convey one range of ports (either contiguous or
not contiguous) pertaining to a given IP address have been

discussed in [5]. These two IPCP Configuration Options
provide a way to negotiate the Port Range to be used on the
customer Premises. The sender can use the Configure-Request
message to carry request which Port Range associated with a
given IP address is desired, or to request the peer providing the
configuration, the peer then can provide this information by
NAKing the option, and returning a valid Port Range
associated with an IP address.

Both of these methods propose A+P port allocation
mechanism and negotiation process, either by using DHCP
semantics or by PPP IPCP negotiation. Neither of them
addresses the problem described in Section I.

III. OPTIMIZED A+P PORT ALLOCATION MECHANISM

Firstly, a mechanism was designed to allow service
provider provisioning the differentiated qualities of service by
allocating different sharing ratio IP-addresses to different
customer. As customer gets better service with lower sharing
ratio IP-address, the one demanding better service pays more
for the lower sharing ratio IP-address. The operator could
configure IP-addresses pools with different service levels
depends on different sharing ratios. As illustrated in Table I, it
shows an example seven service level IP-addresses pools was
configured according to seven sharing ratios. With sharing
ratios varies from 1 to 64, which means available ports for each
customer varies from 65,536 to 64, the service level decrease
from level 0 to level 6. Level 0 provides one unshared global
IP-address to customer as nowadays operator does. Each
customer could request different service level IP-address
according to their requirements on quality of service, which
depends on the sharing ratio, the lower sharing ratio, the higher
quality of service with higher price.

TABLE I. AN EXAMPLE OF SERVICE LEVEL ADDRESS POOLS

Service level address

pools

Sharing ratio Available

ports

Level 6 address pool 64 1024

Level 5 address pool 32 2048

Level 4 address pool 16 4096

Level 3 address pool 8 8192

Level 2 address pool 4 16384

Level 1 address pool 2 32768

Level 0 address pool 1 65,536

Secondly, to provide a way for customer to generate
random ports while guaranteeing them in customer restricted
port range, the core idea is simple: Choosing M bits to from a
customer ID bits for a set of customers which sharing the same
IP-address, and then identifying the customers in the same set
by allocating unique M bits customer ID values. Hence the M
bits customer ID could guarantee the ports inside the customer
restricted port range. With regard to each shared IP-address, as
its sharing ratio is given, the number of customer ID bits M is

74

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

decided by
ioSharingrat

2log . In order to facilitate the reuse of

existing Port Randomization algorithms, two parameters are
derived, customer ID pattern and customer ID value, customer
ID pattern is derived from setting the customer ID bits to '1'
and the left bits to '0', customer ID value is derived from setting
the Customer ID bits to a unique value allocated from the
operator side and the left bits to '1'. An example is shown in
Figure 2, a Level 6 address pool of sharing ratio 64 for a
sharing IP-address-A is selected, and then 6 bits are chosen as
Customer ID bits, which are the 3rd, 4th, 7th, 9th, 10th, 12th
bit. All the customers sharing IP-address-A get
"0000101101001100" as customer ID pattern, and each of them
get a unique customer ID value. As shown in Figure 3, take the
customer#5 for example, for a random generated port, just take
a bitwise AND operation with customer ID pattern and then
take a bitwise OR operation with customer ID value of
customer#5, the result port would be inside the customer#5
restricted port range. Hence it's easy for customer NAT reusing
the port randomization algorithms referred in [6], it could be
done by slight modification to the existing port randomization
algorithms. Take the Algorithm 1: Simple port randomization
algorithm [6] for example, the Figure 4 shows the A+P simple
port randomization algorithm, only one line code was inserted
to the original simple port randomization algorithm.

Figure 2. Customer ID pattern and customer ID value

To ensure the customer NAT could generate as random
ports as possible to prevent attackers, three heuristic rules to
choose M bits of Customer ID are proposed:

1) To avoid allocate a range of continuous ports to

customer, the location of M bits for the Customer ID Pattern

should not take place in the most significant bits.

2) To avoid allocating only even ports to customers with

the least significant bit '0' or only odd ports to customers with

the least significant bit '1', M bits Customer ID Pattern should

not involve the least significant bit.

3) To avoid allocating a regular range of ports to

customer, the location of M bits for the Customer ID Pattern

should not take place in the continuous bits.

Pseudocode for Customer ID Pattern bits chosen is shown
in the Figure 5.

Figure 3. Calculate port inside the customer restricted port range

Figure 4. A+P simple port randomization algorithm

Customer could get IP-address in desired sharing ratio by
negotiating Customer ID pattern with operator, the negotiation
could be done by several ways, either by negotiating DHCPv4
Option for allocating port restricted public IPv4 address
defined in [4], or by negotiating PPP IPCP Options defined in
[5] after Softwire [7] is established and IPCP reaches the
Opened state. The negotiation process is out of scope.

Note that customers sharing the same IP address share the
same customer ID pattern; however customers with different
IP addresses, no matter if they are using the same sharing ratio,
are using different customer ID patterns which is granted by
random customer ID choosing algorithm.

/* A+P Ephemeral port selection function */

num_ephemeral = max_ephemeral - min_ephemeral + 1;

next_ephemeral = min_ephemeral + (random() %

num_ephemeral);

next_ephemeral_in_range = next_ephemeral ||

customer_ID_pattern & customer_ID_value

count = num_ephemeral;

do {

if(five-tuple is unique)

return next_ephemeral_in_range;

if (next_ephemeral == max_ephemeral) {

next_ephemeral = min_ephemeral;

} else {

next_ephemeral++;

}

count--;

} while (count > 0);

return ERROR;

75

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

Figure 5. Customer ID choosing algorithm

IV. EVALUATION

A. TCP/UDP Source Port Considerations

Since a successful attack against the TCP or UDP requires

the attacker to have knowledge of a valid five-tuple (protocol,
source IP address, source port, destination IP address, and
destination port). The protocol, source and destination IP
addresses are obvious as they are the specific services the
attacker will be spoofing. The destination port is also obvious,
the attacking aims at well-known services, which announce
well-known ports to public. The only difficult part of guessing
this is the TCP/UDP source port, since it different for each new
TCP/UDP session. As for TCP RESET attack, the attacker
could assume the destination port of 179 for BGP, as for
Domain Name System (DNS) cache poisoning attack, it could
assume the destination port of 53 (the port number IANA has
assigned for DNS). For an attacker, additional requirement of a
correct source port would increase the difficulty of the attack
by a factor or 16. Random source ports would increasing the

numerical attack space “from
322 to

482 ”, hence increase the
difficulty of an attack. Unfortunately, even if random source
ports are supported by implementations, routers or gateway
devices that perform network address translation (NAT), often
rewrite source ports for tracking NAT session. When some
NAT devices modify source ports without random source port
selection algorithms, it will increase the risk of successful
attacks.

The following section will evaluate port randomization of
A+P NAT with or without our proposed mechanism and its
impact on the DNS cache poisoning attacks.

B. DNS Cache Poisoning Attacks

DNS servers usually store results in a cache to speed further
lookups for efficiency, which makes DNS server vulnerable to
DNS cache poisoning attacks. DNS cache poisoning is a
maliciously created that provides data to a caching name server
that did not originate from authoritative DNS sources. Once a
DNS server has received such non-authentic data and caches it,
it is considered poisoned. The answers from a poisoned DNS
server cannot be trusted. The clients may be redirected to
malicious web sites that will try to steal clients' identity or
infect clients' computers with malware.

DNS requests contain a 16-bit transaction IDs, used to
identify the response associated with a given request. Unless
the attacker can successfully predict the value of the transaction
IDs and return a reply first, the server won't accept the
attacker's response as valid. Even if it may be possible to guess
these transaction ID values in advance, but as long as the server
randomizes the source port of the request, the attack may
become more difficult, since the fake response must be sent to
the exactly same port that the request originated from. The
essence of the problem is that DNS resolvers don't always use
enough randomness in their transaction IDs and query source
ports. Increasing the randomness of transaction IDs and query
source ports may increase the difficulty of a successful
poisoning attack. United States Computer Emergency
Readiness Team (US-CERT)'s Vulnerability Note VU#800113
describes deficiencies in the DNS protocol and
implementations that can facilitate cache poisoning attacks.
Most implementations do NOT randomise the port number. In
most cases, the same port number 53 was always used.

