
An Experimentation System for Bus Route Planning
and Testing Metaheuristics Algorithms

Krzysztof Golonka, Leszek Koszalka, Iwona Pozniak-Koszalka, Andrzej Kasprzak
Dept. of Systems and Computer Networks, Wroclaw University of Technology

Wroclaw, Poland
e-mail: leszek.koszalka@pwr.wroc.pl

Abstract—In this paper, we present an experimentation system
for school bus route planning and testing various algorithms to
solve such an optimization problem. It is a crucial social issue
that concerns faster and more comfortable transport.
Moreover, the route optimization allows decreasing the ticket
price by maximizing the profit of the provider. Since the
problem belongs to hard optimization problems, thus, we
considered four meta-heuristic algorithms: three adapted,
including Tabu Search, Simulated Annealing, Genetic
Algorithm, and algorithm invented by the authors called
Constructor. The efficiency of algorithms was tested and
compared to that found by Complete Overview using the
designed and implemented experimentation system. The
investigations made on various problem instances, allowed to
emerge the most efficient algorithm.

Keywords-experimentation system; metaheuristic algorithms;
route planning; optimization; efficiency

I. INTRODUCTION

Since banking crisis from 2008 many companies were
forced to cut expenses and look for more savings. Moreover,
nowadays a lot of pressure is put on being green –
environmentally - friendly, especially when it comes to
industry or transport e.g. [1]. A lot of effort must be put in
analysis and planning process to come across these
challenges. This paper focuses on optimization of a school
bus route and proposes the direction of searching optimal
solutions. The main goal is to find the most profitable route
(e.g. the shortest path).

This optimization belongs to non-polynomial problem
and has a huge solution space, meaning we can not find the
best solution in polynomial time. For small instances it is
easy to search through the whole solution space but when
instance begins to grow, the required time may become
unacceptable. The only one reasonable way to solve this is to
use meta-heuristic algorithms that were invented to struggle
with such problems. An idea to consider such algorithms
based on artificial intelligence like Tabu Search (e.g.
described in [2], [3], and [4]), Simulated Annealing (e.g.
explained in [5], [6], and [7]) and Genetic Algorithm (e.g.
illustrated in [8], [9], and [10]) seems to be promising.

We decided to adapt all three mentioned ideas for
implementing algorithms to find an efficient solution to bus
route problem. In addition, we tried to invent on our own a
new algorithm and we created the algorithm called
Constructor which is described in this paper. To determine
the shortest path from the starting point to the ending point

through all possible bus routes we implemented Bellman-
Ford Algorithm (e.g. [11]).

Moreover, we implemented Complete Overview (CO)
algorithm to be able to calculate differences between
maximum and optimum found using meta-heuristics
(unfortunately, CO may be used only for instances smaller
than 20 bus routes because of its complexity and the required
time). Finally, we had to introduce an evaluating function as
the measure of efficiency for the considered algorithms.

To assess algorithms' efficiency we implemented an
experimentation system that allows user to perform series of
tests along with multistage experiment design ideas
presented in [12].

The rest of paper is organized as follows: Section II
defines the problem to be solved. Section III describes the
considered algorithms and their roles in optimization
process. Section IV shortly presents the implemented
experimentation system. The results of the research appear
in Section V. Section VI provides some final remarks and
conclusion.

II. TYPE STYLE AND FONTS

There is given a certain urban area (Fig. 1), that consists
of links and Bus Stops (BSs). Lines represent links,
numbers next to them represent their lengths and red dots
symbolize Bus Stops. The beginning of the route is marked
by a green rectangle, but blue ending point (rectangle)
represents the location of the school.

Figure 1. An example of an instance of bus route planning problem.

It is necessary to determine the most profitable route of a
school bus to maximize profits of a bus provider.

134

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

This means that the route may consist only BSs at which
the number of students (pupils) waiting for a bus is
sufficient not to make loses. Once the route is planned the
bus may omit some BSs which are not on this specified
route.
The basis for making decision on which BS should stop is
the observation of statistics that deliver the number of
students (pupils) waiting at a BS on a given time. These
values are represented by a matrix, in which each row
corresponds to the next hour in bus transit and the columns
show the number of pupils (Table 1). The problem
parameters are listed in Table 2.

TABLE 1. Students (pupils) statistics - an example.

Bus
Stop
Time

 #1 #2 #3 #4

8:00am 5 5 16 9

8:45am 6 1 3 11

9:30am 10 22 4 9

 10:15am 0 2 0 0

TABLE 2. Input parameters of the problem.

