
An Approach to Service Deployment to the Service
Cloud

Juha Puttonen, Andrei Lobov, José L. Martinez Lastra
Department of Production Engineering

Tampere University of Technology
Tampere, Finland

{juha.puttonen,andrei.lobov,jose.lastra}@tut.fi

Abstract—Computing clouds facilitate rapid and effortless
resource allocation. In particular, Infrastructure-as-a-Service
clouds allow clients to dynamically lease virtual machines that
behave similarly to physical servers. However, executing an
application by directly using computing cloud resources is
complicated and typically involves similar steps as installing
and executing an application on a physical machine. Moreover,
starting numerous application instances on a single virtual
machine may result in poor performance. Thus, we propose
developing a web service that acts as a mediator between the
leased cloud resources and the cloud users and facilitates the
use of the resources. When the mediator web service is used, an
application can be started in a computing cloud effortlessly by
invoking simple web service operations. Furthermore, in the
case of several applications, the workload can automatically be
distributed between several virtual machines, resulting in
higher performance.

Keywords- cloud computing; web services

I. INTRODUCTION

Computing processes require hardware resources, such as
processing power and data storage capacity. Traditionally,
the resources have existed on physical server machines.
Hence, organizations have had to invest in the purchase of
the hardware as well as allocate resources in installing and
maintaining the systems. Moreover, the need for computing
resources tends to considerably fluctuate, causing the
expensive systems to be frequently idle. Adjusting the
computing resources to match the current needs is typically
expensive using traditional methods. Cloud computing
provides a solution to the problem by allowing organizations
to lease computing resources and only pay for the amount
that they actually use [1].

A. Previous Work

There are different types of cloud computing. In
Infrastructure-as-a-Service, IaaS, the leased resources are
complete virtualised systems [2]. More specifically, the
resource units leased from IaaS clouds are virtual machines
[3], which behave identically to actual servers connected to
the internet. However, they are created through virtualisation
from actual servers. Other types of cloud computing include
Software-as-a-Service, SaaS, and Platform-as-a-Service,

PaaS. In SaaS, software vendors make their applications
accessible over the Internet, while in PaaS the cloud systems
provide platforms that allow software vendors to implement
their applications. Then, the end users can access the
applications over the Internet similarly to SaaS [4].

Public IaaS clouds are typically commercial enterprises
from which virtual machines can be leased at certain prices
[3]. The Amazon Elastic Compute Cloud, Amazon EC2 [5],
is a notable example of public IaaS clouds. However,
organizations can also create private clouds that are used
internally and non-commercially [3]. The main purpose of
private clouds is to share existing resources, rather than
provide additional resources. On the other hand, private
clouds may also use the resources of public clouds, and the
combinations are called hybrid clouds [3].

Cloud computing toolkits, such as Eucalyptus [6] allow
the creation of private clouds. While there are no standard
computing cloud interfaces, the private clouds created using
the Eucalyptus software framework conform to the Amazon
EC2 cloud interface and can be used with the same client
tools [6].

For example, companies consisting of several
departments can benefit from the effortless resource
allocation enabled by private IaaS clouds. If each department
were allocated physical servers, those servers would be idle
for considerable periods of time. While reallocating physical
servers to different departments might cause considerable
amount of additional work, it is straightforward to
dynamically start virtual machines and attach virtual storage
volumes to the virtual machines with all the necessary
software and data.

In our work on semantic web services orchestration [7],
we have proposed a set of web services providing a web
service orchestration framework. The orchestrated web
services can be hosted in resource-constrained embedded
devices. In the orchestration framework, the performance
issues related to memory and CPU resources can be
overcome by outsourcing some of the resource-demanding
functions to the cloud. Considering service oriented
architecture (SOA), it would be natural for the applications
deployed in the cloud to provide web service interfaces.
Fortunately, computing clouds can facilitate the dynamic
deployment of web services, such as those forming our web
service orchestration framework. Some web services may be
needed only for a limited time, after which the computing

122

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

resources reserved by them should be released. Moreover,
deploying the services on physical server machines might
require considerable effort in configuring and installing the
hardware and software. The use of cloud computing is a
more feasible approach, as it allows the dynamic creation of
virtual machines for hosting the web services, thus reducing
the number of actual computer systems required and the
amount of idle resources.

