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Abstract—In this paper, we present an experimentation system 
for school bus route planning and testing various algorithms to 
solve such an optimization problem. It is a crucial social issue 
that concerns faster and more comfortable transport. 
Moreover, the route optimization allows decreasing the ticket 
price by maximizing the profit of the provider. Since the 
problem belongs to hard optimization problems, thus, we 
considered four meta-heuristic algorithms: three adapted, 
including Tabu Search, Simulated Annealing, Genetic 
Algorithm, and algorithm invented by the authors called 
Constructor. The efficiency of algorithms was tested and 
compared to that found by Complete Overview using the 
designed and implemented experimentation system.  The 
investigations made on various problem instances, allowed to 
emerge the most efficient algorithm.   

Keywords-experimentation system; metaheuristic algorithms; 
route  planning; optimization; efficiency 

I.  INTRODUCTION  

Since banking crisis from 2008 many companies were 
forced to cut expenses and look for more savings. Moreover, 
nowadays a lot of pressure is put on being green – 
environmentally - friendly, especially when it comes to 
industry or transport e.g. [1]. A lot of effort must be put in 
analysis and planning process to come across these 
challenges. This paper focuses on optimization of a school 
bus route and proposes the direction of searching optimal 
solutions. The main goal is to find the most profitable route 
(e.g. the shortest path).  

This optimization belongs to non-polynomial problem 
and has a huge solution space, meaning we can not find the 
best solution in polynomial time. For small instances it is 
easy to search through the whole solution space but when 
instance begins to grow, the required time may become 
unacceptable. The only one reasonable way to solve this is to 
use meta-heuristic algorithms that were invented to struggle 
with such problems. An idea to consider such algorithms 
based on artificial intelligence like Tabu Search (e.g. 
described in [2], [3], and [4]), Simulated Annealing (e.g. 
explained in [5], [6], and [7]) and Genetic Algorithm (e.g. 
illustrated in [8], [9], and [10]) seems to be promising. 

We decided to adapt all three mentioned ideas for 
implementing algorithms to find an efficient solution to bus 
route problem. In addition, we tried to invent on our own a 
new algorithm and we created the algorithm called 
Constructor which is described in this paper. To determine 
the shortest path from the starting point to the ending point 

through all possible bus routes we implemented Bellman-
Ford Algorithm (e.g. [11]).  

Moreover, we implemented Complete Overview (CO) 
algorithm to be able to calculate differences between 
maximum and optimum found using meta-heuristics 
(unfortunately, CO may be used only for instances smaller 
than 20 bus routes because of its complexity and the required 
time). Finally, we had to introduce an evaluating function as 
the measure of efficiency for the considered algorithms.  

To assess algorithms' efficiency we implemented an 
experimentation system that allows user to perform series of 
tests along with multistage experiment design ideas 
presented in [12]. 

The rest of paper is organized as follows: Section II 
defines the problem to be solved. Section III describes the 
considered algorithms and their roles in optimization 
process. Section IV shortly presents the implemented 
experimentation system. The results of the research appear 
in Section V. Section VI provides some final remarks and 
conclusion.   

II. TYPE STYLE AND FONTS 

There is given a certain urban area (Fig. 1), that consists 
of links and Bus Stops (BSs). Lines represent links, 
numbers next to them represent their lengths and red dots 
symbolize Bus Stops. The beginning of the route is marked 
by a green rectangle, but blue ending point (rectangle) 
represents the location of the school.  

 

Figure 1.  An example of an instance of bus route planning problem. 

It is necessary to determine the most profitable route of a 
school bus to maximize profits of a bus provider.  
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This means that the route may consist only BSs at which 
the number of students (pupils) waiting for a bus is 
sufficient not to make loses. Once the route is planned the 
bus may omit some BSs which are not on this specified 
route.    
The basis for making decision on which BS should stop is 
the observation of statistics that deliver the number of 
students (pupils) waiting at a BS on a given time. These 
values are represented by a matrix, in which each row 
corresponds to the next hour in bus transit and the columns 
show the number of pupils (Table 1). The problem 
parameters are listed in Table 2. 

TABLE 1.  Students (pupils) statistics - an example. 

Bus 
Stop 
Time 

     #1       #2       #3      #4 

8:00am       5       5      16       9 

8:45am       6       1        3 11 

9:30am     10     22       4       9 

      10:15am       0       2       0       0 

 
TABLE 2.  Input parameters of the problem. 

Sign Parameter 

SBS Set of potential BSs 

(xi,yi) BSi coordinates 

Li,j Link length between i and j BS 

Pk,j Pupils at k BS at j transit 

T Ticket price 

DC Driver’s cost 

BC Bus exploitation cost 

J Number of transits 

 

A.  Basic Terms 

Bus Stop (BS) is a point on a map where pupils wait for 
a bus to school. Each BS has its coordinates x and y on a 
map. 

          yxBS ,                        (1) 

Set of Potential BSs (SBS) is a collection of all BSs on a 
map, where SBS(i) may be defined by (2). 
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Link (L) is a matrix defined by (3) that describes lengths 
of links between BSi and BSj. Some BSs may not be directly 
linked to others but each BS must have at least one link. 
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li,j is defined as: 
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,                      (4)

 Route (R) is a path consisting starting point, ending point 
and going through BSs chosen from SBS. A Route may 
contain smaller amount of BSs than SBS. 

               )(kSBSR          where k≤i                                  (5) 

Ticket Price (T) informs how much each pupil must pay 
for taking a bus. 

Driver's Cost (DC) equals money paid to a driver for 
driving one unit of a length of a Route. 

Bus Exploitation Cost (BC) equals expenses for fuel 
used by a bus after driving one unit of a length of a Route.   

Number of Transits (J) says how many times the bus is 
going a route per a day.  

Route Length (RL) is a length of a shortest path. 

B.  Evaluating Function 

The evaluating function introduced by us is called the 
Balance (6) interpreted as a daily balance – obtained after 
one day of work. If Q(R) is less than 0 that the provider gets 
loses, if greater than 0 that the provider gets profits.  
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Moreover, to make sure that the bus will not go from 
starting point right to the destination point, we introduce a 
constraint. The constraint describes the minimal percentage 
number of all pupils from the statistics (Table 1) that should 
be delivered to the school (7). 
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III. THE ALGORITHMS 

A. Basic Ideas 

In the paper, we consider four meta-heuristic algorithms 
as the main algorithms, including three known algorithms 
(but specially adopted) : TS - Tabu Search, SA - Simulated 
Annealing, GA - Genetic Algorithm, and the Constructor 
(originally proposed by the authors of the paper). The first 
two of them are described, e.g. in [13]. Our   adaptations of 
GA as well as the Constructor are explained below. The 
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Route Length is calculated by using Bellman-Ford algorithm 
([11]). TS, SA, and GA perform calculations for a certain 
number of iterations, processing on a solution and its 
neighborhood. A solution is a RL and the neighborhood is a 
set of Routes with one different BS, without one BS or with 
additional one BS. 

The performance of each meta-heuristic algorithm is 
affected by a few factors such as an instance parameters (the 
size of SBS) and algorithms inner parameters.   

B. Simulated Annealing (SA) 

In any iteration the solution is replaced by a new one 
randomly chosen from the neighborhood if the new one is 
better. If the new solution is worse it has 50% of chances to 
replace the previous one. In this particular implementation 
we do not have such thing as temperature that changes the 
probability of replacing solutions. Here probability is 
constant. This is the only one difference between our SA and 
the one described in [7]. 

C. Tabu Search (TS) 

The implemented Tabu Search is more complex 
algorithm than SA because of applying the searching 
procedure through the whole neighborhood of a recent 
solution and choosing the best one unlike SA. Moreover, TS 
is more resistant to loops thanks to the taboo list. The best 
found solution may replace the previous one only if it differs 
from all the records in a taboo list more than of a certain 
percentage value. The length of the taboo list is limited and 
when the list is full, the old records are overwritten. 