Sign Parameter

SBS Set of potential BSs

(xi,yi) BSi coordinates

Li,j Link length between i and j BS

Pk,j Pupils at k BS at j transit

T Ticket price

DC Driver’s cost

BC Bus exploitation cost

J Number of transits

A. Basic Terms

Bus Stop (BS) is a point on a map where pupils wait for
a bus to school. Each BS has its coordinates x and y on a
map.

  yxBS , (1)

Set of Potential BSs (SBS) is a collection of all BSs on a
map, where SBS(i) may be defined by (2).













































yx

yx
yx

BS

BS
BS

iii

iSBS

,

,

,

)(22

11

2

1



 (2)

Link (L) is a matrix defined by (3) that describes lengths
of links between BSi and BSj. Some BSs may not be directly
linked to others but each BS must have at least one link.



















ll

ll

jii

j

jiL

,1,

,11,1

),(






 (3)

li,j is defined as:

   yyxxl jijiji

 
22

, (4)

 Route (R) is a path consisting starting point, ending point
and going through BSs chosen from SBS. A Route may
contain smaller amount of BSs than SBS.

)(kSBSR  where k≤i (5)

Ticket Price (T) informs how much each pupil must pay
for taking a bus.

Driver's Cost (DC) equals money paid to a driver for
driving one unit of a length of a Route.

Bus Exploitation Cost (BC) equals expenses for fuel
used by a bus after driving one unit of a length of a Route.

Number of Transits (J) says how many times the bus is
going a route per a day.

Route Length (RL) is a length of a shortest path.

B. Evaluating Function

The evaluating function introduced by us is called the
Balance (6) interpreted as a daily balance – obtained after
one day of work. If Q(R) is less than 0 that the provider gets
loses, if greater than 0 that the provider gets profits.

 
 








 
J

j

K

k
jk

BCDCRLTRQ P
1 1

,
)()(

 (6)

Moreover, to make sure that the bus will not go from
starting point right to the destination point, we introduce a
constraint. The constraint describes the minimal percentage
number of all pupils from the statistics (Table 1) that should
be delivered to the school (7).

P
P

P
J

j

I

i
ik

J

j

K

k
jk

%

1 1
,

1 1
,

%100 

 

 

 

 

 (7)

III. THE ALGORITHMS

A. Basic Ideas

In the paper, we consider four meta-heuristic algorithms
as the main algorithms, including three known algorithms
(but specially adopted) : TS - Tabu Search, SA - Simulated
Annealing, GA - Genetic Algorithm, and the Constructor
(originally proposed by the authors of the paper). The first
two of them are described, e.g. in [13]. Our adaptations of
GA as well as the Constructor are explained below. The

135

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

Route Length is calculated by using Bellman-Ford algorithm
([11]). TS, SA, and GA perform calculations for a certain
number of iterations, processing on a solution and its
neighborhood. A solution is a RL and the neighborhood is a
set of Routes with one different BS, without one BS or with
additional one BS.

The performance of each meta-heuristic algorithm is
affected by a few factors such as an instance parameters (the
size of SBS) and algorithms inner parameters.

B. Simulated Annealing (SA)

In any iteration the solution is replaced by a new one
randomly chosen from the neighborhood if the new one is
better. If the new solution is worse it has 50% of chances to
replace the previous one. In this particular implementation
we do not have such thing as temperature that changes the
probability of replacing solutions. Here probability is
constant. This is the only one difference between our SA and
the one described in [7].

C. Tabu Search (TS)

The implemented Tabu Search is more complex
algorithm than SA because of applying the searching
procedure through the whole neighborhood of a recent
solution and choosing the best one unlike SA. Moreover, TS
is more resistant to loops thanks to the taboo list. The best
found solution may replace the previous one only if it differs
from all the records in a taboo list more than of a certain
percentage value. The length of the taboo list is limited and
when the list is full, the old records are overwritten.

D. Genetic Algorithm (GA)

This algorithm is based on evolutionary mechanisms.
The main idea is to create a population of a constant size and
observe its evolution meanwhile registering the best ones.
The most interesting here is a cross-over process. It requires
two individuals and eventually gives two children. DNA
chain is represented in this situation as a single solution. The
crossover is described below on an example:

parent no1: 1001|1101

parent no2: 1100|0111

child no1: 1001|0111

child no2: 1100|0111

All the solutions have a chance to hand over gens but the
higher the Price function value of the solution, the higher
possibility of being picked as a parent. Moreover, each child
may mutate with probability 50% that leads to changing only
one randomly picked chromosome. As the population size is
constant, the newborns must replace the old solutions
regardless of their breeding history.

The algorithm implemented in our specified problem
may be described as follows:

Step 0. Initial population is picked randomly.
Step 1. Pick parents randomly from existing population.
Step 2. Perform breeding process.
Step 3. Choose solutions to extinct.

Step 4. Add children solutions to the rest of solutions in
existing population.
Step 5. Check whether the evaluating function for each
solution in current population is not the best global
optimum from already explored solution space.
Step 6. Go back to step 1 if stop condition (defined by
parameter Iterations) is not fulfilled.

E. The Constructor

The algorithm named Constructor was invented by us – it
is based on the decomposition concept - we assumed that
splitting a big instance to smaller ones, solving them
separately and joining all together may be effective.

At the beginning the Constructor splits the whole
instance - containing two BSs, the beginning BS and the last
BS. Next, it searches through a neighborhood of each small
instance and modify them. After that, the algorithm
combines in pairs small instances integrating them as
obtaining the initially considered instance.

Step 1. For specified short route that consists of
beginning BS, ending BS and temporary amount of BSs
find new possible routs picked from the short route's
neighborhood.
Step 2. Check the optimization function for solutions,
which include new route. Find the best neighbor.
Step 3. Modify current solution by including that best
neighbor as a part of the solution.
Step 4. Pick next temporary amount of BSs and go back
to step 1, unless all of BSs has already been picked.
Step 5. Double the temporary amount of BSs and go
back to step 1, unless the temporary amount of BSs
exceeded amount of all BSs.

IV. EXPERIMENTATION SYSTEM

The application was designed, mainly in order to
visualize the tested algorithms. It was created using Visual
Studio 2008. The implementation language was C#. In Fig.
2, a screenshot of the application window is shown.

Fig. 2. Application window.

In the beginning the user defines an instance of problem
by putting BSs on the map and creating links between them.

136

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

Next, the beginning and the ending points of the potential
route are precised and pupil statistics (by clicking and
selecting properties) is determined. Finally, the user selects
the considered algorithm and fixes its parameters. After
clicking on “start simulation” button the application is
searching for an optimal solution. There is a possibility to
see an animation of a transit, and some statistics presented
also on plots (e.g. served BSs, Balance, the percentage of
served pupils) that allows observing current results.

V. INVESTIGATIONS.

A. Calibrating Algorithms - Concept

The first part of research refers to finding the values of
the best inner parameters for two algorithms:

 Tabu Search,
 Genetic Algorithm

For each new set of parameters, a new simulation was made.
The parameters of the problem for the considered instances
are shown in Table 3. A single series of experiment meant
that 10 different instances were tested; moreover, each
instance was repeated 10 times. In Table 4 and Table 5 are
the averages values over a given set of series of experiment.

TABLE 3. Parameters – set 1.

Bus Stops 15

Test iterations 10

Instances to test 10

[%] passengers 50

Driver's cost 1

Bus exploitation cost 1

Ticket price 3

Number of transits 4

B. Adjusting Parameters for Genetic Algorithm

Tests showed that increasing size of the population as
well as increasing number of parents does not have a
remarkable influence on improvement of solution (only
about 5%). But the number of iterations has vast impact on
results (Table 4).

TABLE 4. Results given by GA.

Test
no. GA CO

ΔGA
[%] Population Parents Iterations

1 1360 1990 46,32 10 6 20

2 1384 1971 42,41 20 6 20

3 1292 1765 36,61 20 10 20

4 1243 1726 38,86 20 14 20

5 1215 1728 42,22 20 18 20

6 1256 1610 28,18 20 18 30

7 1307 1573 20,35 20 18 40

8 1259 1489 18,27 20 18 60

It may be observed, that for 60 iterations the results
differ from the maximum just of approx. 18%. Because of
slight differences in results between 60 and 40 iterations, the
optimal value of this parameter was taken as equal to 40.

C. Adjusting Parameters for Tabu Search

The obtained results of research are shown in Table 5.

TABLE 5. Results given by TS.

Test
no.

Tabu
Search CO

ΔTS
[%]

Tabu
list

Length
%

Precision Iterations

1 1328 2255 69,80 4 10 20

2 1361 2074 52,39 4 5 20

3 1263 1571 24,39 4 2 20

4 1416 1592 12,43 4 1 20

5 1489 1595 7,12 4 1 30

6 1329 1352 1,73 4 1 50

7 1185 1213 2,36 8 1 50

8 1445 1505 4,15 16 1 50

As shown in Table 5, changing only two parameters

make noticeable difference in precision and Tabu (taboo)
list length.

Decreasing precision to 1% causes improvement of
results in comparison to parameters from the first test.
Apparently, smaller precision allows TS to make smaller but
more frequent steps. This means, that TS explores larger
solution space and it is obvious that in this situation the
probability of encountering better result is higher. The vital
parameter is the number of iterations - along with the same
as in genetic algorithm property: the more iterations, the
better solution.

