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Abstract—The growing number of applications and processing 

units in modern MPSoCs comes along with dynamic and 

diverse workload characteristics at runtime. Thus, the 

communication infrastructure, e.g., Networks-on-Chip (NoC), 

operation on time dependent dynamic traffic loads makes 

adaptive congestion and load management indispensable. This 

paper introduces a centralized adaptive path management for 

oblivious source routing. Thereby, a cluster-based, runtime-

configurable software solution continuously monitors the 

global traffic situation and calculates the needed routing 

adaptations for each active source-destination pair of the 

current workload inside a cluster. Contrary to other published 

solutions, a HW/SW-Co-Design for configurable clustering, 

traffic monitoring and path calculation is applied. 

Furthermore, the isolation of workload fractions by the spatial 

clustering allows application specific configurations. 

Keywords-Network-on-Chip, MPSoC, Adaptive Routing, 

Traffic Monitoring, Clustering, HW/SW-Co-Design. 

I.  INTRODUCTION 

Networks-on-Chip (NoC) emerged as the next generation 
of communication infrastructures for the growing number of 
computational on-chip resources in Multi-Processor-System-
on-Chip (MPSoC) [1][2][3][4][5][6][7]. These complex 
systems will integrate functionality of various application 
domains at different regions on a single die. Each domain 
comes along with specific characteristics regarding the 
supported degree of parallelism (task-level and/or data-
level), typical traffic pattern and loads, use cases, workload 
timing and constraints. Furthermore, some of these 
characteristics will change during system-lifetime, because 
underlying algorithms evolve or user scenarios will be 
adapted. The efficient operation of such heterogeneous 
systems depends on the integrated mechanisms for runtime 
management and their adaptability to the specific 
requirements of the covered application domains. Typical 
runtime tasks include application mapping and scheduling, 
debugging and test, power/energy/thermal management, 
traffic load management (e.g. adaptive routing in NoC) and 
fault-tolerance. Thereby, the selected routing policy in NoC 
is one of the major design aspects, as it defines the degree of 
parallelism and redundancy of the NoC that will be utilized 
for the communication of the workload applications. Most 
commonly oblivious, minimal and dimension ordered (DOR) 
algorithms, like the XY-Routing, are used. This class of 
routing algorithms results in low hardware costs, 

deterministic behavior, and, shows good performance results 
for static workloads. But concerning unpredictable dynamic 
workloads including the presence time dependent and 
domain-specific traffic, they suffer from the absence of path 
adaptability for load balancing and system stabilization. 
Thus, adaptive routing strategies became research focus, 
which adjust the routing paths at runtime based on current 
traffic information. Thereby, the proposed algorithms mainly 
differ in the criteria, where the routing path will be adjusted, 
if the paths are minimal or not, and the scope of traffic 
information used for the decisions. The majority of existing 
works about adaptive routing for NoC treat the routing 
adjustment as encapsulated self-adaptation mechanism at 
runtime, which is integrated at all router nodes and/or the 
network interfaces of IP cores. The mechanisms are 
distributed and each node itself performs adaptations using 
local or regional traffic/failure information without global 
coordination. Contrary, centralized solutions will operate on 
global system information, but may suffer from long 
latencies for traffic monitoring and routing updates. The 
research of this work was mainly inspired by the ATDOR 
solution presented in [8]. To the best knowledge of the 
authors, ATDOR is the first fully evaluated approach of 
centralized adaptive source routing for MPSoC. It offers a 
good solution to avoid high latencies of centralized path 
adaptations, but has different limitations. The presented 
solution of this work goes beyond these limitations and 
offers more flexibility, reuse, and fault tolerance. The main 
contribution of the presented approach targets the following 
changes and improvements: (1) Redundant NoCs: The 
ATDOR approach integrates a dedicated traffic aggregation 
network to provide global load information for the exclusive 
out-of-band hardware processor that calculates the path 
updates. This work generalizes approach to an exclusive 
infrastructure for system management information. Two 
redundant NoC work in parallel (Data-NoC and System-
NoC) and will fully separate application data and system 
management data transport. Thereby, the design 
requirements will be separated too and each NoC can be 
optimized for its own traffic domain. (2) Runtime-
Configurable Clustering and Monitoring: The centralized 
traffic monitoring and path adaptation is applied to spatial 
separated clusters and not as global approach. The dynamic 
clustering is managed at runtime by software agents and each 
cluster gets a defined fraction of the runtime workload 
assigned. Furthermore, the monitoring at the cluster-level is 
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configurable regarding the data capturing periods. Thus, 
monitoring as well as path adaptation can be configured for 
specific workload fractions. (3) HW/SW-CoDesign: To 
minimize the hardware overhead and raise the 
flexibility/configurability, a modular HW/SW-Co-Design is 
applied. The hardware only consists of needed mechanisms 
to realize the source routing and the monitoring of traffic 
information. The evaluation of monitoring information and 
calculation of routing paths is realized in software as 
centralized software agent inside a cluster. The combinations 
of clustering and migratable software further avoid the 
integration of a single point of failure. (4) Full Runtime 
Integration: The ATDOR solution is a two-phased approach 
that calculates the path updates in parallel to normal 
operations and afterwards distributes the path updates. 
Thereby, static workloads are assumed and calculation 
phases of 0.5 up to 1 ms. The proposed solution works 
continuously and intermediately distributes calculated path 
updates to provide more dynamic workload conditions. 

