
System Reverse Engineering to Requirements and 
Tests  

 

Qi Zhang  
Fakultät für Informatik  

Universität der Bundeswehr München  
Neubiberg, Germany  
qi.zhang@unibw.de 

Andreas Karcher 
Fakultät für Informatik  

Universität der Bundeswehr München  
Neubiberg, Germany  

andreas.karcher@unibw.de 
 
 

Abstract—The long operational phase of products in the 
aviation industry demands constant maintenance and 
adaptation of its systems in order to fulfill to the demands of 
customers and the market and prevent obsolescence. For this 
purpose, a display system – including all documentation and 
tools - will be transferred from development to a maintenance 
department to be supported there over a long duration. To be 
able to modify the transferred system, maintenance first needs 
to achieve an understanding of the system. Due to the long 
development phase, requirements of embedded systems in this 
domain are most often historically evolved, and only in rare 
cases formally documented. Typical weaknesses of informal 
requirements, such as incompleteness or inconsistency, 
pervade the subsequent levels of the system's life cycle ranging 
from design to testing. Insufficiently documented system 
behavior can be increased according to the methods of reverse 
engineering by analysis of the requirements and design. This 
article intends to analyze the state of documentation of an 
existing aviation system in order to create a solution for 
completing and improving legacy requirements and tests. 

Keywords-Avionic; Embedded Multifunction Displays; 
Maintenance; Requirements; Reverse Engineering. 

I.  INTRODUCTION 

The development of embedded avionic systems is 
performed by several suppliers, who derive detailed 
requirements and test cases from high level specifications of 
an original equipment manufacturer (OEM) in order to 
develop the commissioned components. All requirements are 
expected to be well-defined, comprehensible and testable [1] 
in order to allow integration and interconnection by the OEM 
according to „systems thinking” [2]. The system 
comprehension is impaired by conditions such as lack of 
traceability, inconsistency or incompleteness, especially 
within and between text-based requirements – company-
internal and -external. The deficient documentation leads to 
difficulties when modifying requirements and test cases 
during the maintenance phase. Reverse engineering can 
assist in some ways to the proper maintenance of these 
legacy systems [8]. The article at hand reflects reverse 
engineering in the context of software maintenance and 
further development in the aviation industry. Starting point is 

a description of the general challenge maintaining legacy 
avionic display systems. After analyzing the current state of 
the art for requirement and reverse engineering, the industrial 
application is presented. Finally, a domain specific concept 
for improving requirements and tests by reverse engineering 
is provided. 

II. RELATED RESEARCH 

Research into requirement engineering has, in the past, 
been driven by a trend away from documentation 
centralization towards model centralization [3]. To improve 
consistency and completeness of requirements, languages 
and models have been developed [4] [5] which are 
compatible with extensible markup language (XML). These 
are governed by standards specifically tuned for loss-less 
exchange of requirement data between OEM and suppliers 
[6]. The focus of these methods lies exclusively on the 
improvement of requirement quality. Whereas the 
application protocol AP 233 of the ISO standard STEP 
10303 [7] offers models for formalization of requirement 
data, from which areas like testing can also benefit. The 
underlying idea of this standard is the development of a tool-
independent format for long-term archiving and loss-less 
exchange of data within a complex system. The standard is 
non-specialized due to its wide range of applicability and 
requires being adapted to the system in question before its 
application. 

The technologies and methods mentioned above refer to 
the development phase. In practice, there is usually a 
finished product given for which the quality is to be 
improved. Research in the area of reverse engineering is 
specialized on the analysis of existing products [8]. Reverse 
engineering is the process of analyzing an existing system in 
order to identify its components and their interaction, 
illustrating it in a different or more abstracted form [9]. 
Although reverse engineering would be applicable to the 
entire life cycle – starting with existing source code, re-
creation of the design and mapping of inherited requirements 
– the main focus in this area up until a few years ago was on 
„implementation and design artifacts” [10]. For this reason, 
Knodel, Koschke, and Mende [10] require the expansion of 
reverse engineering procedures onto all levels, such as 
testing and requirements. Similar results are drawn by 

35Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems



Canfora and Di Penta [11] in their article „New Frontiers of 
Reverse Engineering”. There, a road map for reverse 
engineering is presented, where it is made clear that reverse 
engineering can go further than recovering design artifacts: 
requirements are also an important output that can be 
produced by reverse engineering. 

