
Centralized Adaptive Source-Routing for Networks-on-Chip as HW/SW-Solution

with Cluster-based Workload Isolation

Philipp Gorski
1
, Claas Cornelius

1
, Dirk Timmermann

1
, Volker Kühn

2

Institute of Applied Microelectronics and Computer Engineering
1

Institute of Communication Engineering
2

University of Rostock

Rostock, Germany

{philipp.gorski2, claas.cornelius, dirk.timmermann, volker.kuehn}@uni-rostock.de

Abstract—The growing number of applications and processing

units in modern MPSoCs comes along with dynamic and

diverse workload characteristics at runtime. Thus, the

communication infrastructure, e.g., Networks-on-Chip (NoC),

operation on time dependent dynamic traffic loads makes

adaptive congestion and load management indispensable. This

paper introduces a centralized adaptive path management for

oblivious source routing. Thereby, a cluster-based, runtime-

configurable software solution continuously monitors the

global traffic situation and calculates the needed routing

adaptations for each active source-destination pair of the

current workload inside a cluster. Contrary to other published

solutions, a HW/SW-Co-Design for configurable clustering,

traffic monitoring and path calculation is applied.

Furthermore, the isolation of workload fractions by the spatial

clustering allows application specific configurations.

Keywords-Network-on-Chip, MPSoC, Adaptive Routing,

Traffic Monitoring, Clustering, HW/SW-Co-Design.

I. INTRODUCTION

Networks-on-Chip (NoC) emerged as the next generation
of communication infrastructures for the growing number of
computational on-chip resources in Multi-Processor-System-
on-Chip (MPSoC) [1][2][3][4][5][6][7]. These complex
systems will integrate functionality of various application
domains at different regions on a single die. Each domain
comes along with specific characteristics regarding the
supported degree of parallelism (task-level and/or data-
level), typical traffic pattern and loads, use cases, workload
timing and constraints. Furthermore, some of these
characteristics will change during system-lifetime, because
underlying algorithms evolve or user scenarios will be
adapted. The efficient operation of such heterogeneous
systems depends on the integrated mechanisms for runtime
management and their adaptability to the specific
requirements of the covered application domains. Typical
runtime tasks include application mapping and scheduling,
debugging and test, power/energy/thermal management,
traffic load management (e.g. adaptive routing in NoC) and
fault-tolerance. Thereby, the selected routing policy in NoC
is one of the major design aspects, as it defines the degree of
parallelism and redundancy of the NoC that will be utilized
for the communication of the workload applications. Most
commonly oblivious, minimal and dimension ordered (DOR)
algorithms, like the XY-Routing, are used. This class of
routing algorithms results in low hardware costs,

deterministic behavior, and, shows good performance results
for static workloads. But concerning unpredictable dynamic
workloads including the presence time dependent and
domain-specific traffic, they suffer from the absence of path
adaptability for load balancing and system stabilization.
Thus, adaptive routing strategies became research focus,
which adjust the routing paths at runtime based on current
traffic information. Thereby, the proposed algorithms mainly
differ in the criteria, where the routing path will be adjusted,
if the paths are minimal or not, and the scope of traffic
information used for the decisions. The majority of existing
works about adaptive routing for NoC treat the routing
adjustment as encapsulated self-adaptation mechanism at
runtime, which is integrated at all router nodes and/or the
network interfaces of IP cores. The mechanisms are
distributed and each node itself performs adaptations using
local or regional traffic/failure information without global
coordination. Contrary, centralized solutions will operate on
global system information, but may suffer from long
latencies for traffic monitoring and routing updates. The
research of this work was mainly inspired by the ATDOR
solution presented in [8]. To the best knowledge of the
authors, ATDOR is the first fully evaluated approach of
centralized adaptive source routing for MPSoC. It offers a
good solution to avoid high latencies of centralized path
adaptations, but has different limitations. The presented
solution of this work goes beyond these limitations and
offers more flexibility, reuse, and fault tolerance. The main
contribution of the presented approach targets the following
changes and improvements: (1) Redundant NoCs: The
ATDOR approach integrates a dedicated traffic aggregation
network to provide global load information for the exclusive
out-of-band hardware processor that calculates the path
updates. This work generalizes approach to an exclusive
infrastructure for system management information. Two
redundant NoC work in parallel (Data-NoC and System-
NoC) and will fully separate application data and system
management data transport. Thereby, the design
requirements will be separated too and each NoC can be
optimized for its own traffic domain. (2) Runtime-
Configurable Clustering and Monitoring: The centralized
traffic monitoring and path adaptation is applied to spatial
separated clusters and not as global approach. The dynamic
clustering is managed at runtime by software agents and each
cluster gets a defined fraction of the runtime workload
assigned. Furthermore, the monitoring at the cluster-level is

207Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

configurable regarding the data capturing periods. Thus,
monitoring as well as path adaptation can be configured for
specific workload fractions. (3) HW/SW-CoDesign: To
minimize the hardware overhead and raise the
flexibility/configurability, a modular HW/SW-Co-Design is
applied. The hardware only consists of needed mechanisms
to realize the source routing and the monitoring of traffic
information. The evaluation of monitoring information and
calculation of routing paths is realized in software as
centralized software agent inside a cluster. The combinations
of clustering and migratable software further avoid the
integration of a single point of failure. (4) Full Runtime
Integration: The ATDOR solution is a two-phased approach
that calculates the path updates in parallel to normal
operations and afterwards distributes the path updates.
Thereby, static workloads are assumed and calculation
phases of 0.5 up to 1 ms. The proposed solution works
continuously and intermediately distributes calculated path
updates to provide more dynamic workload conditions.

The remainder of this work is organized as follows.
Section 2 covers the related work. The third Section
describes the conceptual part of the proposed solution and its
global design aspects. A detailed evaluation regarding
hardware costs, software timing, and simulated runtime
characteristics will be given in Section 4. Afterwards, this
work will be finalized with a conclusion and outlook for
future investigations in Section 5.