D. Comparison of Metaheuristic Algorithms

The next part of research was to compare to CO all three
other algorithms with the best inner parameters. Instances of
parameters were the same as in previous part (Table 5) apart
from minimal percentage passengers served (% passengers)
which is variable in this test (Table 6).

TABLE 6. Parameters – set 2.

TS SA GA

Iteration 50 Iteration 40

Tabu length 4 Population 20

Precision 1

Iteration 50

Parents 18

According to Fig. 3 the smallest inaccuracy was found

for TS - from 10% to less than 1% for 90% passengers. The
second efficient was GA - from more than 50% to about
10%. SA performed as third and the last place for
Constructor. Constructor presents the biggest inaccuracy for
50% passengers (almost 250% inaccuracy) but its
performance improves when constraint becomes more strict
- 90 % passengers. Despite this surprising result, the rest of
results leave a lot to wish, either.

137

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

Figure 3. The average inaccuracy.

E. Comparison – TS vs SA

The influence of the number of iterations is shown in
Fig. 4. The results of this series of experiments justify an
observation (rather obvious) that the number of iterations
has significant impact on the obtained results. The more
iterations, the better results is given by the algorithm. The
main useful observation is that TS gives better results than
SA regardless of the number of iterations, thus TS algorithm
may be recommended for searching the optimal route.

Figure 4. Comparison of alghoritms: TS vs SA.

F. Comparison – TS vs GA

 The impact of the number of iterations is shown in Fig. 5.

Figure 5. Comparison of algoritms: GA vs TS.

This complex experiment was designed in order to
observe differences between the two metaheuristic
algorithms: TS and GA, with their best inner parameters
apart from parameter - Iterations which was a variable. The
problem parameters used were such as specified in Table 3.

Similarly to the previous test, TS defeats competitor -
GA regardless of iterations number. Although TS wins this
competition, the genetic algorithm GA kept pace of TA and
the results given by GA were not that bad as in SA case
(see Sub-section E).

VI. FINAL REMARKS

To sum up, performed research justified the conclusion
that TS algorithm gives much better results than SA
regardless of defined advanced settings for searching the
best solution. SA may give quite good results but much
more iterations are needed. The only one algorithm that can
compete with TA is GA but the average results of tests
show that it would rather never come up with better results
than TA. The Constructor algorithm turns out to be the
worst and certain improvements are needed to make it
somehow useful. Choosing the best algorithm is half the
success, however, setting the most appropriate parameters of
such algorithm is a vital issue.

According to research presented in this paper, the
proposed and recommended algorithm for route planning is
Tabu Search (TS).

REFERENCES
[1] J. Skladzien, “Ecological aspects of vehicle transport development”,

Opole, 2008 /in Polish/.

[2] M. Gendreau, “An Introduction to Tabu Search”, Universite de
Montreal, 2003.K. Elissa, “Title of paper if known,” unpublished.

[3] F. Glover, “Tabu Search – part I”, ORSA Journal on Computing, vol.
1, no. 3, 1997.

[4] F. Glover and G. A. Kochenberger, “Handbook of Metaheuristics”,
Springer, Heidelberg, New York, 2002.

[5] V. Granville, M. Krivanek, and J. P. Rasson, “Simulated Annealing: a
proof of convergence”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 16, 1994, pp. 652-656.

[6] S. Kirkpatrick, C. D. Gelatti, and M. P. Vecchi, “Optimization by
Simulated Annealing”, Science, vol. 220, 1983, pp. 671-680.

[7] J. M. Laarhoven, H. Emile, and L. Aarts, ”Simulated Annealing:
Theory and Applications”, Springer, Berlin, 1987.

[8] L. D. Davies, “Genetic Algorithms and Simulated Annealing”,
Morgan Kaufmann Publ., 1987.

[9] H. Youssef and S. M. Sait, “Iterative Computer Algorithms with
Applications in Engineering”, Washington., 1997.

[10] D. Ohia, L. Koszalka, and A. Kasprzak, “Evolutionary Algorithm for
Congestion Problem in Computer Networks”, Springer, Lecture
Notes in Artificial Intelligence, vol. 5711, 2009, pp. 113-122.

[11] A. Kasprzak, “Packet Switching Wide Area Networks”, WPWR,
Wroclaw, 1997 /in Polish/.

[12] L. Koszalka, D. Lisowski and I. Pozniak-Koszalka, “Comparison of
Allocation Algorithms with Multistage Experiments”, Lecture Notes
in Computer Science, vol. 3984, Springer, 2006, pp. 58-67.

[13] P. Wroblewski, “Algorithms: data structure and programming
technologies”, WNT, Warsaw, 2003 /in Polish/.

138

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