The remainder of this work is organized as follows. 
Section 2 covers the related work. The third Section 
describes the conceptual part of the proposed solution and its 
global design aspects. A detailed evaluation regarding 
hardware costs, software timing, and simulated runtime 
characteristics will be given in Section 4. Afterwards, this 
work will be finalized with a conclusion and outlook for 
future investigations in Section 5. 

II. RELATED WORK 

Adaptive routing mechanisms in Networks-on-Chip 
mainly differ in the criteria, where the routing path will be 
adjusted, if the paths are minimal or not, and the scope of 
traffic information used for the decisions 
[1][2][3][4][5][6][7]. The majority of works focus a 
distributed adaptation at the router nodes under consideration 
of aggregated traffic information, targeting the direct 
proximity or regional scopes [3]. Thus, the router calculates 
the direction of the next hop of an incoming packet. The 
degree of adaptivity further varies between minimal and non-
minimal route selection.  

Ebrahimi et. al. presents two different distributed 
adaptive routing schemes (LEAR and CATRA) with 
exclusive solutions for the aggregation of traffic congestion 
information. In LEAR [9] the neighboring router nodes share 
their congestion states via one additional wire per link 
direction in the range of one hop. The adaptive routing is 
non-minimal. A more complex and irregular congestion 
information aggregation network for trapezoidal multi-hop 
regions is used by CATRA in [10], where the number of 
additional wires per link corresponds to the width/height of 
the 2D-Mesh topology. The applied routing is minimal. A 
solution between the complexity of LEAR and CATRA is 
presented by Rantala et. al. [11] using 2 additional wires per 
link direction for buffer level information sharing with 
direct-neighbor nodes to find non-congested minimal paths. 
Similar regional congestion information aggregation like 
CATRA can be found in the minimal adaptive routing 
strategies of RCA [12] and DBAR [13]. RCA offers different 

regional scopes and uses 8 up to 16 additional wires per link, 
while DBAR needs 8 wires per link for the sharing of 
congestion information. A complete multi-objective 
distributed system management with combined aspects of 
connection-oriented traffic monitoring, adaptive routing, and 
application mapping with clustering, is tackled by the 
publications of Faruque et.al. in [14]. The supposed AdNoC 
solution integrates hierarchical software agents (global, 
cluster) for dynamic application mapping and reconfigurable 
clustering, distributed NoC traffic and application event 
monitoring via hardware probes at each resource/router, and 
distributed deterministic adaptive routing with buffer size 
reconfiguration. The complete system management is event-
driven and focusses the runtime optimization of bandwidth 
utilization. A centralized adaptive routing called ATDOR is 
presented in [8]. The centralized path management works as 
additional hardware resource with a fixed coupling to the 
NoC through an out-of-band traffic monitoring aggregation 
network using 4 additional wires per link. Path updates will 
be calculated as a hole and in parallel to NoC operation 
under consideration of the global traffic situation and include 
the end-to-end (E2E) switching between XY and YX routes 
at the network interfaces of the IP cores. Path updates will be 
distributed over the normal NoC or an exclusive 
infrastructure. In [15], Cho et. al. suggests a Path-Based, 
Randomized, Oblivious, Minimal Routing (PROM) strategy. 
This solution contains a distributed local path adaptation at 
every router node with randomized decisions, based on 
probabilities. Especially, the simple O1TURN [15] technique 
of randomly toggling between XY and YX paths at the 
network interface shows optimal load balancing results. Kim 
et. al. provides a two-staged solution of source-initiated 
distributed path discovery and maintenance to increase the 
fault tolerance of NoC-based MPSoCs [16]. In [17], Asad et. 
al. presents a quite similar predominant routing approach 
using flooding based path exploration mechanisms.  Routes 
between source-destination-pairings will be discovered and 
maintained using hop-restricted flooding techniques. Traffic 
optimization is out of scope and no hardware costs are 
presented. All of these adaptive routing mechanisms will 
evaluate the shared traffic information locally at each routing 
node using special hardware. Furthermore, the integration of 
virtual channels (VC) is needed to provide deadlock-
freedom.  