B. Problem Formulation

While IaaS clouds offer more flexibility and portability
than SaaS and PaaS solutions, the workload in starting an
application using an IaaS cloud is considerable [8]. Although
many IaaS clouds support similar interfaces, starting an
application in an IaaS computing cloud may be difficult due
to the low-level nature of IaaS clouds. Indeed, a client must
first select the appropriate virtual machine images to use, and
communication with a virtual machine instance is typically
performed by logging in to the instance with a terminal
program. Hence, automating the use of the virtual machine
in, for example, starting new applications, would be difficult.
Therefore, we propose developing a web service that is
deployed on a virtual machine in an IaaS cloud and
facilitates the use of the leased computing resources. The
web service interface provides operations that allow starting
and terminating applications.

C. Outline of the Paper

The structure of this paper is as follows. Section II
introduces the proposed new approach on IaaS cloud
resource utilisation. Section III demonstrates the application
of the approach and evaluates its performance aspects.
Finally, Section IV contains conclusions and issues to be
targeted in future research.

II. MAIN RESULTS

We have developed a web service that facilitates using
computing cloud resources. We have named the web service
Cloud Gateway because it acts as a mediator between a
computing cloud and the cloud users. Specifically, one
instance of the Cloud Gateway service is started on each
virtual machine leased from an IaaS cloud. The service
instances then enable a user to effortlessly execute
applications on the virtual machines. Moreover, the Cloud
Gateway services can form networks spanning several virtual
machines that may reside in separate computing clouds.
Thus, when a Cloud Gateway is low on computing
resources, it can delegate a request for starting a new
application to another Cloud Gateway instance hosted by a
less burdened virtual machine.

A. Adding and Executing Applications

Cloud Gateway provides operations for adding and
removing applications to and from its application library as
well as starting and terminating instances of the applications.
Cloud Gateway assigns a unique string identifier to each
application and to each started application instance. The
most important operations in the Cloud Gateway service
interface are described in Table I.

We have particularly considered the case where each
application, when executed, creates and starts a web service

compliant with the DPWS specification [9]. Thus, in the
sequel, these types of applications are called server
applications.

To facilitate the effortless transfer and execution of the
server applications, they must be packaged into executable
Java archive (JAR) files. Hence, Cloud Gateway can
download the applications as single files. Furthermore, the
applications can be executed on any platform that has a
sufficiently new Java runtime environment installed.

An application can be executed by invoking the
StartApplication operation and passing the application
identifier as an input. Optionally, a list of command-line
arguments may be specified to override the default
arguments. As a response, StartApplication returns the
identifier assigned to the new application instance or
‘FAILURE’ if starting the application failed.

Command-line arguments may contain keywords that
Cloud Gateway expands before executing the corresponding
application. Keywords are identified by enclosing them
between '$#' and '#$'. For example, Cloud Gateway replaces
each occurrence of the string '$#HOST#$' with the host
machine network address.

A typical server application needs at least several
seconds to deploy a set of web services. Web services
compliant to the WS-Discovery specification [10] send
Hello messages when they enter a network. Hence, Cloud
Gateway listens to Hello messages originating from the host
machine. Whenever Cloud Gateway receives such a
message, it considers sends a ServiceStarted notification to
all subscribed clients. The notifications allow the clients to
determine server application start-up times.

Cloud Gateway allows starting multiple instances of each
application. A running application can be terminated by
executing the TerminateApplication operation. Since Cloud
Gateway is able to terminate applications only in a forcible
manner, the terminated applications must prepare for the
abrupt termination of the underlying Java virtual machine
and perform the necessary activities at such an event. For
example, DPWS-compliant web services should broadcast
WS-Discovery Bye messages when leaving a network. The
Bye messages allow clients to automatically detect when the
web services become unavailable.

B. Resource Consumption

Because the amount of applications that can be started
with Cloud Gateway depend on the amount of hardware
resources available to the virtual machine, Cloud Gateway
must use some metrics for determining the amount of free
resources. Furthermore, it must compare the determined
resource levels to threshold values indicating the maximum
allowed resource utilisation. Cloud Gateway accepts a
request to start an application only if the determined resource
utilisation levels are below the maximum allowed levels.

The metrics that most clearly define the resource
utilisation of a virtual machine are the random access
memory (RAM) and central processing unit (CPU) usage. In
Linux systems, the percentage of RAM used can be
measured fairly effortlessly by examining the contents of the
virtual /proc file system. The CPU usage level is more
problematic to determine, but it can be derived from the
system load average, which can also be determined from the

123

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

/proc file system. The load average represents the number of
processes that are either in execution or queuing for CPU
time. Hence, the higher the value, the more burdened the
CPU is. If the load average is equal to the number of CPUs,
CPU utilisation is optimal [11]. To calculate a value for the
CPU utilisation level, Cloud Gateway divides the system
load average with the number of CPUs.

If either the determined RAM or CPU usage value is
higher than the corresponding threshold value, Cloud
Gateway rejects any requests to start a new application. The
threshold values can be specified by invoking the
SetThreshold operation.

C. Cloud Gateway Networks

The system resources of a virtual machine will inevitably
be exhausted if several application instances are executed on
the machine. Therefore, Cloud Gateways residing on
separate machines can form networks to balance the load
between several machines. For this purpose, the Cloud
Gateway service interface includes the operations
RegisterCloudGateway and DeregisterCloudGateway, which
allow registering and deregistering partner Cloud Gateways
that will be used in workload balancing. The
StartApplicationInNet operation will execute the application
locally on the host machine only if the resource utilisation is
within allowed boundaries. Otherwise, the
StartApplicationInNet operation is recursively invoked on
the partner Cloud Gateways to find one that is able to service
the request. Similarly, the SetThresholdInNet is a recursive
version of the SetThreshold operation.

The sequence diagram in Figure 1 represents a typical
use scenario of Cloud Gateway. The Client object in Figure

1 can be an autonomous software agent or a software tool
operated by an end user. In the beginning of the example
sequence, the client registers Cloud Gateway 2 is registered
to Cloud Gateway 1 to form a Cloud Gateway network.
Then, the client registers a new server application to Cloud
Gateway 1. Once Cloud Gateway 1 has downloaded the
application, the client executes it in the cloud by invoking
the StartApplicationInNet operation. Because Cloud
Gateway 1 is low on computing resources, it delegates the
request to Cloud Gateway 2, which then executes the
application, effectively deploying a new web service. The
response to the original StartApplicationInNet request
includes the endpoint URI of the selected Cloud Gateway
instance. Finally, the client requests Cloud Gateway 2 to
terminate the server application to release the computing
resources for future use.

If a Cloud Gateway selects another service instance in the
network to execute an application, it must first ensure that
the other instance possesses a copy of the application and
obtain the application identifier by invoking its
AddApplication operation. This is illustrated by point 10 in
the sequence diagram.

III. AN APPLICATION EXAMPLE

We have tested our approach both with a private cloud
created using the Eucalyptus [6] software framework and
with the Amazon EC2. This section will first present the
experiment setup, and then describe the test results.

A. The Experiment Setup

We have set up a private cloud consisting of only one
computing cluster composed of a single desktop running a

TABLE I. THE CLOUD GATEWAY SERVICE INCLUDES OPERATIONS FOR MANAGING THE AVAILABLE APPLICATIONS AS WELL AS EXECUTING AND TERMINATING THEM.

Operation Inputs Outputs
AddApplication location – the URL from which the JAR

file can be read
parameters – the default command-line
arguments

The identifier assigned to the application or ‘FAILURE’ if reading the JAR
file from the specified URL fails.

RemoveApplication id – the application identifier ‘SUCCESS’ or ‘FAILURE’ if no application with the specified identifier
exists, or if a running instance of the application exists.

StartApplicationInNet id – the identifier of the application to
start
parameters – the list of command-line
arguments, if empty, the default
arguments will be used

The identifier assigned to the new application instance or ‘FAILURE’ if
starting the application failed.
The endpoint URI of the Cloud Gateway that started the application.

TerminateApplication id – the identifier of the application
instance to terminate

'SUCCESS' if the application was running, otherwise 'FAILURE'.

ListApplications - The list of uploaded applications. The identifier, JAR file name and default
arguments are listed for each application.

ListAll - The list of all application instances. The instance identifier, application
identifier, command-line arguments and state (running or terminated) are
listed for each instance.

SetThresholdInNet MemoryThreshold – a floating point
value between 0 and 1
CPUThreshold – a non-negative
floating-point value

‘FAILURE’ if the threshold values are outside the allowed ranges,
otherwise ‘SUCCESS’.

RegisterCloudGateway URI – the endpoint URI of the Cloud
Gateway instance to register

‘FAILURE’ if the Cloud Gateway service had already been registered,
otherwise ‘SUCCESS’.

DeregisterCloudGateway URI – the endpoint URI of the Cloud
Gateway instance to deregister

‘SUCCESS’ if the Cloud Gateway service had been registered, otherwise
‘FAILURE’.

GetResourceUsage - Numeric values indicating the amount of free memory, total memory, the
number of CPUs, the system load average as well as the current memory
and CPU utilisation thresholds.

124

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

Figure 1. A typical use scenario of Cloud Gateway includes starting a
web service and terminating it after use to conserve resources.

Linux operating system and Eucalyptus version 1.6.1. The
restricted computing cloud limits, for example, the number
of virtual machines that may be created; we have
experimented with a maximum of two parallel virtual
machine instances. However, even such a limited setting
suffices for testing the proposed approach.

We have modified a virtual machine image so that it
includes all the necessary software components for starting
the Cloud Gateway server application. To upload the image
to the cloud and to create virtual machines from it, we have
used the Euca2ools command line utilities.

For interacting with the Cloud Gateway services, we
have used our own application called Service Explorer. It
includes a simple graphical user interface that allows, for
example, inspecting web services and invoking their
operations. In our experiments, we have executed Service
Explorer on a laptop connected to the same local network as
the desktop hosting the private computing cloud. Thus,
Service Explorer is able to automatically detect the web
services started on the virtual machines.

Each virtual machine executes a separate copy of the
Cloud Gateway server application. We have deployed only
two virtual machine instances in the private cloud. The
experiment topology is depicted in Figure 2.

B. Performance Measurement

To measure the performance of the Cloud Gateway
service, we have developed a test application with a simple

user interface. The test application assumes the place of
Service Explorer in Figure 2. The purpose of the test
application is to measure the time required for deploying
several independent web services in a computing cloud. The
test application first invokes the AddApplication method to
register an application and then sequentially invokes the
StartApplicationInNet operation to execute the application a
number of times specified by the user. After each
StartApplicationInNet request, the test application waits for
the Cloud Gateway to send a ServiceStarted notification
before sending the next request. The user interface includes
text fields for specifying the JAR file URL and the number
of times to execute the JAR with Cloud Gateway. In
addition, the performance test application allows specifying
threshold values, which it requests Cloud Gateway to use by
invoking the SetThresholdInNet operation.

While experimenting with different threshold values, we
have noticed that if only a RAM usage threshold were used,
it should be set to at most 0.98 because the operating system
never appears to let the RAM utilisation reach 99 percent but
retains a small amount of memory as work space and
compensates the missing memory with swap file usage. For
example, with one gigabyte of RAM, the memory utilization
typically reaches 98 percent after Cloud Gateway has started
28 conveyor service server applications, after which the
proportion of used RAM fluctuates only marginally.
However, the increased page file usage burdens the CPU,
resulting in very poor performance. To prevent the CPU load
from excessively increasing, a threshold value for CPU
utilisation should be specified.

In one of our test runs, setting the RAM threshold to
0.99, and CPU utilisation threshold to 6.0 resulted in 42
applications being started before the CPU threshold was
exceeded. Cloud Gateway started the applications in 217
seconds. However, the maximum number of applications and
the start-up delay vary between different test runs. Given that
the virtual machine hosting Cloud Gateway comprises only
one (virtual) CPU, the load factor of 6.0 indicates that, on
average, only five processes are queuing for CPU time.
However, the web services, including Cloud Gateway,
running on the machine seemed unable to respond to
requests within the communication time out durations.
Logging in to the virtual machine revealed that the load
average had exceeded 60. Afterwards, the virtual machine

Figure 2. The test arrangement includes two physical machines, one of
which hosts a private cloud containing virtual machines (VMs).

125

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

became unreachable. Apparently, since the load average is
computed over the previous minute [11], it is difficult to use
it as a measure of the workload of the machine at a specific
instant. On the other hand, the applications may temporarily
have to queue for processing time at start-up, while later they
will require less computation power.

On a virtual machine with only 256 megabytes of RAM,
the memory utilisation exceeds 98 percent after Cloud
Gateway has only started six server applications, and the
overall delay is 22 seconds. When the memory threshold is
set to 99 percent and CPU threshold is set to 6.0, Cloud
Gateway starts nine server applications, but finally the
virtual machine becomes unreachable.

The application start-up delay begins to increase steeply
after Cloud Gateway has started a certain number of
applications. This is obviously caused by the virtual machine
having to compensate the lack of physical memory with page
file usage. Moreover, the responsiveness of the applications
running on a virtual machine is very poor when the machine
is executing several applications simultaneously.

We have also experimented running the Cloud Gateway
service on remote virtual machines leased from the Amazon
EC2 cloud. In the experiments, each virtual machine hosting
a Cloud Gateway service has been allocated 1.7 gigabytes of
RAM. Table II shows the test results using a single virtual
machine in the EC2 cloud. The table shows the memory
threshold, number of started instances and overall start-up
times. It also lists the reasons why Cloud Gateway stopped
starting new server applications.