D. Genetic Algorithm (GA) 

This algorithm is based on evolutionary mechanisms. 
The main idea is to create a population of a constant size and 
observe its evolution meanwhile registering the best ones. 
The most interesting here is a cross-over process. It requires 
two individuals and eventually gives two children. DNA 
chain is represented in this situation as a single solution. The 
crossover is described below on an example: 

parent no1: 1001|1101 

parent no2: 1100|0111 

child no1:   1001|0111 

child no2:   1100|0111 

All the solutions have a chance to hand over gens but the 
higher the Price function value of the solution, the higher 
possibility of being picked as a parent. Moreover, each child 
may mutate with probability 50% that leads to changing only 
one randomly picked chromosome. As the population size is 
constant, the newborns must replace the old solutions 
regardless of their breeding history.  

The algorithm implemented in our specified problem 
may be described as follows: 

 
Step 0. Initial population is picked randomly. 
Step 1. Pick parents randomly from existing population. 
Step 2. Perform breeding process.  
Step 3. Choose solutions to extinct.  

Step 4. Add children solutions to the rest of solutions in 
existing population. 
Step 5. Check whether the evaluating function for each 
solution in current population is not the best global 
optimum from already explored solution space. 
Step 6. Go back to step 1 if stop condition (defined by 
parameter Iterations) is not fulfilled. 

E. The Constructor 

The algorithm named Constructor was invented by us – it 
is based on the decomposition concept - we assumed that 
splitting a big instance to smaller ones, solving them 
separately and joining all together may be effective.  

At the beginning the Constructor splits the whole 
instance - containing two BSs, the beginning BS and the last 
BS. Next, it searches through a neighborhood of each small 
instance and modify them. After that, the algorithm 
combines in pairs small instances integrating them as 
obtaining the initially considered instance. 

 

Step 1. For specified short route that consists of 
beginning BS, ending BS and temporary amount of BSs 
find new possible routs picked from the short route's 
neighborhood. 
Step 2. Check the optimization function for solutions, 
which include new route. Find the best neighbor. 
Step 3. Modify current solution by including that best 
neighbor as a part of the solution. 
Step 4. Pick next temporary amount of BSs and go back 
to step 1, unless all of BSs has already been picked. 
Step 5. Double the temporary amount of BSs and go 
back to step 1, unless the temporary amount of BSs 
exceeded amount of all BSs. 

IV. EXPERIMENTATION SYSTEM 

The application was designed, mainly in order to 
visualize the tested algorithms. It was created using Visual 
Studio 2008. The implementation language was C#. In Fig. 
2,  a screenshot of the application window is shown. 
 

 
Fig. 2. Application window. 

In the beginning the user defines an instance of problem 
by putting BSs on the map and creating links between them. 
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Next, the beginning and the ending points of the potential 
route are precised and pupil statistics (by clicking and 
selecting properties) is determined. Finally, the user selects 
the considered algorithm and fixes its parameters. After 
clicking on “start simulation” button the application is 
searching for an optimal solution. There is a possibility to 
see an animation of a transit, and some statistics presented 
also on plots (e.g. served BSs, Balance, the percentage of 
served pupils) that allows observing current results. 

V. INVESTIGATIONS.  

A. Calibrating Algorithms - Concept 

The first part of research refers to finding the values of 
the best inner parameters for two algorithms: 

 Tabu Search, 
 Genetic Algorithm 

For each new set of parameters, a new simulation was made. 
The parameters of the problem for the considered instances 
are shown in Table 3. A single series of experiment meant 
that 10 different instances were tested; moreover, each 
instance was repeated 10 times. In Table 4 and Table 5 are 
the averages values over a given set of series of experiment. 

TABLE 3. Parameters – set 1. 

Bus Stops 15 

Test iterations 10 

Instances to test 10 

[%] passengers 50 

Driver's cost 1 

Bus exploitation cost 1 

Ticket  price 3 

Number of transits 4 
 

B. Adjusting Parameters for Genetic Algorithm  

Tests showed that increasing size of the population as 
well as increasing number of parents does not have a 
remarkable influence on improvement of solution (only 
about 5%). But the number of iterations has vast impact on 
results (Table 4).  

TABLE 4. Results given by GA. 

Test 
no. GA CO 

ΔGA 
[%] Population Parents Iterations

1 1360 1990 46,32 10 6 20 

2 1384 1971 42,41 20 6 20 

3 1292 1765 36,61 20 10 20 

4 1243 1726 38,86 20 14 20 

5 1215 1728 42,22 20 18 20 

6 1256 1610 28,18 20 18 30 

7 1307 1573 20,35 20 18 40 

8 1259 1489 18,27 20 18 60 

It may be observed, that for 60 iterations the results 
differ from the maximum just of approx. 18%. Because of 
slight differences in results between 60 and 40 iterations, the 
optimal value of this parameter was taken as equal to 40. 

