
Mobile Agent for Orchestrating Web Services

Charif Mahmoudi

LACL, Paris 12 university

Laboratory of Algorithmic, Complexity and Logic

Computer Science Department

Paris 12 University, France

cm@ramses.fr

Fabrice Mourlin

LACL, Paris 12 university

Laboratory of Algorithmic, Complexity and Logic

Computer Science Department

Paris 12 University, France

fabrice.mourlin@wanadoo.fr

Abstract— Mobile agent concept can be considered as a

mediator between concepts. We use this principle for

management of Web Services at runtime. A set of services are

placed on distinct computers, and our business process need to

coordinate all the services. Mobile agents allow us to navigate

on the computers to access to their local services. The role of

mobile agent is not only a trigger of service, but also a

transformer and a memory. A transformer because, it applies

transformation onto input data and output data to adapt

business interfaces. Secondly, it is also a memory because; it

manages the state of the business process during its scheduling.

This has an essential impact for error handling. Diagnostics

are created directly by observation of location of mobile agent

but also its progression into mission realization. Depending on

the runtime context, computation can be restarted when

resource become available. We highlight our results on poll

application for training evaluation.

Keywords- Mobile agent; web service, computation

I. INTRODUCTION

In distributed system, resources are placed on computers
and some of them are shared between software. Also, a
resource can be available for an application and not for
another. A key concept is adaptability. First of all, we
consider resource as data exposed on network or anything
which is accessible through a distributed protocol. Now the
problem is how to manage a computation, if access to part of
input data is not possible. Runtime context can become
unstable if a computation service is unavailable. Reasons are
multiple: data can be locked by another application or load
performance does not allow executing another local service.
In that case, this local anomaly can involve a global
perturbation. It is essential to solve this problem locally, near
the origin of problem itself.

Our objective is to build a solution for adapting a
business process in case of anomaly at runtime. It means that
a strategy has to be deployed for finding another resource for
instance, or for waiting its availability. Some works already
exist, which use replication of resources [1]. The idea is to
manage a pool of resources like data sources and a priority
list. When a resource is missing, its successor is selected.
Global knowledge of configuration is possible only with toy
project. Moreover, a clone resource is not always a solution;
when a web service is not available, a solution could be to
save messages into a message queue and to replay its content

later. Also, it appears that decisions have to be done
depending on local information.

This decision power should have the property to move
close to the location where the problem occurs. The action to
invoke depends on the local properties of the wished
resource. Mobile agent can become a solution to export
decision power near to required resources. Into next section,
we introduce mobile agent concept, then the use of web
service as a distributed exposure of a software part.

II. MOBILE AGENT AND MOBILE HOST

In our working context, mobile agent is considered as a
piece of executable code which has the ability to move from
one computer to another one. Its business action depends on
the location where it is. For instance, it can wish to access to
data set for preparing a computation. Or, a mobile agent can
access to an authorization service. In both cases, mobile
agents arrive on a computer where a specific service is
available. It means that every computers which accept to
belong to a computation, have to be first identified. Then,
mobile agent can migrate to these nodes, if local services are
useful for their mission.

Thereby, it appears that two software components are
essential into our architecture: mobile agent and agent host.
A deployment of a distributed application over a network
means at least one agent host per computer and a local
registry where all remote services are published. The role of
agent host is richer than it appears, because it receives
mobile agents and negotiates their arrival.

Negotiation step is also a key feature because two sets of
constraints have to be resolve when a mobile agent arrives.
On one hand, there is a set of requirements due to what the
mobile agent need to use locally (to read a dataset, to extract
pattern from result set, etc.). To sum up, a constraint is a
couple based on a resource and an action. For instance a
constraint might be a file of real data and a read action. On
the other hand, there is another set of permissions, managed
by agent host. Each local resource has its own constraints,
for instance a local file is only readable by a particular kind
of mobile agent or a specific origin or code base. For each
incoming agent, agent host launches a negotiator component
and its conclusion is eventually an agent authorization for
continuing its local activity.