The last row in Table II represents a test scenario where
the CPU threshold was set to 100. In this case, the client
connection to the virtual machine abruptly terminated while
starting the 94th application instance, apparently due to the
excessive workload on the virtual machine.

C. Performance Measurement in a Network Setting

We have performed performance tests also in a setting of
two Cloud Gateways running on separate virtual machines in
our private computing cloud. Each of the virtual machines is
allocated one gigabyte of RAM and five gigabytes of disk
space. The Cloud Gateway Performance Test application
communicates directly only with the main instance.
However, it invokes the RegisterCloudGateway operation on
the main instance to add the auxiliary instance to the Cloud
Gateway network. The memory and CPU thresholds set in
the user interface are submitted to each Cloud Gateway in
the network.

In the scenario of two Cloud Gateway instances, the main
instance will serve the first application requests. However,

once it exceeds the memory threshold, the main instance
starts delegating incoming application start requests to the
auxiliary instance.

For example, in one of the test runs, the memory
threshold of the two Cloud Gateways was set to 98 percent,
while the CPU threshold was set to five. Finally, the
performance test application started requesting the main
Cloud Gateway instance to start instances of the conveyor
service server application. The main instance exceeded the
memory threshold after starting the 28th server application
and started delegating the requests to the auxiliary instance
on the other virtual machine. The auxiliary instance was able
to start 27 applications before exceeding the memory
threshold. Hence, a total of 55 application instances were
started, and the total duration was approximately 210
seconds.

D. Inter-Cloud Experiment Scenario

To experiment web service orchestration across different
computing clouds, we have performed an experiment with
two remote virtual machines and one local virtual machine.
The remote virtual machines are leased from the Amazon
EC2 cloud, while the local virtual machine is running in our
private computing cloud. Each virtual machine hosts one
Orchestration Engine web service and three virtual conveyor
web services.

The experiment consists of a cycle that starts when the
Orchestration Engine on virtual machine 1 is requested to
execute a BPEL process orchestrating the three conveyor
web services. In the end of the process, the Orchestration
Engine on virtual machine 1 requests the Orchestration
Engine on virtual machine 2 to execute a similar process,
which is represented by step 4 in Figure 3. Then, the
Orchestration Engine on virtual machine 3 executes a similar
BPEL process, which finally requests the Orchestration
Engine on virtual machine 1 to again execute the BPEL
process (step 12). Hence, the cycle continues indefinitely, so
that only one Orchestration Engine is executing a BPEL
process at a time.

To measure cycle durations, a client application monitors
the Orchestration Engine service on the local virtual
machine. Each time the Orchestration Engine sends a

TABLE II. THE NUMBER OF CONVEYOR SERVICE APPLICATIONS THAT CAN BE
STARTED ON A VIRTUAL MACHINE WITH 1.7 GB OF RAM.

Memory
threshold

Reason for
termination

Number of
instances

Total duration
(s)

0.9 memory 28 138

0.98 memory 33 173

1 CPU > 50 85 652

1 failure 93 1379 Figure 3. The private cloud is hosted on a local machine. Each virtual
machine hosts four web services.

126

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

notification signalling that it has begun executing a BPEL
process, the client application records the duration of the
elapsed interval since the previous notification. It also
determines the minimum, maximum and average interval
length. The experiment topology is depicted in Figure 3. We
have studied the use of BPEL in web service orchestration in
[12] and described the Orchestration Engine web service in
[7] and [13].

Table III contains the experienced minimum, maximum
and average intervals in an experiment consisting of 20
cycles. To obtain a reference point, we repeated the
experiment so that all of the web services were running on
the local machine. As Table III shows, the average cycle
duration is approximately two seconds longer when using
computing clouds. This constitutes less than five percent of
the average cycle time. The minor performance degradation
is presumably caused by the network traffic between the web
services on different virtual machines. However, network
traffic is unavoidable when the Orchestration Engine
services execute on different machines.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a web service that
facilitates the use computing cloud resources. The method
allows the use of computing cloud resources without
knowledge on the cloud interface or internal composition. In
particular, we have shown that a client can use the cloud
resources by invoking simple web service operations without
having to directly interact with the leased virtual machines.