As stated above, some DNS implementations use a number
of mechanisms to protect themselves from the attacks. First of
all, queuing received request eliminates the possibility of
birthday attack. Secondly, sending the request from the random
dynamic UDP port and accepting only answers to this source
port. In consequence the probability of successful attack is
significantly decreased because the attacker has to guess two
16-bits numbers (both UDP port number and transaction ID).
Because these numbers are independent the success probability

would be in this case P =
N2

1

, where N is in practice near 32
(IANA has reserved 0 through 1023 for The Well Known
Ports, not all 65,536 could be Ephemeral Port). Even if the
attacker uses a high speed connection, the probability of
success is relatively small, because the attacker is not able to

generate about
322 fake answers in time when DNS is waiting

for the reply from the authoritative DNS.

Therefore, upgrading DNS server and DNS resolver to
implementations of good randomness is essential to defence
against DNS Cache Poisoning Attack. However when DNS
resolver behinds routers, firewalls, or other gateway devices

/* Heuristic algorithm for Customer ID bits chosen */

M = log2(SHARING_RATIO);

Genbits:

/*Guarantee Heuristic rule 1 and Heuristic rule 2*/

for (i = 0; i < M;)

{

bits[i] = GenRandomBit();

if(bits[i] == 0 || bit[i] = =15); else i++;

}

/*Sort array in decreasing order in order to match the

condition for rule 3*/
Sort(bits);

/*Guarantee Heuristic rule 3*/

for (i = 1; i < M;)

{

if(bits[i-1] = = bits[i]+1) i++;

else break;

}

if(i= =M) goto Genbits;

return bits;

76

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

that perform network/port address translation (NAT), if the
NAT device does not implement random ephemeral port
selection algorithms, consequently it will remove source port
randomness implemented by DNS server and stub resolvers.
Experiments have been conducted to evaluate if A+P NAT
bring deficiency of port randomness when a DNS resolver
behinds a NAT.

C. Comparison of DNS Port Randomness in Three NAT

Scenarios

There is a web-based DNS randomness test tool on the
Domain Name System Operations Analysis and Research
Centre (DNS-OARC) [8] to help user estimate if their name
servers are vulnerable to DNS Cache Poisoning Attacks. This
estimation was based on the randomness score of source port
and Transaction ID Randomness of DNS resolver. We use the
djbdns [9] which sends requests form various source ports and
only accepts answers sent to source port, and put it behind
NAT devices to test if there is potential randomness deficiency
that A+P NAT may bring in.

Three scenarios are given for comparison: In scenario A,
DNS resolver behinds a NAT implementing "simple port
randomization" algorithm recommended in [6]; in scenario B,
DNS resolver behinds a NAT implementing "A+P simple port
randomization algorithm" due to our optimized A+P port
allocation; in scenario C, DNS resolver behinds an A+P NAT
implementing "port increment by 1" algorithm. The estimation
result shows that our "A+P simple port randomization
algorithm" inherits greater randomness than the algorithm1
recommended in [6]. As shown in Figure 6 and Figure 7, both
of them are evaluated as GREAT source port randomness. On
the contrary, the traditional A+P NAT "Increment by 1
algorithm" removed source port randomness implemented by
the tested DNS server, and is evaluated as POOR source port
randomness as shown in Figure 8.

Figure 6. Evaluation DNS randomness in Scenario A

Figure 7. Evaluation DNS randomness in Scenario B

Figure 8. Evaluation DNS randomness in Scenario C

The scatter diagram of 25 sampled ports of scenario A,
scenario B and scenario C are shown in Figure 9-11
respectively. The source ports generated by "Simple port
randomization NAT" and "A+P simple port randomization
NAT" are well distributed, varies from lower bound to upper
bound; while "A+P port increment by 1 NAT" generates
sequential ports in a very limited range from 30900 to 30925.