II. RELATED WORK

Adaptive routing mechanisms in Networks-on-Chip
mainly differ in the criteria, where the routing path will be
adjusted, if the paths are minimal or not, and the scope of
traffic information used for the decisions
[1][2][3][4][5][6][7]. The majority of works focus a
distributed adaptation at the router nodes under consideration
of aggregated traffic information, targeting the direct
proximity or regional scopes [3]. Thus, the router calculates
the direction of the next hop of an incoming packet. The
degree of adaptivity further varies between minimal and non-
minimal route selection.

Ebrahimi et. al. presents two different distributed
adaptive routing schemes (LEAR and CATRA) with
exclusive solutions for the aggregation of traffic congestion
information. In LEAR [9] the neighboring router nodes share
their congestion states via one additional wire per link
direction in the range of one hop. The adaptive routing is
non-minimal. A more complex and irregular congestion
information aggregation network for trapezoidal multi-hop
regions is used by CATRA in [10], where the number of
additional wires per link corresponds to the width/height of
the 2D-Mesh topology. The applied routing is minimal. A
solution between the complexity of LEAR and CATRA is
presented by Rantala et. al. [11] using 2 additional wires per
link direction for buffer level information sharing with
direct-neighbor nodes to find non-congested minimal paths.
Similar regional congestion information aggregation like
CATRA can be found in the minimal adaptive routing
strategies of RCA [12] and DBAR [13]. RCA offers different

regional scopes and uses 8 up to 16 additional wires per link,
while DBAR needs 8 wires per link for the sharing of
congestion information. A complete multi-objective
distributed system management with combined aspects of
connection-oriented traffic monitoring, adaptive routing, and
application mapping with clustering, is tackled by the
publications of Faruque et.al. in [14]. The supposed AdNoC
solution integrates hierarchical software agents (global,
cluster) for dynamic application mapping and reconfigurable
clustering, distributed NoC traffic and application event
monitoring via hardware probes at each resource/router, and
distributed deterministic adaptive routing with buffer size
reconfiguration. The complete system management is event-
driven and focusses the runtime optimization of bandwidth
utilization. A centralized adaptive routing called ATDOR is
presented in [8]. The centralized path management works as
additional hardware resource with a fixed coupling to the
NoC through an out-of-band traffic monitoring aggregation
network using 4 additional wires per link. Path updates will
be calculated as a hole and in parallel to NoC operation
under consideration of the global traffic situation and include
the end-to-end (E2E) switching between XY and YX routes
at the network interfaces of the IP cores. Path updates will be
distributed over the normal NoC or an exclusive
infrastructure. In [15], Cho et. al. suggests a Path-Based,
Randomized, Oblivious, Minimal Routing (PROM) strategy.
This solution contains a distributed local path adaptation at
every router node with randomized decisions, based on
probabilities. Especially, the simple O1TURN [15] technique
of randomly toggling between XY and YX paths at the
network interface shows optimal load balancing results. Kim
et. al. provides a two-staged solution of source-initiated
distributed path discovery and maintenance to increase the
fault tolerance of NoC-based MPSoCs [16]. In [17], Asad et.
al. presents a quite similar predominant routing approach
using flooding based path exploration mechanisms. Routes
between source-destination-pairings will be discovered and
maintained using hop-restricted flooding techniques. Traffic
optimization is out of scope and no hardware costs are
presented. All of these adaptive routing mechanisms will
evaluate the shared traffic information locally at each routing
node using special hardware. Furthermore, the integration of
virtual channels (VC) is needed to provide deadlock-
freedom.

A comparable solution to LEAR, that applies minimal
routing without VCs but using proximity traffic information
is DyXY, presented in [18]. A similar solution, called
DyAD, can be found in [19]. A different approach targets the
selection of different routing algorithms for specific
application workloads or flows at design time. At runtime
the routings tables will be changed globally or regional
optimized for the current of workload. In [20], Moreno et. al.
proposes a routing scheme called planned source routing
(PSR), which is a design time solution for traffic
optimization. In [14][15] Palesi et. al. provides the APSRA
technique including precompiled runtime adaptation of
routing algorithms for workload specific demands.

208Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

III. ADAPTIVE ROUTING CONECPT

The targeted NoC topology is a wormhole-switching 2D-

Mesh, where two separated NoCs, called System-NoC and

Data-NoC, work in parallel (see Figure 1). The links

between neighboring routers are bidirectional point-to-point

connections, which transmit a certain portion of a

communication packet in parallel (called flit). The first flit

of a packet (header) contains the routing information, while

following flits carry the payload. Each packet will finalize

with a tail flit that transports payload data too. A packet will

enter the NoC at the source node flit-by-flit (wormhole-

switching), passes the intermediary router nodes (hops) of a

path and finally reaches its destination, where the contained

payload data will be processed. As flow control a hop-based

request/acknowledge-scheme (req/ack) is applied. The Data-

NoC covers the transport of application data, while the

System-NoC is used for system management. The System-

NoC has the same topology as the Data-NoC to provide the

same resource-connectivity, but both infrastructures can be

individually adapted to the domain-specific requirements.

The Data-NoC integrates a XY/YX-Routing that will be

adapted at the network interface (PATH-LUT at DNI),

higher link data width (64-Bit or higher) and more complex

resource functionality, while the System-NoC works with

reduced link data width (7-Bit for a 8x8 NoC), minimal

input buffering (one flit) and XY-Routing. To provide

deadlock-freedom for the path adaptations at the Data-NoC

at least two virtual channels (VCXY and VCYX) for both

selectable path configurations must be integrated [8]. As

illustrated in Figure 1 and Figure 2 each NoC-Resource

(CORE) is connected independently to both NoCs via Data-

Network- and System-Network-Interface (DNI and SNI).

The smallest management unit is a CELL and includes the

CORE, DNI, SNI and the connected router nodes (R) of

both NoCs. These CELLs are further sub-classified into

Slave and Master. A Master-CELL is suited with special

hardware resources and software agents to manage a

CLUSTER regarding the traffic monitoring and path

updates. Slave-CELLs are dynamically grouped into a

CLUSTER by a corresponding Master-CELL (see 4x2 C1

and C2 at Figure 1). These CLUSTERs are the fundamental

components. Inside a CLUSTER the software agent is able

to migrate between the existing Master-CELLs. The number

of potential Master-CELLs is defined at design time.

PATH-LUT
Traffic

Sensors

SNI-Manager-Extensions

DST PI

LOCK

T-MODE

OFG-DATA

OFG-RESET

LOCK DST

Packetization Unit @ DNI
PI

DST-ID

 Router Input Port
REQ

FLIT DATA

ACK

PATH-ENABLE

LINK-ENABLES LINK_BUSY Signals

Depacketization Unit @ DNI Router Output Port

Core Input Buffer @ DNI

Core Output Buffer @ DNI

CORE

Core Output Buffer @ SNI

Core Input Buffer @ SNI

Packetization Unit @ SNI Router Input Port

Depacketization Unit @ SNI Router Output Port

MC-ADRs

UPDATE T-MODES

Event Aggregation Point

REQ

FLIT DATA

ACK

C
O

R
E-

IN
T

ER
FA

C
E

REQ

FLIT DATA

ACK

REQ

FLIT DATA

ACK

System-NoC Router

Figure 2. Overview of the Network Interfaces and IP core integration

The communication at the Data-NoC integrates an end-

to-end based path adaptation concept, which is coordinated

by the software agent of the CLUSTER. If the CORE sends

a data through the Data-NoC it pushes a packet to the output

buffer of the DNI. The packet header contains the position

information of the source (SRC) and the destination (DST)

as 2D-Mesh position. The information if the packet should

take the XY or the YX path to the DST is stored at the

PATH-LUT and needs one bit per destination in the NoC.

Thus, for the n×n NoC the PATH-LUT contains (n²-1)

registers. At the packetization unit of the DNI the direction

bit will be read out from the PATH-LUT and added to the

packet header. Afterwards, the packet will be pushed to the

corresponding VC and this won’t change until the packet

has traversed all router and links on its path to the DST.

Thus, the VC assignment is static. At the router-level both

R

R

R

R

CORE
[3,3]
SNI

CORE
[3,2]
SNI

CORE
[3,1]
SNI

CORE
[3,0]
SNIR

R

R

R

CORE
[2,3]
SNI

CORE
[2,2]
SNI

CORE
[2,1]
SNI

CORE
[2,0]
SNIR

R

R

R

CORE
[1,3]
SNI

CORE
[1,2]
SNI

CORE
[1,1]
SNI

CORE
[1,0]
SNIR

R

R

Y

X

Data-NoC System-NoC

Link Link

Link Link

Link Link

Li
n

k

Li
n

k

Li
n

k

Li
n

k

Li
n

k

Li
n

k

R R

R R

R

CORE
[0,3]

Link Link

Li
n

k

Li
n

k

Li
n

k

R R
DNI

R R Link

Link

Link

Li
n

k
Li

n
k

R

R

Link

Li
n

k

R

R

R

R

R

R

SNI

CORE
[0,2]

DNI

SNI

CORE
[0,1]

DNI

SNI

CORE
[0,0]

DNI

SNI

DNI

DNI

DNI

DNI

DNI

DNI

DNI

DNI

DNI

DNI

DNI

DNI

R : Router Node
DNI : Data-NoC Network Interface
SNI : System-NoC Network Interface

M
A

S
T

E
R

 C
2

M
A

S
T

E
R

 C
1

Master Cores

CELL

Traffic Cluster

NORTH

EAST

SOUTH

WEST

CORE

CXXY

NORTH

EAST

SOUTH

WEST

CORE

CXYX

flitCORE_IN

port_input_selectxy

CORE_LINK_BUSY
WEST_LINK_BUSY
SOUTH_LINK_BUSY
EAST_LINK_BUSY
NORTH_LINK_BUSY

LINK_BUSY Signals

reqYX

ackYX

NORTH

EAST

SOUTH

WEST

CORE

NORTH

EAST

SOUTH

WEST

CORE

reqXY

ackXY

vcSELECT

RLXY

IBUFXY

IBUFYX

RLYX

outxy

flitxy

HLYX

HLXY

V
C

 I
N

P
U

T
-M

U
X

reqxy

ackxy

outyx

flityx

reqyx

ackyx

ARBXY

HLYX

HLXY

V
C

 O
U

T
P

U
T

-M
U

X

flityx

reqxy
ackxy

ARBYX

TXY/YXflitxy

reqyx

ackyx

flitCORE_OUT

reqYX

ackYX

reqXY

ackXY

vcSELECT

port_input_selectyx

W
E

S
T

 P
O

R
T E

A
S

T
 P

O
R

T

NORTH PORT

CORE

2D-MESH
Data-NoC

Router

CORE/DNI PORT
SOUTH PORT

LINK I/O

LINK I/O

LI
N

K
 I

/O

LIN
K

 I/O

IN OUT

OUT IN

IN
O

U
TIN

O
U

T

W
E

S
T

 P
O

R
T E

A
S

T
 P

O
R

T

NORTH PORT

2D-MESH
System-NoC

Router

SOUTH PORT

LINK I/O

IN OUT

OUT IN

IN
O

U
TIN

O
U

T LIN
K

 I/O

LI
N

K
 I

/O

LINK I/O

 CORE/SNI PORT

NoC-Perspective

CELL-Perspective

Router-Perspective

LINKIN PORTIN PORTOUT LINKOUTCROSSBAR

IBUF : Port Input Buffer
HL : Handshake Logic
RL : Routing Logic

ARB : Port Output Arbitration Logic
T : Virtual Channel Toggler
CX : Multiplexer Crossbar

Figure 1. Overview of the targeted Network-on-Chip solution at different implementation levels

209Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

VC have an equal prioritization with a flit-based time-

division-multiplexing (TDM). This will be managed by a

special TDM unit (see TXY/YX in Figure 1). If two

concurring packet of different VC will be routed to the same

output port, the TDM unit toggles the selection signal at the

output multiplexer every 2 clock cycles, because each flit

needs this period to pass the link to the input port of the next

router due to the hop-based req/ack flow control. Thus, each

VC gets assigned the half of the link bandwidth and the

transported packets will not run into a blocking situation. If

only one VC will access the output port it will get the full

bandwidth assigned by the TDM unit.

The adaptive source-routing works centralized and is

applied to the spatial scope of the CLUSTER. Thus, each

software agent of a CLUSTER monitors the traffic situation

and performs the path updates. The following sub-sections

describe the specific details of the adaptive source-routing

functionality and its organization.

A. Clustering

The implemented clustering is reconfigurable at runtime

and context-based. The creation and management of

CLUSTERs is realized via software agents at the Master-

CELLs and utilizes a messaging/organization concept via

the System-NoC as follows:

CLUSTER-REQUEST (CREQ): For the initial creation

of a CLUSTER the Master-CELL sends allocation packets

to all CELLs that need to be part of the CLUSTER. These

packets consist of the destination routing information

(CELL-ADR), the NoC-Address of Master-CELL as source

information (MC-ADR), the context identifier of the

CLUSTER (CTX-ID) and further context data for Slave-

CELL configuration (CTX-DATA).

CREQ = {CELL-ADR | MC-ADR | CTX-ID | CTX-DATA}

CLUSTER-ACKNOWLEDGE (CACK): The Slave-

CELLs receive the request/update of the Master and returns

a binding packet as acknowledgement. The packet contains

the MC-ADR as routing header, the CELL-ADR as source

information and the special CTX-ID to classify the packet.

CACK = {MC-ADR | CELL-ADR | CTX-ID}

CLUSTER-UPDATE (CUP): During CLUSTER

operation the configuration data (monitoring periods,

routing path updates) need to be adapted, the software agent

migrates to another Master-CELL or the CLUSTER will be

deleted. Thus, the Slave-CELLs are informed via update

packets, which have the same format like the CREQ.

CUP = {CELL-ADR | MC-ADR | CTX-ID | CTX-DATA}

The context of a CLUSTER describes the system
management domain (e.g. traffic or thermal
monitoring/control) it is used for. At this specific case for the
adaptive source-routing uses one dedicated CTX-ID. Each
Slave-CELL can be assigned to multiple CLUSTERs of

different CTX-IDs at the same time, but not to different
CLUSTERs of the same CTX-ID. Thus, if multiple
CLUSTERs of the same CTX-ID coexist, they will be spatial
separated and do not share any CELLs (see C1 and C2 at
Figure 1). Moreover, this separation concerns the exclusive
clustering for different workload fractions/applications and
avoids interferences. Thus, for the traffic monitoring and
adaptive source-routing inside the CLUSTER, full spatial
workload fraction isolation can be realized. Each clustering
context has its own configuration data. While the CLUSTER
will be created and managed by the cluster agent, the
planning, resource assignment and placement of CLUSTERs
will be processed by upper-level global software agents,
which are responsible for specific domains. The workload
fractions and clustering is precalculated at the global agent
that covers the runtime-based application mapping.

B. Traffic Monitoring

The traffic monitoring integrates a periodic and centralized

mechanism that is hierarchical organized at three different

levels (PATH/LINK, CELL, and CLUSTER).

11 10 9 8 7 6 5 4 3 2 1 0

COMPARATORR

7

8

9

10

11

T-MODE 4 [128]

T-MODE 3 [256]

T-MODE 2 [512]

 T-MODE 1 [1024]

 T-MODE 0 [2048]

COUNTER

CLK
RESET

OFG
OFG-RESET

ENABLE

T-MODE

6 T-MODE 5 [64]

Figure 3. Basic Traffic Sensor concept

PATH/LINK-LEVEL: The basic traffic sensor is a simple

combination of an external triggered binary counter and a

configurable comparator (see Figure 3). The counter

increments each clock cycle the ENABLE signal is active.

In parallel, the comparator checks the current counter value

against a reference value that is set by the T-MODE. The

supported T-MODEs of the traffic monitoring can be

obtained from Figure 3. If the counter value reaches the

configured T-MODE reference, it sets an overflow flag

(OFG) that is captured by the register R and external

resettable. This unified sensor solution is used in two

different ways: (1) LINK LOAD: Each output port of a

Data-NoC routing node (NORTH, EAST, SOUTH, WEST,

and CORE) is connected to a traffic sensor to measure the

current link load (LL). The ENABLE signal is connected to

the status signal of the port output multiplexing unit (see

LINK_BUSY Signals). The total number of traffic sensors

will be 5 per CELL. (2) INJECTION RATE: Selected path

table entries (DST-ID) of the DNI at each CELL gets a

traffic sensor assigned to cover the injection rates (IR) at the

path level inside the CLUSTER. Furthermore, one traffic

sensor captures the overall injected traffic of the CELL. The

ENABLE input is connected to the acknowledgment signal

(ACK) of the DNI output (PATH-ENABLE). The number

of needed traffic sensors depends on the maximum sizing of

a CLUSTER the monitoring should work path-accurate for.

210Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

At the current progress, it works with 16 path sensors (e.g.,

4x4 or 8x2 CLUSTER).

All traffic sensors of a CELL run at the same T-MODE,

which is set at the SNI-Manager-Extension by the Master of

the corresponding CLUSTER (Figure 2). Furthermore, they

are grouped and located at the SNI of the CELL.

CELL-LEVEL: The OFG registers of all traffic sensors
inside a CELL are connected to the SNI-Manager-Extension
responsible for the Traffic Monitoring (see Figure 2). This
functional unit generates the traffic monitoring packets for
the System-NoC and works periodically. Thereby, the period
is set by the T-MODE value (same as for traffic sensors) of
the CELL. For a Data-NoC running on 1 GHz, the traffic
situation for each CELL is sampled in intervals configurable
from 64 up to 2048 ns. After the expiration of a period, a
finite state machine tests if at least one OFG is set. If true
then all register will be read out and reset at the traffic
sensors. If no OFG is active there is no need to generate a
traffic monitoring event packet for the expired period.
Otherwise the FSM generates a new packet with a defined
static order of the OFG-bits (CTX-DATA). The packet
destination is the Master-CELL of the corresponding traffic
monitoring CLUSTER. Afterwards, the packet is pushed to
the output buffer at the SNI of the CELL.

CLUSTER-LEVEL: At this point, the traffic monitoring
packets periodically leaves the CELLs and need to be
aggregated by the Master-CELL, after they have passed the
System-NoC towards it. Therefore, special Event
Aggregation Points (EAPs) are present as exclusive
hardware at all Master-CELLs. These EAPS are needed to
scale the generated OFG data to the final parameter of
injection rate (IR) and link load (LL). IR as well as LL will
be mapped to scales from 0 up to 100 percent with kS
percentage stepping. Thus, the aggregation for the events of
100/kS traffic monitoring periods is needed. Each period
event of a traffic sensor with a reported OFG of ‘1’
represents kS scale percent of IR or LL. This is done using
grouped binary 7-bit counters, where each group is assigned
to a monitored CELL of the CLUSTER and each counter
inside a group is assigned to the OFG of a specific traffic
sensor of this CELL. The counters are triggered by the
incoming OFG-DATA and are incremented by one if the
corresponding OFG-Bit is ‘1’. The OFG-DATA is fed as fix-
ordered parallel bit-vector into the counter group, where the
index of each bit corresponds to the traffic sensor identifier.
The groups are addressed by the GROUP ID, which is equal
to the CELL-ID. The EAP has a buffer at the input and can
process the complete OFG-DATA of a traffic monitoring
packet in one clock cycle. At the current status of research, a
maximal CLUSTER size of 16 CELLS with 21 traffic
sensors (5 links/15 paths/1 overall) per CELL was applied.
This results in 16 groups with 21 binary 7-Bit counters at
each. Moreover, the EAP represents the HW/SW-Interface of
the traffic monitoring and the final traffic data can be
accessed through the CORE-INTERFACE (CI) that is
directly coupled to the internal bus of the Master. The
counter values are captured by registers at the CI and the

cluster agent will access and store them after a monitoring
cycle has finished or during a current cycle. The duration of
a cycle can be calculated by eq. (1) and depends on the
configured T-MODE period (rT-MODE), the clock frequency of
the System-NoC (fSystem-NoC) and the scale resolution kS (e.g.,
kS =1% or 2%).

SNoCSystem

MODET

cycle

kf

r
t

 (1)

In example, for a T-MODE of 256 clock cycles at 1GHz

the complete path accurate traffic situation of the

CLUSTER can be capture in cycles of 25,6 µs (kS =1%) or

12,8 µs (kS =2%). Afterwards, the counter needs to be reset

for the next period. Furthermore, the variation of the traffic

situation can be recorded by intermediate snapshots during a

period without reset. The EAP and the CI are key

components to achieve a light-weighted software agent,

because the agent is operating on final parameter values and

does not need to perform further aggregation steps. At this

point the software agent at the Master-CELL has full

information about the traffic situation inside the CLUSTER

and is able to perform its path update evaluations.

C. Source-Routing

The routing path adaptation exclusively runs in software

at the Master-CELL and focuses an incremental

improvement for the traffic load of the current assigned

workload fraction of the CLUSTER. After a finalized traffic

monitoring cycle, the path adaptation starts and runs through

all CELLs of the CLUSTER in a fixed order. For each

CELL all observed paths will be evaluated in a fixed order

and the following optimization procedure will be processed

in the given sequence:

1. TEST: Initially the path will be tested for shared

position coordinates, because if the path targets CELLs at

the same row/column of the 2D-Mesh no minimal path

alternatives are available and the path will be removed from

the optimization list.

2. PREPARATION: The monitored injection rate (IR) of

the current path is used to prepare the monitoring data for

the new path evaluation run. The IR will be removed from

the link load (LL) values of each link traversed by the path

in its current assigned configuration (XY or YX).

3. EVALUATION: At this step the fitness for the XY and

the YX configuration of the path will be calculated, which is

simply the sum of LL values for all links traversed by a

path. Afterwards, the lowest sum will be selected and its

corresponding path configuration (XY or YX) will be

assigned (minimal path load strategy.

4. UPDATE: After the evaluation of the path, the

monitoring data will be updated with the injection rate of

the path at the traversed link positions in the resulting

configuration (XY or YX). This ensures the operation on the

new traffic constellation for subsequent optimization runs of

211Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

other paths. Furthermore, if the path has changed an update

packet will be sent to the CELL via the System-NoC to

register the new path configuration at the lookup-table of the

DNI (PATH-LUT). The update will be performed by the

SNI and contains the bit flip at the PATH-LUT for the DST

for the evaluated path.

Contrary to ATDOR [8], this solution only works

continuously and triggers updates of single paths

intermediately after processing. Furthermore, the timing

depends on the monitoring interval, which can be

configured individually for each CLUSTER and thus allows

full adaptation for the traffic of the assigned workload

fraction. The fixed ordered processing should lead to an

incremental optimization of the traffic load balancing in

case of static traffic patterns. For dynamic variations the

traffic balancing will be slightly improved. The

configurability of path updates for specific traffic pattern of

the assigned workload fraction may be further improved by

more selective ordering during path processing. This will be

part of future investigations.