C. Adjusting Parameters for Tabu Search 

The obtained results of research are shown in Table 5. 

TABLE 5. Results given by TS. 

Test 
no.

Tabu 
Search CO 

ΔTS 
[%] 

Tabu 
list 

Length 
% 

Precision Iterations

1 1328 2255 69,80 4 10 20 

2 1361 2074 52,39 4 5 20 

3 1263 1571 24,39 4 2 20 

4 1416 1592 12,43 4 1 20 

5 1489 1595 7,12 4 1 30 

6 1329 1352 1,73 4 1 50 

7 1185 1213 2,36 8 1 50 

8 1445 1505 4,15 16 1 50 

 
As shown in Table 5, changing only two parameters 

make noticeable difference in precision and Tabu (taboo) 
list length. 

Decreasing precision to 1% causes improvement of 
results in comparison to parameters from the first test. 
Apparently, smaller precision allows TS to make smaller but 
more frequent steps. This means, that TS explores larger 
solution space and it is obvious that in this situation the 
probability of encountering better result is higher. The vital 
parameter is the number of iterations - along with the same 
as in genetic algorithm property: the more iterations, the 
better solution. 

D. Comparison of Metaheuristic Algorithms 

The next part of research was to compare to CO all three 
other algorithms with the best inner parameters. Instances of 
parameters were the same as in previous part (Table 5) apart 
from minimal percentage passengers served (% passengers) 
which is variable in this test (Table 6). 

TABLE 6. Parameters – set 2. 

TS SA GA 

Iteration 50 Iteration 40 

Tabu length 4 Population 20 

Precision 1 

Iteration 50 

Parents 18 

 
According to Fig. 3 the smallest inaccuracy was found 

for TS - from 10% to less than 1% for 90% passengers. The 
second efficient was GA - from more than 50% to about 
10%. SA performed as third and the last place for 
Constructor. Constructor presents the biggest inaccuracy for 
50% passengers (almost 250% inaccuracy) but its 
performance improves when constraint becomes more strict 
- 90 % passengers. Despite this surprising result, the rest of 
results leave a lot to wish, either. 
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Figure 3. The average inaccuracy. 

E. Comparison – TS vs SA 

The influence of the number of iterations is shown in 
Fig. 4. The results of this series of experiments justify an 
observation (rather obvious) that the number of iterations 
has significant impact on the obtained results. The more 
iterations, the better results is given by the algorithm. The 
main useful observation is that TS gives better results than 
SA regardless of the number of iterations, thus TS algorithm 
may be recommended for searching the optimal route. 

 

 
Figure 4. Comparison of alghoritms: TS vs SA. 

F. Comparison – TS vs GA 

    The impact of the number of iterations is shown in Fig. 5. 
 

 
Figure 5. Comparison of algoritms: GA vs TS. 

This complex experiment was designed in order to 
observe differences between the two metaheuristic 
algorithms: TS and GA, with their best inner parameters 
apart from parameter - Iterations which was a variable. The 
problem parameters used were such as specified  in Table 3. 

Similarly to the previous test, TS defeats competitor - 
GA regardless of iterations number. Although TS wins this 
competition, the genetic algorithm GA kept pace of TA and 
the results given  by GA were not that bad as in SA case 
(see Sub-section E). 

VI. FINAL REMARKS 

To sum up, performed research justified the conclusion 
that TS algorithm gives much better results than SA 
regardless of defined advanced settings for searching the 
best solution. SA may give quite good results but much 
more iterations are needed. The only one algorithm that can 
compete with TA is GA but the average results of tests 
show that it would rather never come up with better results 
than TA. The Constructor algorithm turns out to be the 
worst and certain improvements are needed to make it 
somehow useful. Choosing the best algorithm is half the 
success, however, setting the most appropriate parameters of 
such algorithm is a vital issue. 

According to research presented in this paper, the 
proposed and recommended algorithm for route planning is 
Tabu Search (TS). 
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