In the following, a concept based on the state of current 
technologies for improvement of information acquisition 
between existing requirements and test cases is presented, 
using the example of the maintenance of symbols on a 
helicopter’s multifunctional display (MFD). 

III.  INDUSTRIAL APPLICATION 

MFDs are used to display flight data and warnings in the 
helicopter's cockpit. The embedded software has got to be 
maintained, and the displayed symbols have got to be 
changed according to customer expectations where 
necessary. In the context of this application the MFD was 
developed by a supplier for air traffic control systems, who 
derived own specifications and test cases from given format 
specifications (FOS) of the OEM in order to develop the 
hardware, software and symbol design. 

Since the informal FOS are hard to manage, e.g., data 
regarding size and position is incomplete, the suppliers were 
free to determine the method and tool with which to create 
the displayed symbols. The supplier derived formal software 
requirement specifications (SRS) to describe the logic of 
MFD input signals. Each combination of inputs signals 
offers an output signal triggering the desired symbol to be 
displayed on the MFD. The related test cases are used to 
verify input signals (as described by the SRS) and the 
resulting output symbols (as described by the FOS). The 
overall requirements and test cases can be correlated with 
each other but not with the FOS. The symbols' design was 
realized using a human-machine interface (HMI) modeling 
and display graphics tool, which stores the size and position 
of the symbols in human non-readable meta files (Fig. 1). 
This tool was also used to create pictures for visualization of 
the symbols in the FOS.  

 

 
Figure 1.  Current traceability of symbol documentation 

For this reason, any symbol modification requires to be 
first implemented in the HMI graphics tool before it can be 

adapted to the requirements or presented to the customer. 
The following Figure 2 displays the process for a symbol 
modification. 

 

Specification

Software

Display 

graphics 

tool

Specification

F
e
ed
b
ac
k
-L
o
o
p

Req. 1 Req. 2

FOS

Metafiles

Manual selection for 

relevant spezifications

Test

M
a
n

u
a
l 

s
e
le

c
tio

n
 fo

r 

re
le

v
a
n

t te
s
t 

c
a
s
e
s

Test 

Step

Test 

Step

Test Cases

Customer

Change request

Symbol 

picture

 
Figure 2.  Current process for graphical changes in the MFD 

 
Figure 2 shows that no data is provided from 

development regarding the criteria on which test cases were 
developed. Symbols are only tested as output in connection 
with the signal logic, not as a separate unit. This means that 
test cases such as „is the symbol ambiguous?” or „can 
critical conditions like 'white text on white background' 
occur?” do not exist. For this reason, symbol tests are 
incomplete. 

This missing data is to be rectified during maintenance in 
order to improve the quality of inherited requirements and 
test cases of the MFD. 

IV. PROPOSED IMPLEMENTATION CONCEPT 

With the symbol requirements from development phase 
being incomplete, a collection of all symbol data in a symbol 
library is proposed. The idea of maintaining the symbols in a 
library/database is derived from geographical information 
systems and mine mapping [12]. The symbol library is to 
store, in an appropriate structure, data such as a unique 
attribution, conditional and positional information and its 
traceability to all relevant requirements and test cases. This 
builds the foundation for the collection and interconnection 
of all data from different documents. For processing symbol 
data like visualization data exchange is done via XML 
schema. XML offers, besides its platform independence [5], 
advantages such as translation of the symbol data from and 
into a database or a scalable vector graphics (SVG)-based 
graphical user interface (GUI). This is meant to facilitate the 
access to relevant documents in the case of a modification. 
Additionally, the collection and representation of data are 
supportive to the creation and modification of test cases for 
symbol verification. 