A comparable solution to LEAR, that applies minimal 
routing without VCs but using proximity traffic information 
is DyXY, presented in [18]. A similar solution, called 
DyAD, can be found in [19]. A different approach targets the 
selection of different routing algorithms for specific 
application workloads or flows at design time. At runtime 
the routings tables will be changed globally or regional 
optimized for the current of workload. In [20], Moreno et. al. 
proposes a routing scheme called planned source routing 
(PSR), which is a design time solution for traffic 
optimization. In [14][15] Palesi et. al. provides the APSRA 
technique including precompiled runtime adaptation of 
routing algorithms for workload specific demands.  
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III. ADAPTIVE ROUTING CONECPT 

The targeted NoC topology is a wormhole-switching 2D-

Mesh, where two separated NoCs, called System-NoC and 

Data-NoC, work in parallel (see Figure 1). The links 

between neighboring routers are bidirectional point-to-point 

connections, which transmit a certain portion of a 

communication packet in parallel (called flit). The first flit 

of a packet (header) contains the routing information, while 

following flits carry the payload. Each packet will finalize 

with a tail flit that transports payload data too. A packet will 

enter the NoC at the source node flit-by-flit (wormhole-

switching), passes the intermediary router nodes (hops) of a 

path and finally reaches its destination, where the contained 

payload data will be processed. As flow control a hop-based 

request/acknowledge-scheme (req/ack) is applied. The Data-

NoC covers the transport of application data, while the 

System-NoC is used for system management. The System-

NoC has the same topology as the Data-NoC to provide the 

same resource-connectivity, but both infrastructures can be 

individually adapted to the domain-specific requirements. 

The Data-NoC integrates a XY/YX-Routing that will be 

adapted at the network interface (PATH-LUT at DNI), 

higher link data width (64-Bit or higher) and more complex 

resource functionality, while the System-NoC works with 

reduced link data width (7-Bit for a 8x8 NoC), minimal 

input buffering (one flit) and XY-Routing. To provide 

deadlock-freedom for the path adaptations at the Data-NoC 

at least two virtual channels (VCXY and VCYX) for both 

selectable path configurations must be integrated [8]. As 

illustrated in Figure 1 and Figure 2 each NoC-Resource 

(CORE) is connected independently to both NoCs via Data-

Network- and System-Network-Interface (DNI and SNI). 

The smallest management unit is a CELL and includes the 

CORE, DNI, SNI and the connected router nodes (R) of 

both NoCs. These CELLs are further sub-classified into 

Slave and Master. A Master-CELL is suited with special 

hardware resources and software agents to manage a 

CLUSTER regarding the traffic monitoring and path 

updates. Slave-CELLs are dynamically grouped into a 

CLUSTER by a corresponding Master-CELL (see 4x2 C1 

and C2 at Figure 1). These CLUSTERs are the fundamental 

components. Inside a CLUSTER the software agent is able 

to migrate between the existing Master-CELLs. The number 

of potential Master-CELLs is defined at design time. 
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Figure 2. Overview of the Network Interfaces and IP core integration 

The communication at the Data-NoC integrates an end-

to-end based path adaptation concept, which is coordinated 

by the software agent of the CLUSTER. If the CORE sends 

a data through the Data-NoC it pushes a packet to the output 

buffer of the DNI. The packet header contains the position 

information of the source (SRC) and the destination (DST) 

as 2D-Mesh position. The information if the packet should 

take the XY or the YX path to the DST is stored at the 

PATH-LUT and needs one bit per destination in the NoC. 

Thus, for the n×n NoC the PATH-LUT contains (n²-1) 

registers. At the packetization unit of the DNI the direction 

bit will be read out from the PATH-LUT and added to the 

packet header. Afterwards, the packet will be pushed to the 

corresponding VC and this won’t change until the packet 

has traversed all router and links on its path to the DST. 

Thus, the VC assignment is static. At the router-level both 
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Figure 1. Overview of the targeted Network-on-Chip solution at different implementation levels 
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VC have an equal prioritization with a flit-based time-

division-multiplexing (TDM). This will be managed by a 

special TDM unit (see TXY/YX in Figure 1). If two 

concurring packet of different VC will be routed to the same 

output port, the TDM unit toggles the selection signal at the 

output multiplexer every 2 clock cycles, because each flit 

needs this period to pass the link to the input port of the next 

router due to the hop-based req/ack flow control. Thus, each 

VC gets assigned the half of the link bandwidth and the 

transported packets will not run into a blocking situation. If 

only one VC will access the output port it will get the full 

bandwidth assigned by the TDM unit. 