Furthermore, when mobile agent is accepted by a host, its
activities are under control of a supervisor, whether it

60

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

transgresses the according permissions. For instance, mobile
agent can try to add anything at the end of a file, or it can
decide to access new local resource. Because, these
permissions cannot be implied from the first ones, it should
have asked these permissions before. That privileged action
won't be evaluated and an exception occurred. We have
already presented these works in previous conferences [2],
[3] about two domains: monitoring applications and
numerical computations. Mobile agents are often used as
remote probes, which collect anomaly about a specific
protocol, filter data and extract priority data and send them to
server. For computation case, mobile agents manage all parts
of a whole computation; in case of problem, we have the
ability to replay since an event of the execution. They play
role of distributed transaction manager. This feature is
always important for the use of Web Services.

III. ADVANTAGE OF WEB SERVICE FOR COMPUTING

A. Web Service

Distributed service is a very simple mechanism for doing
functional thing that has been created since the middle of
1970s with old technologies like Corba for instance [4].
More concretely, it is a new way to do something for which
there is a need such a mathematical computation or data
extraction. The difference this time is that it is based on open
standards upon which the entire industry agrees: one of them
is XML language.

We consider web service as a programmatic tool that
allows developers to promote local resource onto a
distributed protocol used by other pieces of software. As an
example, matrix reduction (Choleski program on Figure 1)
can be considered as a local program written in C language
and a web service is built as an ideal client of that program.
In that case, web service is just application of Proxy
(CholeskiWS component on Figure 1) and Adapter design
pattern [5]. But, web service is not only a wrapping of
business code; it uses also standard kind of stream for
requesting and eventually for the response (based on SOAP
language). Moreover, XML language has rich properties
which allow validation, transformation, enrichment and so
on. Also dynamic statements can be realized at run time by
the use of web service broker (see Figure 1). That one is a
remote façade to for all requests about Web Services, which
are managed locally (through WebService interface, see
Figure 1).

Web Services standard also includes a technology for
metadata information about the methods and parameters for
a remote method called Web Services Description Language
(WSDL) [6]. This has impact on problem recovery, when
timeout is achieved or when negotiation fails. Then, an
alternative has to be found (a clone of web service or a
backup of current request).

Web Services are based on existing standard protocols
like HTTP or FTP. This means that Web Services are
stateless in nature. Statelessness is a good feature for
scalability and is one of the reasons that HTTP is such a
scalable protocol. However, this feature limits some of the
types of code you can write as a web service. Generally, web

service methods perform all the required work in a single
invocation. It is not unusual to create web service methods
that internally call many other methods to perform a task.
For example, if you have transactional method calls, they
could all execute within the same web service method call.

But today, the difficulty is not to call dynamically a web

service but to organize a whole algorithm based on a set of
Web Services (CholeskiWS and DataSetReaderWS for
instance). This means definition of business process, for
instance for linear equation resolution, it starts by data
extraction step, then a filters are applied, next computation
can be done and finally results are consolidated by the use of
previous computation. This whole algorithm should be
interpreted as a main entity. Next section is about this step
composition.

B. Web Service Composition

The composition of Web Services is more complex than
a composite structure of objects. A working context has to be
managed and the sequence of web service calls is not the
only useful operator. Several languages were defined for the
composition of web service such as WSFL/XLang [7] or
BPEL [8]. Other definitions come from specification
languages, such as BPMN [9] or polyadic pi calculus [8]. In
a more pragmatic approach, a notation based on XML
language allows easier management especially at run time.
Business Process Elementary Language (BPEL) seems to
have more dedicated frameworks and tools such as ODE,
Orchestration Director Engine [10]. Enterprise Service Bus
(ESB) are also BPEL consumers, they interpret a BPEL
stream as a business process. These tools are based on a
design pattern called VETRO standing for Validation,
Enrichment, Transformation, Routing, and Operation. The
BPEL process uses various services provided by other
components. The BPEL process itself also provides a service
to other components. Its main drawback is the routing step,
which costs time especially when problems occur (such a
failure). Programmers should develop their own strategy to
detect lack of service and to recover it. This is the kernel of
our current work.

In our computing context, we have several components
with different size and technologies and we need to adapt
them into a whole application. Also, web service is a right
answer to that problem; this means interoperability of several
programming languages, standardization of data exchange
via XML language, and also lazy resource management.
Moreover, it is natural to anticipate that the compositions are
performed dynamically by a large number of end-users.