 

36Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems



 
Figure 3.  Interconnection of symbol data by a library 

 
With the possibility to display symbols via SVG even 

before their implementation, the necessity of copying symbol 
pictures from the display graphics tool to the FOS is 
eliminated. Furthermore, modifications of symbols can be 
presented to the customer even in early development stages, 
without implementation on the design tool. The symbol 
description in SVG is created by an extensible style-sheet 
language transformation (XSLT) of the XML data. The 
XML schema provides the verification of the symbols as an 
independent artifact. Queries such as „do duplicate symbols 
exist”, or „is the condition 'white text on white background' 
possible” or „is the new symbol schema-conform” are easily 
implemented in the database. These queries can serve as 
criteria for the creation of new test cases. The following 
section lays out the creation and simulated application of the 
solution prototype in the industrial environment. 

V. EVALUATION IN THE INDUSTRIAL CONTEXT 

For better evaluation of the current symbol requirements, 
an XML schema was created based on current 
documentation. The structuring and classification of the 
symbols is performed by assignment of defined conditions, 
as described in the FOS and in meta files. Figure 4 shows the 
implementation of the XML schema by example of the 
symbol „FIRE”, which is presented by white writing on a red 
rectangle. Universal attributes, such as colors and fonts, are 
defined globally so that they need to be changed only in one 
place in the case of a modification. The content of the FOS 
and of the meta files are not consistently structured, so that 
an automatic query of the data is difficult to realize. For the 
implementation of the symbol „FIRE”, the data was entered 
manually. Figures 5 and 6 show the XSLT of the prototype 
based on the SVG and the visualization of the symbol via 
SVG. It turned out that the current data processing of the 
development documents from which the XML schema has 
been created does not represent an adequate structure for a 
database transition or an XSLT to SVG (Fig. 5). For 
example, a rectangle is defined in the design tool by the 
coordinates of two corner points (compare „Rectangle” in 
Fig. 4), while the same element is defined in SVG by the 
coordinates of the top left corner, width and height (compare 
„rect” Fig. 5). 

 
Figure 4.  current data structure by example of „FIRE” 

 

 
Figure 5.  XSLT based on SVG by example of „FIRE” 

 
In long-living products, dependence on tools always 

comes with the risk of obsolescence. For this reason, the 
schema is currently adjusted to the standardized SVG 
symbol description in order to provide wider and more 
flexible tool compatibility for data processing. As the 
schema is still under development, the process sequence of a 
symbol modification was simulated with an idealized 
implementation concept. Starting point of the simulation is a 
graphical symbol modification which is included into the 
symbol library by a specification engineer. The symbol can 
now be displayed in a GUI simulation and used in a 
presentation for internal or external customers by using SVG 
format. This prevents potential misunderstandings or 
misinterpretations, which increases the efficiency of the 
modification process. The symbol pictures generated with 
SVG can also be implemented into the FOS. All documents 
affected by the modification (requirement and testing) can be 
displayed automatically due to their linking within the 
library; the error-prone manual selection can be omitted. 

37Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems



SQL queries are used to eliminate redundancy or other 
interference with existing symbols. These queries serve to 
validate the modification and create new test cases. 

 

 
Figure 6.  Simulated modification process based on the implementation 

concept 

 
This implementation concept offers benefits for the 

specification and test stakeholders by partial automation of 
several process sections. The simulation of the 
implementation concept (Fig. 6) makes the actual process of 
modification more efficient by eliminating the feedback loop 
(Fig. 2) and automatically selecting all relevant documents. 
This way, the process of modification is more resistant to 
errors that may occur in manual research. The whole process 
is compliant to the „V-Model XT” standard. The resulting 
benefits for testing offers potential to develop and justify 
new symbol test cases derived from the database queries. 
Some further advantages are higher traceability of 
requirements and test cases, transparency and higher quality 
of symbol requirements, and improved verification and 
modification of symbols due to the formal definitions.  