The adaptive source-routing works centralized and is 

applied to the spatial scope of the CLUSTER. Thus, each 

software agent of a CLUSTER monitors the traffic situation 

and performs the path updates.  The following sub-sections 

describe the specific details of the adaptive source-routing 

functionality and its organization. 

A. Clustering 

The implemented clustering is reconfigurable at runtime 

and context-based. The creation and management of 

CLUSTERs is realized via software agents at the Master-

CELLs and utilizes a messaging/organization concept via 

the System-NoC as follows: 

CLUSTER-REQUEST (CREQ): For the initial creation 

of a CLUSTER the Master-CELL sends allocation packets 

to all CELLs that need to be part of the CLUSTER. These 

packets consist of the destination routing information 

(CELL-ADR), the NoC-Address of Master-CELL as source 

information (MC-ADR), the context identifier of the 

CLUSTER (CTX-ID) and further context data for Slave-

CELL configuration (CTX-DATA).  

CREQ = {CELL-ADR | MC-ADR | CTX-ID | CTX-DATA} 

CLUSTER-ACKNOWLEDGE (CACK): The Slave-

CELLs receive the request/update of the Master and returns 

a binding packet as acknowledgement. The packet contains 

the MC-ADR as routing header, the CELL-ADR as source 

information and the special CTX-ID to classify the packet.   

CACK = {MC-ADR | CELL-ADR | CTX-ID} 

CLUSTER-UPDATE (CUP): During CLUSTER 

operation the configuration data (monitoring periods, 

routing path updates) need to be adapted, the software agent 

migrates to another Master-CELL or the CLUSTER will be 

deleted. Thus, the Slave-CELLs are informed via update 

packets, which have the same format like the CREQ. 

CUP = {CELL-ADR | MC-ADR | CTX-ID | CTX-DATA} 

The context of a CLUSTER describes the system 
management domain (e.g. traffic or thermal 
monitoring/control) it is used for. At this specific case for the 
adaptive source-routing uses one dedicated CTX-ID. Each 
Slave-CELL can be assigned to multiple CLUSTERs of 

different CTX-IDs at the same time, but not to different 
CLUSTERs of the same CTX-ID. Thus, if multiple 
CLUSTERs of the same CTX-ID coexist, they will be spatial 
separated and do not share any CELLs (see C1 and C2 at 
Figure 1). Moreover, this separation concerns the exclusive 
clustering for different workload fractions/applications and 
avoids interferences. Thus, for the traffic monitoring and 
adaptive source-routing inside the CLUSTER, full spatial 
workload fraction isolation can be realized. Each clustering 
context has its own configuration data. While the CLUSTER 
will be created and managed by the cluster agent, the 
planning, resource assignment and placement of CLUSTERs 
will be processed by upper-level global software agents, 
which are responsible for specific domains. The workload 
fractions and clustering is precalculated at the global agent 
that covers the runtime-based application mapping.  

B. Traffic Monitoring 

The traffic monitoring integrates a periodic and centralized 

mechanism that is hierarchical organized at three different 

levels (PATH/LINK, CELL, and CLUSTER).  
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Figure 3. Basic Traffic Sensor concept 

PATH/LINK-LEVEL: The basic traffic sensor is a simple 

combination of an external triggered binary counter and a 

configurable comparator (see Figure 3). The counter 

increments each clock cycle the ENABLE signal is active. 

In parallel, the comparator checks the current counter value 

against a reference value that is set by the T-MODE. The 

supported T-MODEs of the traffic monitoring can be 

obtained from Figure 3. If the counter value reaches the 

configured T-MODE reference, it sets an overflow flag 

(OFG) that is captured by the register R and external 

resettable. This unified sensor solution is used in two 

different ways: (1) LINK LOAD:  Each output port of a 

Data-NoC routing node (NORTH, EAST, SOUTH, WEST, 

and CORE) is connected to a traffic sensor to measure the 

current link load (LL). The ENABLE signal is connected to 

the status signal of the port output multiplexing unit (see 

LINK_BUSY Signals). The total number of traffic sensors 

will be 5 per CELL. (2) INJECTION RATE:  Selected path 

table entries (DST-ID) of the DNI at each CELL gets a 

traffic sensor assigned to cover the injection rates (IR) at the 

path level inside the CLUSTER. Furthermore, one traffic 

sensor captures the overall injected traffic of the CELL. The 

ENABLE input is connected to the acknowledgment signal 

(ACK) of the DNI output (PATH-ENABLE). The number 

of needed traffic sensors depends on the maximum sizing of 

a CLUSTER the monitoring should work path-accurate for. 
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At the current progress, it works with 16 path sensors (e.g., 

4x4 or 8x2 CLUSTER). 

All traffic sensors of a CELL run at the same T-MODE, 

which is set at the SNI-Manager-Extension by the Master of 

the corresponding CLUSTER (Figure 2). Furthermore, they 

are grouped and located at the SNI of the CELL. 

CELL-LEVEL: The OFG registers of all traffic sensors 
inside a CELL are connected to the SNI-Manager-Extension 
responsible for the Traffic Monitoring (see Figure 2). This 
functional unit generates the traffic monitoring packets for 
the System-NoC and works periodically. Thereby, the period 
is set by the T-MODE value (same as for traffic sensors) of 
the CELL. For a Data-NoC running on 1 GHz, the traffic 
situation for each CELL is sampled in intervals configurable 
from 64 up to 2048 ns. After the expiration of a period, a 
finite state machine tests if at least one OFG is set. If true 
then all register will be read out and reset at the traffic 
sensors. If no OFG is active there is no need to generate a 
traffic monitoring event packet for the expired period. 
Otherwise the FSM generates a new packet with a defined 
static order of the OFG-bits (CTX-DATA). The packet 
destination is the Master-CELL of the corresponding traffic 
monitoring CLUSTER. Afterwards, the packet is pushed to 
the output buffer at the SNI of the CELL. 

CLUSTER-LEVEL: At this point, the traffic monitoring 
packets periodically leaves the CELLs and need to be 
aggregated by the Master-CELL, after they have passed the 
System-NoC towards it. Therefore, special Event 
Aggregation Points (EAPs) are present as exclusive 
hardware at all Master-CELLs. These EAPS are needed to 
scale the generated OFG data to the final parameter of 
injection rate (IR) and link load (LL). IR as well as LL will 
be mapped to scales from 0 up to 100 percent with kS 
percentage stepping. Thus, the aggregation for the events of 
100/kS traffic monitoring periods is needed. Each period 
event of a traffic sensor with a reported OFG of ‘1’ 
represents kS scale percent of IR or LL. This is done using 
grouped binary 7-bit counters, where each group is assigned 
to a monitored CELL of the CLUSTER and each counter 
inside a group is assigned to the OFG of a specific traffic 
sensor of this CELL. The counters are triggered by the 
incoming OFG-DATA and are incremented by one if the 
corresponding OFG-Bit is ‘1’. The OFG-DATA is fed as fix-
ordered parallel bit-vector into the counter group, where the 
index of each bit corresponds to the traffic sensor identifier. 
The groups are addressed by the GROUP ID, which is equal 
to the CELL-ID. The EAP has a buffer at the input and can 
process the complete OFG-DATA of a traffic monitoring 
packet in one clock cycle. At the current status of research, a 
maximal CLUSTER size of 16 CELLS with 21 traffic 
sensors (5 links/15 paths/1 overall) per CELL was applied. 
This results in 16 groups with 21 binary 7-Bit counters at 
each. Moreover, the EAP represents the HW/SW-Interface of 
the traffic monitoring and the final traffic data can be 
accessed through the CORE-INTERFACE (CI) that is 
directly coupled to the internal bus of the Master. The 
counter values are captured by registers at the CI and the 

cluster agent will access and store them after a monitoring 
cycle has finished or during a current cycle. The duration of 
a cycle can be calculated by eq. (1) and depends on the 
configured T-MODE period (rT-MODE), the clock frequency of 
the System-NoC (fSystem-NoC) and the scale resolution kS (e.g., 
kS =1% or 2%). 

SNoCSystem

MODET

cycle

kf

r
t







 (1) 

In example, for a T-MODE of 256 clock cycles at 1GHz 

the complete path accurate traffic situation of the 

CLUSTER can be capture in cycles of 25,6 µs (kS =1%) or 

12,8 µs (kS =2%). Afterwards, the counter needs to be reset 

for the next period. Furthermore, the variation of the traffic 

situation can be recorded by intermediate snapshots during a 

period without reset. The EAP and the CI are key 

components to achieve a light-weighted software agent, 

because the agent is operating on final parameter values and 

does not need to perform further aggregation steps. At this 

point the software agent at the Master-CELL has full 

information about the traffic situation inside the CLUSTER 

and is able to perform its path update evaluations. 

C. Source-Routing 

The routing path adaptation exclusively runs in software 

at the Master-CELL and focuses an incremental 

improvement for the traffic load of the current assigned 

workload fraction of the CLUSTER. After a finalized traffic 

monitoring cycle, the path adaptation starts and runs through 

all CELLs of the CLUSTER in a fixed order. For each 

CELL all observed paths will be evaluated in a fixed order 

and the following optimization procedure will be processed 

in the given sequence:  

1. TEST: Initially the path will be tested for shared 

position coordinates, because if the path targets CELLs at 

the same row/column of the 2D-Mesh no minimal path 

alternatives are available and the path will be removed from 

the optimization list. 

2. PREPARATION: The monitored injection rate (IR) of 

the current path is used to prepare the monitoring data for 

the new path evaluation run. The IR will be removed from 

the link load (LL) values of each link traversed by the path 

in its current assigned configuration (XY or YX). 

3. EVALUATION: At this step the fitness for the XY and 

the YX configuration of the path will be calculated, which is 

simply the sum of LL values for all links traversed by a 

path. Afterwards, the lowest sum will be selected and its 

corresponding path configuration (XY or YX) will be 

assigned (minimal path load strategy.  

4. UPDATE: After the evaluation of the path, the 

monitoring data will be updated with the injection rate of 

the path at the traversed link positions in the resulting 

configuration (XY or YX). This ensures the operation on the 

new traffic constellation for subsequent optimization runs of 
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other paths. Furthermore, if the path has changed an update 

packet will be sent to the CELL via the System-NoC to 

register the new path configuration at the lookup-table of the 

DNI (PATH-LUT). The update will be performed by the 

SNI and contains the bit flip at the PATH-LUT for the DST 

for the evaluated path. 

Contrary to ATDOR [8], this solution only works 

continuously and triggers updates of single paths 

intermediately after processing. Furthermore, the timing 

depends on the monitoring interval, which can be 

configured individually for each CLUSTER and thus allows 

full adaptation for the traffic of the assigned workload 

fraction. The fixed ordered processing should lead to an 

incremental optimization of the traffic load balancing in 

case of static traffic patterns. For dynamic variations the 

traffic balancing will be slightly improved. The 

configurability of path updates for specific traffic pattern of 

the assigned workload fraction may be further improved by 

more selective ordering during path processing. This will be 

part of future investigations. 

IV. EXPERIMENTAL EVALUATION 

The evaluation of the presented solution was realized via 

software profiling and system simulations for operational 

performance as well as hardware synthesis for the cost 

approximation. Thereby, the basic Data-NoC design 

parameter configuration can be obtained from TABLE I. 

TABLE I. DATA-NOC CONFIGURATION FOR SIMULATION AND SYNTHESIS 
Parameter Value 

NoC Clock Rate 1 ns 

Master-CELL CPU Clock Rate 0.5 ns 

NoC Topology 2D-Mesh 

Synthesized NoC-Size 8x8 

Simulated Cluster Size 16 CELLS at 4x4 spatial shape 

Data-NoC Input Buffer Depth 4 Flit 

System-NoC Input Buffer Depth 1 Flit 

Data-NoC Link data width 64 Bit 

System-NoC Link data width 7 Bit 

Average Link wire length [23] 0.83 mm 

Wire width/spacing [23] 140/140 nm 

# of I/O-Links in 8x8 NoC 224 

# of Master-CELLs in NoC 32 (=50%) 

Traffic Sensors per CELL 21 

7-Bit Counter per EAP 336 (=16*21) 

Simulated Data-NoC Packet Sizes 2  up to 9 Flit (uniform) 

Traffic Pattern 

random uniform distributed, 

transpose, hotspot (H=20%) and 

bit complement 
Hotspot Position = CORE [0,0] 

A. Software Profiling 

The main parameter for the evaluation of the ANSI-C 

based software agent is the computational latency/delay for 

the routing path calculation. Hence, the software profiling 

for the UPDATE/PREPARATION steps and the 

EVALUATION was carried out. As reference platform, a 

PowerPC 440 32-bit RISC CPU was used, which is 

implemented as hardcore on a Xilinx Virtex5 device. It is 

suited with 32-kB Data and Instruction Cache. The 

minimalistic Xilkernel from Xilinx served as basic 

integration environment for the centralized source 

adaptation software, which is implemented as standalone 

thread. To provide accurate timing information, the duration 

of path computations was measured in clock ticks via 

special timer commands. 

TABLE II. SOFTWARE PROFILING RESULTS, GIVEN AS AVERAGE DELAY IN 

NUMBER OF CPU CLOCK CYCLES, FOR DIFFERENT NOC SIZES, AND 

MAXIMAL ALLOWED HOPS (MAXHOP) FOR ROUTING PATHS CALCULATIONS 
NoC Size Maxhop PREPARE/UPDATE XY/YX 

4 x 4 - 36 132 

4 x 4 4 34 118 

4 x 4 3 32 104 

8 x 8 - 46 174 

8 x 8 8 42 157 

8 x 8 4 34 119 

8 x 8 3 32 105 

For different 2D-Mesh NoC sizes (4x4 and 8x8), one 
million source-destination-pairings were generated and the 
routing path calculation processed. Further, uniform 
distributions with defined maximal hop distances (Maxhop) 
between these pairings were profiled. Afterwards, the 
average calculation delay, as number of passed CPU clock 
cycles, over all pairings was recorded. The results are 
included in Table II. The delay values for the full path 
calculation at different parameter variations (XY/YX) 
already contain the latencies for the PREPARE/UPDATE 
procedures. Observing the case of a 2GHz CPU running the 
thread with a budget of 20 %, the full XY/YX path 
calculation at the 4x4 CLUSTER without hop constraints is 
able to provide ~3000 single path updates per millisecond. 
The obtained profiling results were used for the timing 
accurate simulation of a complete workload simulation 
inside a CLUSTER. 

B. Hardware Synthesis 

The ASIC design flow was realized with the Synopsys
TM

 

DesignCompiler
TM

 using the 45 nm Nangate FreePDK45 

Generic Open Cell Library. The presented results in TABLE 

III show the total cell area costs for each of the functional 

components (SNI-Manager Extension, Traffic Sensors, 

EAP) and the router nodes of both NoC. Further, the NoC 

area costs of the complete NoC solution are given 

TABLE III. TOTAL CELL AREA (TCA) HARDWARE COSTS FOR SINGLE 

DESIGN COMPONENTS INSIDE A CELL AND AN 8X8 NOC AT ALL 

 
Total Cell Area 

Design Component CELL [µm²] 8x8 NoC [mm²] 
SYSTEM-NOC ROUTER 2783.69 0.178156 

SYSTEM-NOC LINK 1510,6* 0.3383744 

DATA-NOC ROUTER 40174.51 2.571169 

DATA-NOC LINK 14641.2* 3.279628 

SNI TRAFFIC LOAD EXT. 1511.94 0.096764 

TRAFFIC SENSORS 2720.34 0.174102 

AGGREGATION POINT 22230.68 0.711382 

SUM OF ALL UNITS 85572.96 7.3495754 
*area of a single I/O NoC-Link 

The targeted operational frequency was set to 1 GHz and 

met for all evaluated design cases. Regarding the hardware 

costs in the context of the final MPSoC that contain the 
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targeted amount of CELLs on a 45nm silicon die (areas: 

280-400 mm² [24][25]) the relative overhead due to both 

complete NoC will be less than circa 2.6% down to 1.8%. 

Thereby, the total link area costs was estimated using the 

configuration of [23] as presented in TABLE I. 

C. Simulation Results 

The full system simulations target the maximum 

CLUSTER size (16 CELLs) at a spatial 4x4 shape with 

different workload configurations and monitoring cycles. 

This allows the fully path-accurate monitoring of the traffic 

situation inside a CLUSTER. Therefore, an own cycle 

accurate SystemC/TLM-based simulator was used. The 

dynamic workload consists of 10 tasks per CORE/CELL 

with a uniform random scheduling. Each task gets a fixed 

packet destination assigned depending on the four simulated 

synthetic traffic pattern as mentioned in TABLE I. For the 

hotspot pattern, H=20% of the tasks per core are 

communicating with the assigned CORE [0,0] in the lower 

left corner. Furthermore, two different traffic load strategies 

at the task-level were applied. At the homogeneous strategy 

each tasks has the same traffic injection rate, while the 

heterogeneous case works with an injection rate (IR) 

interval [IR±σ] and each task gets assigned a uniform 

random distributed injection rate out of this defined range. 

This allows the general evaluation of different traffic 

situations with more balanced or mixed loads at the path 

level. The monitoring was configured to work with different 

T-MODEs of 128, 256 and 512 at a scale resolution kS=1%. 