Figure 1. Components on an agent host computer (MAH)

61

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

However, the current process technology based on central
process engines implies the adoption of BPEL for this
purpose. In fact, in BPEL, processes and composite services
are synonymous. A business process is an activity, which has
a hierarchical structure. It consists of a collection of sub-
activities, either all to be executed in some prescribed order,
such as in sequence or in parallel. When such a process is
interpreted by a central engine, it involves a large set of
XML messages over network. This traffic can be perturbed
by data overloading on several web service engines.

When we work on the effects of a business process over
the other, again the volume of messages increases always to
a key limit and system test are necessary. Because a central
architecture is a too strong constraint, we decided to assign
the treatment of a business process to mobile agent. Its role is
to interpret BPEL definition and to adapt its behavior to the
current context. The main idea behind this adaptation is to
move from agent server to the computer where the web
service broker is. The first impact is the reduction of
message number and changes of security control.

C. Mobile agents as web service pilot

Our mobile agent philosophy on BPEL is that it is a
language for describing how to implement a collection of
message-based communication capabilities in terms of state
manipulation and messages exchanged with external
services.

The core of mobile agent uses an integration layer
implementation to receive and deliver messages to external
parts and to get access to resources such as input dataset or
web service. Also, we developed mobile agent as a BPEL
engine with specific challenges such as the state
management of executing process and the distribution of
parallel statements. Our approach is based on our previous
works about higher order pi calculus [12]. This formal
specification language has its own operational semantics. We
defined each operator of BPEL by the use of pi calculus
language [11] (see Figure 2).

We have already implemented a pi calculus interpreter
from a reference operational semantics [11]. Now, we have
implemented mobile agent behavior from these formal rules
as an application of Interpreter pattern [5]. An agent becomes
a BPEL script evaluator. From BPEL expression (see Figure
2: a piece of a specification of Choleski process is
displayed), we used an operational semantics of BPEL
language based on pi calculus. Then, mobile agent can
interpret script as its mission. During this evaluation,
intermediate states are saved. This will be powerful
information for future comparison or equivalence detection.

In next section, we present the structure of our
application and its deployment over network. The location of
service forces specific placement and impose roadmaps for
mobile agents.

IV. ARCHITECTURE

We adopted a two level specification [12]. The upper one
defines software architecture and how components are
defined with stereotype. This description is useful for
understanding technical frameworks. The lower level of
specification describes how our components are placed onto
the node of network and it gives a map of available services.

A. Software architecture

1) Overview
Main part of our platform is called mobile agent server. It

first, receives requests from client and delegates given
activity to a mobile agent. At the beginning, a mobile agent
is enough for a treatment, but it could need help if the
business process is too complex. This means that it is not a
simple sequence of web service calls.

BPEL is based on Web Services in the sense that each of
the business process involved is assumed to be implemented
as a Web service. Also, as mentioned before, all elements of
a computation have to be equipped for their future use. Also,
when a request is received about a given business process,
we built a new business space, called BS (see Figure 4). This
distributed structure is useful at runtime, because it contains
all parts of the execution context and it manages some
aspects such as transaction management, state backup and
part of safety control.

We have already defined BPEL scripts for some of our
business process. They are all about statistics; and more
precisely two kinds of statistics descriptive and inferential.
They allow us to create graphs and charts, averages,
dispersion of data, probability and its distributions etc on
large data sets. Our experience about BPEL language allows
us to define two different types of business processes:
executable processes and abstract processes. Our models are
based on actual process of statistics domain. Also, we
declared only executable process which can be executed by
an orchestration engine at least.

2) BPEL mobile engine
To define business processes, BPEL describes a variety

of elements: the actors in a business transaction, the
messages that need to be transmitted, the type of Web
Services that are required and the kinds of Web Services
connections that are required for operations. All these data

Figure 2. Transformation from BPEL language pi calculus

62

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

pilot the behavior of our agent which can find relation
between the BPEL process definition and the WSDL which
defines the interface details of the Web Services.

For all of the local action our implementation of BPEL
language is quite similar to official reference. But when it's
about invoke statement or data collection; we replace a
remote call with an agent migration and a local call.

Of course, our agent uses same standard languages
(SOAP, WSDL and UDDI), but we reduce message volume
and we consider as pre treatments some aspects which were
evaluated before during a call. This takes into account a part
of security controls, event tracking, etc. As example, the
interpretation of invoke element is one of the main changes.

This XML block (see Figure 2) contains all the details to
realize a service call. Also, the agent divides this operation
into two steps: migration and call. If the url connection is not
valid and exception is raised and the business space is
notified on this problem, then a message is logged into
anomaly report. This will be the trace that a business process
failed and a robot could be collected them and a recover
strategy could be implemnted.

When the url is valid, it asks remote web server for
receiving WSDL stream (see Figure 3). Then, after its

reception, he uses the service tag (from WSDL stream) to
find out its destination. It notifies its business space about its
future migration and look up the acceptance service of its
next destination. If this technical service is available, it will
move from its current host to the host where the wished
service is published.

For this migration, mobile agent needs a technical
service, called acceptance service, which has to be defined
on next host and published into local register. An acceptance
service allows knowing if a mobile agent has enough rights
to perform all the actions onto the current host. Our objective
is to prevent anomaly before raising an exception, when
mobile agent does not have enough permission to access to
local resources. Controller exception can not be totally
suppressed because, mobile agent can access to a local
resource which changes its mission (for instance, a file
contains a list of email addresses and they will be used to
notify that the mission is ended). The negotiation between
agent host and mobile agents looks like a frontier where all
incoming agent are placed into a queue. This is a partial filter
against access violation and misleading actions.

3) Negotiation at entrance
When an agent host receives a mobile agent, its role is to

check the action list, the mobile agent wants to realize. And
then it validates with the permissions, it has for this agent. If
these permissions are not sufficient for the evaluation of the
agent mission, the negotiation fails (see Figure 3) and mobile
agent has to find another agent host where the service is
declared.

For the permission assignment, mobile agent has to have
certificates and details about its origin and its owner. When
agent host accepts this new worker, it is launching in parallel
a supervisor component to observe what mobile agent will
really do during its mission. This is particularly crucial when
mobile agent sends requests about importation of other
agents or when it uses value of local resource.

Main events are recorded into local register: agent
importation and exportation, but also negotiation success and
failure, local resource access and extra data about current
business process. This is used to trace behavior and also to
look for a better execution time. Blockings occurs when
resources are not shared, then object locks are declared.
These enable multiple agents to independently work on
shared data without interfering with each other. The mutual
exclusion refers to the mutually exclusive execution of
monitor regions by multiple mobile agents. At any one time,
only one agent can be executing a monitor region of a
particular monitor. If two mobile agents are not working with
any common data or resource, they usually can't interfere
with each other and needn't execute in a mutually exclusive
way.

Agent host can apply an order among all current mobile
agents. A higher priority agent that is never blocked will
interfere with any lower priority agent, even if none of the
agents share data. The higher priority agent will monopolize
the CPU at the expense of the lower priority agents. Lower
priority agents will never get any CPU time. In such a case, a
monitor that protects no data may be used by agent host to
orchestrate these agents to ensure all agents get some CPU

Figure 3. State chart for Invoke command interpretation

63

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

time. The monitor strategy is based on quota distribution
which depends on past analysis of traces of event. So, a host
can privilege current agents compared to the new ones.
Similarly, a host can fail negotiation because it guesses; there
have already been enough agents. Idem, in case the
negotiation fails, mobile agent is looking for a mirror site
(see Figure 3).

B. Material architecture

Material architecture is to model the physical aspect of an
object-oriented software system. It models the run-time
configuration in a static view and visualizes the distribution
of components in an application. In most cases, it involves
modeling the material configurations together with the
software components that lived on. In our working context,
this involves the display of main services which are deployed
on computer of the business space. The current work doesn't
take into account new materials during execution.

1) Basic services
In a distributed system, our basic schema of services

contains two kinds of lookup services on each used
computer. Technical services are registered into Jini lookup
service [13], while Web Services and business services are
published into UDDI registers [14]. Both kinds of registers
need front web server and sql database service as persistent
layer. Of course, more technical services are present for
transaction management and security control, but the size of
the document does not allow us to detail more.

2) New services
The Figure 4 depicts three kinds of node: agent server

(MAS), agent host computer (MAH) and UDDI register
node (MAR). Of course a concrete computation net has more
than one node per category, but this figure allows us to
explain concrete scheduling of a business process from client
request.

The agent server is a facade which receives all business
requests. Depending on business process, a business space is
created and equipped to receive the whole scenario. This
means a transaction can be open if it is required by the
business process. Then, evaluation of BPEL script can start
with a first lookup into UDDI registers. By the end of its
mission, mobile agent will come back to agent server and it
will notify the business space about its stop.