IV. EXPERIMENTAL EVALUATION

The evaluation of the presented solution was realized via

software profiling and system simulations for operational

performance as well as hardware synthesis for the cost

approximation. Thereby, the basic Data-NoC design

parameter configuration can be obtained from TABLE I.

TABLE I. DATA-NOC CONFIGURATION FOR SIMULATION AND SYNTHESIS
Parameter Value

NoC Clock Rate 1 ns

Master-CELL CPU Clock Rate 0.5 ns

NoC Topology 2D-Mesh

Synthesized NoC-Size 8x8

Simulated Cluster Size 16 CELLS at 4x4 spatial shape

Data-NoC Input Buffer Depth 4 Flit

System-NoC Input Buffer Depth 1 Flit

Data-NoC Link data width 64 Bit

System-NoC Link data width 7 Bit

Average Link wire length [23] 0.83 mm

Wire width/spacing [23] 140/140 nm

of I/O-Links in 8x8 NoC 224

of Master-CELLs in NoC 32 (=50%)

Traffic Sensors per CELL 21

7-Bit Counter per EAP 336 (=16*21)

Simulated Data-NoC Packet Sizes 2 up to 9 Flit (uniform)

Traffic Pattern

random uniform distributed,

transpose, hotspot (H=20%) and

bit complement
Hotspot Position = CORE [0,0]

A. Software Profiling

The main parameter for the evaluation of the ANSI-C

based software agent is the computational latency/delay for

the routing path calculation. Hence, the software profiling

for the UPDATE/PREPARATION steps and the

EVALUATION was carried out. As reference platform, a

PowerPC 440 32-bit RISC CPU was used, which is

implemented as hardcore on a Xilinx Virtex5 device. It is

suited with 32-kB Data and Instruction Cache. The

minimalistic Xilkernel from Xilinx served as basic

integration environment for the centralized source

adaptation software, which is implemented as standalone

thread. To provide accurate timing information, the duration

of path computations was measured in clock ticks via

special timer commands.

TABLE II. SOFTWARE PROFILING RESULTS, GIVEN AS AVERAGE DELAY IN

NUMBER OF CPU CLOCK CYCLES, FOR DIFFERENT NOC SIZES, AND

MAXIMAL ALLOWED HOPS (MAXHOP) FOR ROUTING PATHS CALCULATIONS
NoC Size Maxhop PREPARE/UPDATE XY/YX

4 x 4 - 36 132

4 x 4 4 34 118

4 x 4 3 32 104

8 x 8 - 46 174

8 x 8 8 42 157

8 x 8 4 34 119

8 x 8 3 32 105

For different 2D-Mesh NoC sizes (4x4 and 8x8), one
million source-destination-pairings were generated and the
routing path calculation processed. Further, uniform
distributions with defined maximal hop distances (Maxhop)
between these pairings were profiled. Afterwards, the
average calculation delay, as number of passed CPU clock
cycles, over all pairings was recorded. The results are
included in Table II. The delay values for the full path
calculation at different parameter variations (XY/YX)
already contain the latencies for the PREPARE/UPDATE
procedures. Observing the case of a 2GHz CPU running the
thread with a budget of 20 %, the full XY/YX path
calculation at the 4x4 CLUSTER without hop constraints is
able to provide ~3000 single path updates per millisecond.
The obtained profiling results were used for the timing
accurate simulation of a complete workload simulation
inside a CLUSTER.

B. Hardware Synthesis

The ASIC design flow was realized with the Synopsys
TM

DesignCompiler
TM

 using the 45 nm Nangate FreePDK45

Generic Open Cell Library. The presented results in TABLE

III show the total cell area costs for each of the functional

components (SNI-Manager Extension, Traffic Sensors,

EAP) and the router nodes of both NoC. Further, the NoC

area costs of the complete NoC solution are given

TABLE III. TOTAL CELL AREA (TCA) HARDWARE COSTS FOR SINGLE

DESIGN COMPONENTS INSIDE A CELL AND AN 8X8 NOC AT ALL

Total Cell Area

Design Component CELL [µm²] 8x8 NoC [mm²]
SYSTEM-NOC ROUTER 2783.69 0.178156

SYSTEM-NOC LINK 1510,6* 0.3383744

DATA-NOC ROUTER 40174.51 2.571169

DATA-NOC LINK 14641.2* 3.279628

SNI TRAFFIC LOAD EXT. 1511.94 0.096764

TRAFFIC SENSORS 2720.34 0.174102

AGGREGATION POINT 22230.68 0.711382

SUM OF ALL UNITS 85572.96 7.3495754
*area of a single I/O NoC-Link

The targeted operational frequency was set to 1 GHz and

met for all evaluated design cases. Regarding the hardware

costs in the context of the final MPSoC that contain the

212Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

targeted amount of CELLs on a 45nm silicon die (areas:

280-400 mm² [24][25]) the relative overhead due to both

complete NoC will be less than circa 2.6% down to 1.8%.

Thereby, the total link area costs was estimated using the

configuration of [23] as presented in TABLE I.

C. Simulation Results

The full system simulations target the maximum

CLUSTER size (16 CELLs) at a spatial 4x4 shape with

different workload configurations and monitoring cycles.

This allows the fully path-accurate monitoring of the traffic

situation inside a CLUSTER. Therefore, an own cycle

accurate SystemC/TLM-based simulator was used. The

dynamic workload consists of 10 tasks per CORE/CELL

with a uniform random scheduling. Each task gets a fixed

packet destination assigned depending on the four simulated

synthetic traffic pattern as mentioned in TABLE I. For the

hotspot pattern, H=20% of the tasks per core are

communicating with the assigned CORE [0,0] in the lower

left corner. Furthermore, two different traffic load strategies

at the task-level were applied. At the homogeneous strategy

each tasks has the same traffic injection rate, while the

heterogeneous case works with an injection rate (IR)

interval [IR±σ] and each task gets assigned a uniform

random distributed injection rate out of this defined range.

This allows the general evaluation of different traffic

situations with more balanced or mixed loads at the path

level. The monitoring was configured to work with different

T-MODEs of 128, 256 and 512 at a scale resolution kS=1%.

This results in monitoring/path evaluation cycles of 12.8 µs,

25.6 µs and 51.2 µs. As references, the simple dimension-

ordered XY-Routing and the probability-based adaptive

O1TURN-Routing [15] were simulated. O1TURN toggles

the VC (XY or YX) for each injection packet of a task and

thus enforces a fully balanced VC utilization. The

evaluation in [15] showed, that O1TURN offers the best

average case throughput and latency. The newly introduced

adaptive source-routing is called ASR <T-MODE>. The

summarized results of all simulated parameter variations are

depicted in Figure 4. The diagrams (a)-(g) contain the

average packet header latency over varying traffic injection

rates. The results were calculated as average from 100

simulations runs of workloads at each parameter

constellation. Thereby, each simulation runs covers the

(a) homogeneous hotspot

(b) homogeneous bit complement

(c) homogeneous transpose

(d) homogeneous random

(e) heterogeneous bit complement

(f) heterogeneous transpose

(g) heterogeneous random

(h) path update statistics (T-MODE = 256)

Figure 4. Summarized results of the 4x4 CLUSTER simulations for homogeneous task loads [(a), (b), (c), (d)], heterogeneous task loads [(e), (f), (g)], and

path update statistics (h)

213Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

system operation time of 1 millisecond. For the

homogeneous traffic load strategies in (a)-(d) the proposed

ASR clearly outperforms the XY-Routing, but for all

simulated traffic pattern it does not reach the performance of

O1TURN and the latency improvements over XY-Routing

ranges at circa 50% of the O1TURN results. Furthermore,

the impact of reduced monitoring/evaluation cycles is

smaller than expected. The simulation results for the

heterogeneous tasks load strategy (see Figure 4 (e) - (g))

show that the advantage of O1TURN over ASR decreases

with the increasing spread of task injection rates at highly

intensive overall traffic loads (Traffic Load > 20 %) inside

the CLUSTER. The difference between ASR traffic

optimization performance of homogeneous and

heterogeneous spread task loads relies on the resulting

overall distribution of the traffic load inside the CLUSTER.

At homogeneous task injection rates the traffic situation

inside the CLUSTER will be more balanced and thus the

dedicated assignment of specific path configurations is

harder, because XY and YX path only slightly differs in the

resulting fitness values (sum of link loads for each path).

The higher the spread of task injection rates becomes the

delta of these values increase, because the overall traffic

situation becomes more heterogeneous. The diagram in

Figure 4 (h) plots the registered path updates (average and

maximum) at the homogeneous and heterogeneous case for

the random traffic pattern over the proceeding operation

time of the workload. Both cases show a similar

convergence behavior at the maximum and the average case.

The results for the other simulated traffic pattern are quite

similar, but the random pattern is the most interesting,

because it generates the most equal balanced overall traffic

load inside the CLUSTER. As expected, the number of path

updates reaches its peak at the beginning of operations.

After the exponential decrease it works continuously at low

update rates and the resulting computational demand for the

software agent is suitable. The performing CPU at the

Master-CELL of the software-agent was configured to

operate with a clock frequency of 2 GHz.

V. CONCLUSION AND FUTURE WORK

The presented HW/SW-ASR concept, including

clustering and path-accurate traffic monitoring, and its

evaluation show that the intended runtime-configurable

approach is feasible and superior to dimension-ordered XY-

Routing. But the comparison to the O1TURN solution

outlines its limitation as standalone solution. The additional

hardware overhead is comparable to the solutions of

[8][10][12][13], but has a more general focus on system

management communication and makes workload specific

traffic information available for global reuse. Thus, the

presented cluster-based centralized ASR is only one

integration aspect of the clustering and the System-NoC

approach. The presented results brings the focus of future

investigation on ASR to direction targeted by

[14][15][26][27][28][29][30]. Specifically, the following

aspects will be highly interesting:

Evaluate hybrid solutions that combine ASR and

O1TURN. Both routing algorithms work at the end-to-end

path level and can be merged without high additional

hardware efforts. Thus, a more pattern-specific assignment

to different CLUSTERs and inside these CLUSTER

workloads may results in an attractive combination.

Thereby, ASR will be pushed to support the planning of

guaranteed bandwidth connections for specific application

tasks or paths. Furthermore, the integration of failure

handling for reliable NoC communication is a desired

extension.

The globally available traffic information allows a better

evaluation of the current system states and makes an

interaction of runtime-based application mapping, routing

strategy selection and spatial clustering more valuable.

Furthermore, the integrated software-agents of ASR will

support a better integration of these aspects, which targets

runtime optimization at different abstraction levels and

operational aspects.

REFERENCES

[1] W. J. Dally and T. B, “Route packets, not wires: on-chip

interconnection networks,” in Design Automation Conference,
2001. Proceedings, 2001, pp. 684–689.

[2] A. Jantsch and H. Tenhunen, Networks on chip, 1st ed. Kluwer

Academic Publishers, 2003, p. 312.
[3] E. Salminen, A. Kulmala, and T. D. Hämäläinen, “Survey of

Network-on-chip Proposals,” WHITE PAPER, OCP-IP, MARCH,

no. March, pp. 1–12, 2008.
[4] E. Salminen, A. Kulmala, and T. D. Hamalainen, “On network-

on-chip comparison,” 10th Euromicro Conference on Digital

System Design Architectures, Methods and Tools (DSD 2007),
pp. 503–510, Aug. 2007.

[5] T. Bjerregaard and S. Mahadevan, “A survey of research and

practices of network-on-chip,” ACM Computing Surveys (CSUR),
vol. 38, no. 1, p. 1, 2006.

[6] A. Agarwal, C. Iskander, H. T. Multisystems, and R. Shankar,

“Survey of Network on Chip (NoC) Architectures and
Contributions,” scientificjournals.org, vol. 3, no. 1, 2009.

[7] B. A. Abderazek, “Basic Network-on-Chip Interconnection for

Future Gigascale MCSoCs Applications: Communication and
Computation Orthogonalization,” Information Systems, pp. 1–7,

2006.

[8] R. Manevich, I. Cidon, A. Kolodny, I. Walter, and S. Wimer, “A
Cost Effective Centralized Adaptive Routing for Networks-on-

Chip,” 2011 14th Euromicro Conference on Digital System

Design, vol. 9, no. 2, pp. 39–46, Aug. 2011.

[9] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H.

Tenhunen, “LEAR -- A Low-Weight and Highly Adaptive

Routing Method for Distributing Congestions in On-chip
Networks,” in 2012 20th Euromicro International Conference on

Parallel, Distributed and Network-based Processing, 2012, vol.

1, pp. 520–524.
[10] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and J. Plosila,

“CATRA-Congestion Aware Trapezoid-based Routing

Algorithm for On-Chip Networks,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE’12), 2012, pp.

320 – 325.

[11] V. Rantala, T. Lehtonen, P. Liljeberg, and J. Plosila, “Distributed
Traffic Monitoring Methods for Adaptive Network-on-Chip,” in

2008 NORCHIP, 2008, pp. 233–236.

214Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

[12] P. Gratz, B. Grot, and S. W. Keckler, “Regional congestion

awareness for load balance in networks-on-chip,” 2008 IEEE
14th International Symposium on High Performance Computer

Architecture, pp. 203–214, Feb. 2008.

[13] S. Ma, N. Enright Jerger, and Z. Wang, “DBAR: An Efficient
Routing Algorithm to Support Multiple Concurrent Applications

in Networks-on-Chip,” in Proceeding of the 38th annual

international symposium on Computer architecture - ISCA ’11,
2011, p. 413.

[14] M. A. Al Faruque, T. Ebi, and J. Henkel, “AdNoC: Runtime

Adaptive Network-on-Chip Architecture,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 20, no. 2, pp.

257–269, Feb. 2012.

[15] M. H. Cho, M. Lis, K. S. Shim, M. Kinsy, and S. Devadas, “Path-
based, randomized, oblivious, minimal routing,” in Proceedings

of the 2nd International Workshop on Network on Chip

Architectures - NoCArc ’09, 2009, p. 23.
[16] Y. B. Kim and Y. Kim, “Fault Tolerant Source Routing for

Network-on-chip,” in 22nd IEEE International Symposium on

Defect and Fault-Tolerance in VLSI Systems (DFT 2007), 2007,
pp. 12–20.

[17] A. Asad, M. Seyrafi, A. E. Zonouz, M. Soryani, and M. Fathy,

“A Predominant Routing for on-chip networks,” in 2009 4th
International Design and Test Workshop (IDT), 2009, pp. 1–6.

[18] M. Li, Q. Zeng, and W. Jone, “DyXY - a proximity congestion-

aware deadlock-free dynamic routing method for network on
chip,” 2006 43rd ACM/IEEE Design Automation Conference, pp.

849–852, 2006.
[19] J. Hu and R. Marculescu, “DyAD: smart routing for networks-

on-chip,” in Proceedings of the 41st annual Design Automation

Conference, 2004, vol. 04, p. 263.
[20] E. I. Moreno, C. A. M. Marcon, N. V. Calazans, and F. G.

Moraes, “Arbitration and routing impact on NoC design,” in

2011 22nd IEEE International Symposium on Rapid System
Prototyping, 2011, vol. 3, pp. 193–198.

[21] M. Palesi, R. Holsmark, S. Kumar, and V. Catania, “Application

Specific Routing Algorithms for Networks on Chip,” IEEE
Transactions on Parallel and Distributed Systems, vol. 20, no. 3,

pp. 316–330, Mar. 2009.

[22] M. Palesi, S. Kumar, and V. Catania, “Bandwidth-aware routing
algorithms for networks-on-chip platforms,” IET Computers &

Digital Techniques, vol. 3, no. 5, p. 413, 2009.

[23] C. Hernandez, F. Silla, and J. Duato, “A methodology for the
characterization of process variation in NoC links,” in Design,

Automation & Test in Europe Conference & Exhibition

(DATE’10), 2010, pp. 685–690.
[24] P. Salihundam, S. Jain, and T. Jacob, “A 2 Tb/s 6× 4 mesh

network for a single-chip cloud computer with DVFS in 45 nm

CMOS,” IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp.
757–766, 2011.

[25] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-

GHz Mesh Interconnect for a Teraflops Processor,” IEEE Micro,
vol. 27, no. 5, pp. 51–61, Sep. 2007.

[26] S. Azampanah, A. Khademzadeh, N. Bagherzadeh, M.

Janidarmian, and R. Shojaee, “LATEX: New Selection Policy for
Adaptive Routing in Application-Specific NoC,” 2012 20th

Euromicro International Conference on Parallel, Distributed and

Network-based Processing, pp. 515–519, Feb. 2012.
[27] E. a. Carara and F. G. Moraes, “Flow oriented routing for

NOCS,” 23rd IEEE International SOC Conference, pp. 367–370,

Sep. 2010.
[28] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for

Dynamic Task Mapping in NoC-based Heterogeneous MPSoCs,”

in 18th IEEE/IFIP International Workshop on Rapid System
Prototyping (RSP ’07), 2007, pp. 34–40.

[29] C.-L. Chou and R. Marculescu, “Run-Time Task Allocation

Considering User Behavior in Embedded Multiprocessor
Networks-on-Chip,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 29, no. 1, pp. 78–

91, Jan. 2010.

[30] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and Y. Ha,

“Analyzing composability of applications on MPSoC platforms,”
Journal of Systems Architecture, vol. 54, no. 3–4, pp. 369–383,

Mar. 2008.

215Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