This results in monitoring/path evaluation cycles of 12.8 µs, 

25.6 µs and 51.2 µs. As references, the simple dimension-

ordered XY-Routing and the probability-based adaptive 

O1TURN-Routing [15] were simulated. O1TURN toggles 

the VC (XY or YX) for each injection packet of a task and 

thus enforces a fully balanced VC utilization. The 

evaluation in [15] showed, that O1TURN offers the best 

average case throughput and latency. The newly introduced 

adaptive source-routing is called ASR <T-MODE>. The 

summarized results of all simulated parameter variations are 

depicted in Figure 4. The diagrams (a)-(g) contain the 

average packet header latency over varying traffic injection 

rates. The results were calculated as average from 100 

simulations runs of workloads at each parameter 

constellation. Thereby, each simulation runs covers the 

 
(a) homogeneous hotspot 

 
(b) homogeneous bit complement 

 
(c) homogeneous transpose 

 
(d) homogeneous random 

 
(e) heterogeneous bit complement 

 
(f) heterogeneous transpose 

 
(g) heterogeneous random 

 

 
(h) path update statistics (T-MODE = 256) 

Figure 4.  Summarized results of the 4x4 CLUSTER simulations for homogeneous task loads [(a), (b), (c), (d)], heterogeneous task loads [(e), (f), (g)], and 

path update statistics (h) 
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system operation time of 1 millisecond. For the 

homogeneous traffic load strategies in (a)-(d) the proposed 

ASR clearly outperforms the XY-Routing, but for all 

simulated traffic pattern it does not reach the performance of 

O1TURN and the latency improvements over XY-Routing 

ranges at circa 50% of the O1TURN results. Furthermore, 

the impact of reduced monitoring/evaluation cycles is 

smaller than expected. The simulation results for the 

heterogeneous tasks load strategy (see Figure 4 (e) - (g)) 

show that the advantage of O1TURN over ASR decreases 

with the increasing spread of task injection rates at highly 

intensive overall traffic loads (Traffic Load > 20 %) inside 

the CLUSTER. The difference between ASR traffic 

optimization performance of homogeneous and 

heterogeneous spread task loads relies on the resulting 

overall distribution of the traffic load inside the CLUSTER. 

At homogeneous task injection rates the traffic situation 

inside the CLUSTER will be more balanced and thus the 

dedicated assignment of specific path configurations is 

harder, because XY and YX path only slightly differs in the 

resulting fitness values (sum of link loads for each path). 

The higher the spread of task injection rates becomes the 

delta of these values increase, because the overall traffic 

situation becomes more heterogeneous. The diagram in 

Figure 4 (h) plots the registered path updates (average and 

maximum) at the homogeneous and heterogeneous case for 

the random traffic pattern over the proceeding operation 

time of the workload. Both cases show a similar 

convergence behavior at the maximum and the average case. 

The results for the other simulated traffic pattern are quite 

similar, but the random pattern is the most interesting, 

because it generates the most equal balanced overall traffic 

load inside the CLUSTER. As expected, the number of path 

updates reaches its peak at the beginning of operations. 

After the exponential decrease it works continuously at low 

update rates and the resulting computational demand for the 

software agent is suitable. The performing CPU at the 

Master-CELL of the software-agent was configured to 

operate with a clock frequency of 2 GHz. 

V. CONCLUSION AND FUTURE WORK 

The presented HW/SW-ASR concept, including 

clustering and path-accurate traffic monitoring, and its 

evaluation show that the intended runtime-configurable 

approach is feasible and superior to dimension-ordered XY-

Routing. But the comparison to the O1TURN solution 

outlines its limitation as standalone solution. The additional 

hardware overhead is comparable to the solutions of 

[8][10][12][13], but has a more general focus on system 

management communication and makes workload specific 

traffic information available for global reuse. Thus, the 

presented cluster-based centralized ASR is only one 

integration aspect of the clustering and the System-NoC 

approach. The presented results brings the focus of future 

investigation on ASR to direction targeted by 

[14][15][26][27][28][29][30]. Specifically, the following 

aspects will be highly interesting: 

Evaluate hybrid solutions that combine ASR and 

O1TURN. Both routing algorithms work at the end-to-end 

path level and can be merged without high additional 

hardware efforts. Thus, a more pattern-specific assignment 

to different CLUSTERs and inside these CLUSTER 

workloads may results in an attractive combination. 

Thereby, ASR will be pushed to support the planning of 

guaranteed bandwidth connections for specific application 

tasks or paths. Furthermore, the integration of failure 

handling for reliable NoC communication is a desired 

extension. 

The globally available traffic information allows a better 

evaluation of the current system states and makes an 

interaction of runtime-based application mapping, routing 

strategy selection and spatial clustering more valuable. 

Furthermore, the integrated software-agents of ASR will 

support a better integration of these aspects, which targets 

runtime optimization at different abstraction levels and 

operational aspects. 
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