V. RESULTS

Our experiments show new interesting functionalities,
main result is the ability to replay a business service
following the same strategy as the first time. Performance
studies need to replay a process or to choose between several
strategies. Our second result is about anomaly tracking and
more particularly how to resume from blocking states.

Enterprise service bus help to debug by the use of save
SOAP messages. This information is not complete enough to
understand the reasons of a problem. Often, it is concretion
of a sequence of events. Also, because agent host saves
locally trace of events, it becomes easy to build prefix event
sequence from a given event. We developed specific mobile
agent for event collection. They allow developer and
architect to build a map of distributed events.

Finally, our recovery process was of great value in case
of anomaly. Mobile agent can decide to look for a clone of
given service and then continue the evaluation of BPEL
script. This new service depends on the agent host where
mobile agent is.

VI. CONCLUSION

To sum up, we consider our experiments as a validation
of new ideas about mobility of actions. We knew that
adaptability is a key feature into distributed system on wide
network. We establish that mobility of code by the use of
agent is a right way for finding alternative when a problem
occurs. It becomes crucial to manage set of agents in order to
improve negotiation step and supervision.

REFERENCES

[1] Jamali, N. and Xinghui Zhao. 1993. “Self-Adaptive and Self-

Organizing Systems”. SASO '07. First International

Conference on, 9-11 July 2007, 311 - 314. DOI=

10.1109/SASO.2007. pp. 49.

[2] Cyril Dumont and Fabrice Mourlin: Space Based Architecture

for Numerical Solving. CIMCA/IAWTIC/ISE 2008: pp. 309-

314, 2008.

[3] Mâamoun Bernichi and Fabrice Mourlin: Software

management based on mobile agents. ICSNC 2007: 64-74.

[4] Robert Orfali, Dan Harkey and Jeri Edwards, CORBA

Fundamentals and Programming, edited by Jon Siegel,

publishing by John Wiley & sons, NY, ISBN 0471-12148-7.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides, "Design Patterns: Elements of Reusable Object-

Oriented Software", ISBN 978-0201633610 , ISBN 0-201-

63361-2, Addison Wesley Professional (Nov 10, 1994).

[6] Benslimane, Djamal; Schahram Dustdar, and Amit Sheth

(2008). "Services Mashups: The New Generation of Web

Applications". IEEE Internet Computing, vol. 12, no. 5.

Institute of Electrical and Electronics Engineers. pp. 13–15..

[7] Frank Leymann, Web Services Flow Language (WSFL 1.0),

IBM, May 2001. Web Services Flow Language (WSFL 1.0)"

Figure 4: Deployment diagram of a mobile agent application

64

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

Frank Leymann] URI:http://www.ibm.com/software/

solutions/webservices /pdf/WSFL.pdf.

[8] Yuli Vasiliev, "SOA and WS-BPEL: Composing Service-

Oriented Architecture Solutions with PHP and Open-Source

ActiveBPEL", Packt Publishing (September 10, 2007), pp.

316, ISBN-10: 184719270X, ISBN-13: 978-1847192707.

[9] Thomas Allweyer, "BPMN 2.0 Introduction to the Standard

for Business Process Modeling", ISBN 978-3-8391-4985-0,

Paperback, pp. 156.

[10] Petri Nets and Other Models of Concurrency – ICATPN

2007, Lecture Notes in Computer Science, 2007, Volume

4546/2007, 263-280, DOI: 10.1007/978-3-540-73094-1_17

[11] R. Milner, J. Parrow, and D. Walker (1992). "A calculus of

mobile processes". Information and Computation 100 (100):

1--40. doi:10.1016/0890-5401(92)90008-4.

[12] Mâamoun Bernichi and Fabrice Mourlin, "Two Level

Specification for Mobile Agent Application," icons, pp.54-59,

2010 Fifth International Conference on Systems, 2010

[13] Scott Oaks and Henry Wong, "Jini in a Nutshell", Publisher:

O'Reilly March 2000 pp. 413 Print ISBN:978-1-56592-759-9,

ISBN 10: 1-56592-759-1

[1] Tyler Jewell, David Chappell, "Java Web Services", March 2002, 0-
596-00269-6, 276 pages, O'Reilly & Associate

65

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