Simple port randomization NAT

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25

sample

p
o
rt

Figure 9. Sampled ports from DNS randomness test in Scenario A

A+P Simple port randomization NAT

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25

sample

p
o
rt

Figure 10. Sampled ports from DNS randomness test in Scenario B

77

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

A+P Port increment by 1 NAT

30900

30905

30910

30915

30920

30925

30930

0 5 10 15 20 25 30

sample

p
o
rt

Figure 11. Sampled ports from DNS randomness test in Scenario C

Furthermore, more ports are sampled and Standard
Deviation (STDDEV) is used as a measure of randomness as
indicated in [8]. The port randomness in scenario A-C are
tested. Table II shows the relationship of Port Randomness
Score and STDDEV range. In each experiment, the same
numbers of ports were sampled for scenario A-C, and the
samplings repeat six times. Figure 12-15 shows the STDDEV
comparison of the three scenarios when 100, 500, 1000, 5000
ports were sampled respectively, From these four figures, we
can see that "Simple port randomization NAT" and "A+P
simple port randomization NAT" almost have the same good
performance on STEDEV, while "A+P port Increment by 1
NAT" is far underperformance.

TABLE II. PORT RANDOMNESS SCORE

Port Randomness Score STDDEV Range

GREAT 3980 - 20,000+

GOOD 296 - 3980

POOR 0 - 296

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

S
T
D
D
E
V

Simple port randomization NAT

A+P simple port randomization

NAT

A+P port increment by 1 NAT

Figure 12. STDDEV Comparison of 100 ports

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

S
T
D
D
E
V

Simple port randomization NAT

Modified Simple port

randomization NAT

A+P port increment by 1 NAT

Figure 13. STDDEV Comparison of 500 ports

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

S
T
D
D
E
V

Simple port randomization NAT

A+P Simple port randomization

NAT

A+P port increment by 1 NAT

Figure 14. STDDEV Comparison of 1000 ports

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

S
T
D
D
E
V

Simple port randomization NAT

A+P simple port randomization

NAT

A+P port increment by 1 NAT

Figure 15. STDDEV Comparison of 2000 ports

V. CONCLUSION

This work introduces an optimized port allocation
mechanism for A+P enhancement which has two key features:
1) it provides customer oriented differentiated services by
allowing customer negotiates IP-addresses of desired sharing
ratios based on their requirement; 2) it supports port
randomization. The test result shows that, without our
mechanism, "A+P port incremental by 1 NAT" brings
randomness deficiency to DNS server and consequently makes
DNS server vulnerable to DNS poisoning attacks, while our
"A+P simple port randomization NAT" has as great
randomness as " simple port randomization NAT " which
doesn't bring randomness deficiency to DNS server. Hence this
work mitigates A+P's two major defects coming along with
allocating ports in cookie-cutter fashion.

REFERENCES

[1] J. Yamaguchi, Ed., "NAT444 addressing models", draft-shirasaki-

nat444-isp-shared-addr-03(work in progress), March 8, 2010.

78

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

[2] Bush, R., "The A+P Approach to the IPv4 Address Shortage", draft-
ymbk-aplusp-04 (work in progress), October 27, 2009.

[3] Durand, A., "Dual-Stack Lite Broadband Deployments Following IPv4
Exhaustion", draft-ietf-softwire-dual-stack-lite-02 (work in progress),
March 8, 2010.

[4] Bajko, G. and T. Savolainen, "Port Restricted IP Address Assignment",
draft-bajko-v6ops-port-restricted-ipaddr-assign-02 (work in progress),
November 2008.

[5] M. Boucadair, Ed, "Port Range Configuration Options for PPP IPCP",
draft-boucadair pppext-portrange-option-01(work in progress), July
2009.

[6] M. Larsen, Ed, " Transport Protocol Port Randomization
Recommendations", draft-ietf-tsvwg-port-randomization-07 (work in
progress), November 30, 2009.

[7] RFC5571, B. Storer., " Softwire Hub and Spoke Deployment
Framework with Layer Two Tunneling Protocol Version 2 (L2TPv2)",
June 2009.

[8] Web-based DNS Randomness Test, https://www.dns-
oarc.net/oarc/services/dnsentropy, March, 2011

[9] Djbdns, http://cr.yp.to/djbdns.html, March, 2011.

79

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