A current limitation of the proposed approach is that
cloud resources are somewhat inefficiently used. While it is
possible to create a network of Cloud Gateway services
running on separate virtual machines, the machines must be
leased in a static manner, before launching the corresponding
Cloud Gateways. Cloud Gateway could be enhanced so that
it dynamically created new virtual machines as the utilisation
of the existing ones reached a certain level.

We have carried out experiments to evaluate the
performance of the proposed approach. While the automated
execution of applications is effortless, the resource limits of
the underlying virtual machine are eventually reached as the
number of executed applications increases. Moreover,
exhausting the resources over a certain point tends to
considerably decrease application responsiveness. On the
other hand, we have shown that forming networks of several
Cloud Gateway services allows automatically balancing
workload between several virtual machines.

Cloud Gateway measures the percentage of used memory
and the system load average to avoid the overuse of
computing resources. The method appears effective in

preventing severe performance degradation when starting
several applications. However, currently, Cloud Gateway is
unable to estimate the amount of resources an application
will consume once it has been started. Therefore, future
research should target the implementation of a mechanism
for evaluating the runtime resource consumption of the
started applications.

In addition, we have experimented with web service
Orchestration spanning separate computing clouds. The
results suggest that using computing cloud resources causes
no considerable performance drawbacks. However,
deploying several web services on separate virtual machines
requires manual work. Future research should investigate the
use of Cloud Gateway in automating this task.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
Break in the Clouds: Towards a Cloud Definition,“ ACM SIGCOMM
Computer Communication Review, Vol. 39, Issue 1, pp. 50–55
(2009).

[2] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky
Computing,” Internet Computing, IEEE, Vol. 13, Issue 5, pp. 43–51
(2009).

[3] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
Infrastructure Management in Private and Hybrid Clouds,” Internet
Computing, IEEE, Vol. 13, Issue 5, pp. 14–22 (2009).

[4] G. Lawton, “Developing Software Online with Platform-as-a-Service
Technology,” Computer, IEEE, Vol. 41, Issue 6, pp. 13–15 (2008).

[5] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/,
Referenced on 23.08.2010.

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, Y.
Lamia, and D. Zagorodnov, “The Eucalyptus Open-Source Cloud-
Computing System,” Proc. 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid, pp. 124–131 (2009).

[7] J. Puttonen, A. Lobov, M. A. Cavia Soto, and J. L. Martinez Lastra,
“A Semantic Web Services-Based Approach for Production Systems
Control,” The Cognitive Factory special issue of the journal of
Advanced Engineering Informatics, September 2010, in press.

[8] A. Sheth and A. Ranabahu, “Semantic Modeling for Cloud
Computing, Part I,” Internet Computing, IEEE, Vol. 14, Issue 3
(2010).

[9] Devices Profile for Web Services Version 1.1, http://docs.oasis-
open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html,
Referenced on 23.08.2010.

[10] Web Services Dynamic Discovery (WS-Discovery),
http://schemas.xmlsoap.org/ws/2005/04/discovery/, Referenced on
23.08.2010.

[11] R. Walker, “Examining Load Average,” Linux Journal, Issue 152,
Dec. 2006, http://www.linuxjournal.com/article/9001, Referenced on
20.09.2010.

[12] J. Puttonen, A. Lobov, and J.L. Martinez Lastra, “An Application of
BPEL for Service Orchestration in an Industrial Environment”, IEEE
International Conference on Emerging Technologies and Factory
Automation, pp. 530–547 (2008).

[13] A. Lobov, F. Ubis Lopez, V. Villaseñor Herrera, J. Puttonen, and J. L.
Martinez Lastra, “Semantic Web Services Framework for
Manufacturing Industries”, IEEE International Conference on
Robotics and Biomimetics, pp. 2104–2108 (2009).

TABLE III. THE DURATION OF 20 CYCLES IS QUITE SIMILAR REGARDLESS
OF WHETHER CLOUD RESOURCES ARE USED INSTEAD OF LOCAL RESOURCES.

Minimum (ms) Maximum (ms) Average (ms)

1 local VM, 2
remote VMs

47471 49106 47961

Only local web
services

45519 46787 45682

127

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

	I. Introduction
	A. Previous Work
	B. Problem Formulation
	C. Outline of the Paper

	II. Main Results
	A. Adding and Executing Applications
	B. Resource Consumption
	C. Cloud Gateway Networks

	III. An Application Example
	A. The Experiment Setup
	B. Performance Measurement
	C. Performance Measurement in a Network Setting
	D. Inter-Cloud Experiment Scenario

	IV. Conclusion And Future Work