VI. CONCLUSION AND PROSPECTS 

The implementation concept offers advantages for both 
requirements and tests of MFDs. Next the adaptation of 
XML schema is planned providing compliance to SVG. 
After this, a selection of MFD symbols is used to create a 

prototype for the implementation of real modification 
processes, in order to measure the results. The prototypes 
will be used after evaluation in the upcoming transfer of 
Supplier Software. Since the concept only provides a 
completion of symbol information of current specifications a 
subsequent goal will be the formalization of existing FOS 
and test cases to facilitate the exchange of their data with the 
library. This way the modification process from requirement 
up to testing can be (partially) automated.  Developing a 
configuration management tool for the library is also 
required. This implementation concept intends, by example 
of the MFD, to expand current methods of reverse 
engineering to the levels of requirements and tests. 

 

REFERENCES 
[1] K. Bender, Embedded Systems - qualitätsorientierte 

Entwicklung: Qualitätssicherung bei Embedded Software: 
Springer Berlin Heidelberg; Auflage: 1, 2005. 

[2] W. F. Daenzer and F. Huber, Systems Engineering: Methodik 
und Praxis, 11th ed.: Zürich Verl. Industrielle Organisation, 
2002. 

[3] T. Weilkiens, Systems Engineering mit SysML / UML. 
Modellierung, Analyse, Design: Dpunkt Verlag; Auflage: 1., 
2006. 

[4] M. Broy, V. Esperstedt, F. Houdek, K. Pohl, and H. 
Wußmann, "Leitfaden für modellbasiertes Requirements-
Engineering und -Management softwareintensiver 
Eingebetteter Systeme — REMsES —," ed. Essen: REMsES-
Konsortium, 2009. 

[5] T. Wien, E. Carlson, T. Stålhane, and F. Reichenbach, 
"Reducing development costs in industrial safety projects 
with CESAR," Emerging Technologies and Factory 
Automation (ETFA), 2010 IEEE Conference, pp. 1-4, 13-16 
Sept. 2010. 

[6] M. Adedjouma, H. Dubois, and F. Terrier, "Requirements 
Exchange: From Specification Documents to Models," 
Engineering of Complex Computer Systems (ICECCS), 2011 
16th IEEE International Conference, pp. 350 - 354, 27-29 
April 2011. 

[7] D. Kretz, J. Militzer, T. Neumann, and T. Teich, "Developing 
an integrated solution for generative process planning based 
on ISO standard 10303 " Communication Software and 
Networks (ICCSN), 2011 IEEE 3rd International Conference, 
pp. 61 - 65, 27-29 May 2011. 

[8] H.-J. Choi and S. A. Fahmi, "Software Reverse Engineering 
to Requirements," Convergence Information Technology, 
2007. International Conference, pp. 2199 - 2204, 21-23 Nov. 
2007. 

[9] E. J. Chikofsky and J. H. Cross, II "Reverse engineering and 
design recovery: a taxonomy " Software, IEEE vol. 7, pp. 13 - 
17, Jan. 1990. 

[10] J. Knodel, R. Koschke, and T. Mende, "Reuse in Reverse 
Engineering," Fraunhofer IESE Kaiserslautern, 2006. 

[11] G. Canfora and M. Di Penta, "New Frontiers of Reverse 
Engineering " Future of Software Engineering, 2007. FOSE 
'07 pp. 326 - 341, 23-25 May 2007. 

[12] S. Li and H. Liu, "COM-based symbol library extension for 
mine mapping," Geoscience and Remote Sensing 
Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE 
International vol. 6, pp. 4150 - 4152, 20-24 Sept. 2004 

38Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems


