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Abstract— We study the Container Storage Problem in port 
terminal (CSP), which consists to effectively manage the 
storage space so as to increase the productivity of port. When a 
ship arrives, the inbound containers are unloaded by Quay 
Cranes (QC) and then placed on quays. So, they are collected 
by Straddle Carriers (SC). Each is able to carry one container 
at a time, and store it in its storage location. In order to reduce 
the waiting times of ships, we propose a mathematical model 
which minimizes the total distance traveled by SC between 
quays and container yards. In this paper, we take into account 
additional constraints which are not considered previously. We 
also propose an effective branch-and-cut algorithm (BC-CSP), 
which is an optimal resolution method. Performed simulations 
prove the effectiveness of our algorithm. 
 

Keywords-Container Storage Problem; complexity; branch-
and-bound; CPLEX. 

I.  INTRODUCTION  

In a seaport, the container terminal manages all actions 
concerning containers. Generally, three types of containers 
are distinguished: outbound, inbound, and transshipment 
containers. All these containers are temporarily stacked in 
the container yard, before leaving the port. Outbound 
containers are brought by External Trucks (ET), also picked 
up by SC which store them in their storage location, and then 
loaded onto vessels. Inbound containers are unloaded from 
vessels by QC, transported to their storage locations by SC, 
and then recuperated later by ET. Nowadays, the competition 
between ports is very high. Therefore, each of them tries to 
improve continuously the quality of its service in order to 
attract more customers. The most important criteria to 
measure service level include the waiting time of ET which 
collect inbound containers. In fact, when an ET arrives at 
port and claims a specific container, it waits during all the 
time required to retrieve it. If the desired container is under 
others, it may be necessary to move these containers in first. 
This kind of movements, named reshuffles, are unproductive 
and require so much time. Therefore, it is very important to 
optimally store containers so as to avoid them. Another 
important criterion to measure the quality of service is the 

time required to unload ships. The importance of this factor 
is justified by the fact that it is more beneficial for both the 
port and the customers to shorten the stay of vessels. First, it 
is better for the port to quickly free the berths in order to 
allocate them to others incoming vessels. Second, generally, 
ship-owners rent vessels; therefore, they tend to minimize 
the berthing durations in order to reduce rental costs. These 
two issues are addressed in this paper. We consider a modern 
container terminal, which uses SC instead of Internal Trucks 
(IT). The advantage of a SC is that it is able to lift and to 
store a container itself; therefore it is not necessary to use 
Yard Cranes (YC). A storage yard is composed of several 
blocks. In order to allow good circulation of SC, each block 
is composed of bays which are separated by small spaces. In 
every bay, there are stacks wherein containers are stored. A 
stack must have a height inferior or equal to the limit fixed 
by the port authorities. Fig. 1 shows an example of block 
wherein circulate straddle carriers. 

 

 
 

Fig. 1 Straddle carriers circulating in a containers yard 
 

We propose in this paper an effective method to solve the 
container storage problem. For this, we propose a new 
mathematical model which determines the optimum storage 
plan and minimizes the time required to transport containers 
between quays and storage areas. For the numerical solution 
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of the model, we propose an effective branch and cut 
algorithm (BC-CSP), which is an exact method.  

The remainder of the paper is organized as follows: a 
literature review is given in the second part. A detailed 
description of the addressed problem is exposed in the third 
part. The complexity of the problem is discussed in the 
fourth section, while the proposed mathematical model is 
explained in the fifth section. The branch-and-cut algorithm 
is itemized in the sixth section; the numerical results are 
presented in the seventh section. Our conclusion is given in 
the eighth section. 

II. LITERATURE REVIEW 

There are many papers addressing the storage of 
outbound containers than inbound containers. However, 
there are some papers which consider both simultaneously. 
Zhang et al. [2] considered in addition to these two 
categories, those which are in transition, that means 
containers which are unloaded from some vessels and are 
waiting for being loaded onto others. They used the rolling-
horizon approach [2] to solve the storage space allocation 
problem. For each planning horizon, they solved the problem 
in two steps formulated as mathematical programs. In the 
first step, they determined the total number of containers 
assigned to each block at a period so that the workloads of 
loading and unloading of each vessel are balanced. Then, in 
the second step they determined the number of containers 
associated to every vessel in order to minimize the total 
distance traveled to transport these containers from quays to 
the storage blocks. Bazzazi et al. [3] proposed a genetic 
algorithm to solve an extended version of the Storage Space 
Allocation Problem (SSAP). It consists to allocate 
temporarily locations to the inbound and outbound 
containers in the storage yard according to their types 
(regular, empty, and refrigerated). They aimed to balance the 
workloads between blocks with the goal to minimize the 
time required to store or to retrieve containers. Park and Seo 
[4] dealt the Planar Storage Location Assignment Problem 
(PSLAP), in which only planar movements are allowed. The 
purpose of PSLAP is to store inbound and outbound 
containers so as to minimize the number of moving 
obstructive objects. The authors made a mathematical 
formulation of PSLAP and proposed a genetic algorithm to 
solve it. Lee et al. [5] combined the truck scheduling and the 
storage allocation problems. They considered inbound and 
outbound containers, and tend to minimize the weighted sum 
of total delay of requests and the total travel time of yard 
trucks. For numerical resolution, they proposed a hybrid 
insertion algorithm. Kozan and Preston [6] developed an 
iterative search algorithm using a transfer model and an 
assignment model. At first, the algorithm determined 
cyclically the optimum storage locations for inbound and 
outbound containers, and secondly, it found the 
corresponding handling schedule. They solved the problem 
using a genetic algorithm, a tabou search algorithm and a 
hybrid algorithm. 

 Concerning inbound containers, most of papers deal with 
the management of reshuffles. Sauri and Martin [7] proposed 
three different strategies to store inbound containers. The 

purpose of their work is to determine the best strategy which 
minimizes re-handles in an import container yard. For this, 
they developed a mathematical model based on probabilistic 
distribution functions to evaluate the number of reshuffles. 
Kim and Kim [8] considered a segregation strategy to store 
inbound containers. This method does not allow placing 
newly arriving containers over those which arrived earlier. 
Therefore, storage spaces are allocated to each vessel so as to 
minimize the number of reshuffles expected during the 
loading operations. Jinxin et al. [9] proposed an integer 
programming model, which addressed the trucks scheduling 
and the storage of inbound containers. They minimized at the 
same time the number of congestions, the waiting time of 
trucks, and the unloading time of containers. The authors 
designed a genetic algorithm to solve the model, and another 
heuristic algorithm which gave them best results. Yu and Qi 
[10] treated the storage problem of inbounds containers in a 
modern automatic container terminal. They aimed to 
minimize reshuffles in two steps. For this, they first resolved 
the block space allocation problem for newly arriving 
inbound containers, and then after the retrieving of some 
containers they tackled the re-marshaling processes in order 
to re-organize the block space allocation. They suggested 
three mathematical models of storage containers, the first is a 
non-segregation model, the second is a single-period 
segregation model, and the last is a multiple-period 
segregation model. They conceived a convex cost network 
flow algorithm for the first and the second models, and a 
dynamic programming for the third. They found that the re-
marshaling problem is NP-hard and then designed a heuristic 
algorithm to solve it. We considered in [1] a container 
terminal wherein reshuffles are not allowed. We proposed a 
new mathematical model to allocate storage spaces to 
inbound containers in such a way that no reshuffles will be 
necessary to retrieve them later. We designed a hybrid 
algorithm including genetic algorithm and simulated 
annealing to solve it.  

In most container terminals, the departure times of 
inbound containers are unknown. K. H. Kim and K. Y. Kim 
considered in [11] a container terminal in which there is 
limited free time storage for inbound containers, beyond 
which customers have to pay storage costs per time unity. 
The authors proposed a mathematical model to find the 
optimal price schedule.   

   Papers dealing with the storage problem of outbound 
containers have generally different goals. Preston and Kozan 
[12] proposed a Container Location Model (CLM) to store 
outbound containers in such a way that the time service of 
container ships is minimal. They designed a genetic 
algorithm for the numerical resolution. Kim et al. [13] 
developed a dynamic programming model to determine the 
storage locations for outbound containers according to their 
weight. They minimized the number of relocations expected 
during the ships loading. They also made a decision tree 
using the set of optimal solutions to support real-time 
decisions. Chen and Lu [14] addressed in two steps the 
storage space allocation problem of outbound containers. In 
the first step, they used a mixed integer programming model 
to calculate the number of yard bays and the number of 
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locations in each of them. So, in the second step, they 
determined for each container the exact location where it 
must be stored. Woo and Kim [15] proposed a method to 
allocate storage spaces to groups of outbound containers. 
They reserved for each group of containers having the same 
attributes, a collection of adjacent stacks. At the end, the 
authors proposed a method to determine the necessary size of 
the storage space expected for all the outbound containers. 
Kim and Park [16] gave two linear mathematical models to 
store outbound containers. In the first, they considered a 
direct transfer, and so, in the second, they dealt with an 
indirect transfer system. They designed two heuristic 
algorithms to solve these models. The one is based on the 
duration-of-stay of containers, and then, they used the sub-
gradient optimization technique in the other.  

Among the few papers dealing only transshipment 
containers include that of Nishimura et al. [17]. They 
developed an optimization model to store temporarily 
transshipment containers in the storage yard, and proposed a 
heuristic based on lagrangian relaxation method for the 
numerical resolution.  

III.  CONTEXT 

When a container ship arrives at port, QCs unload 
containers and place them on quays. So, they are picked up 
by SCs, which carry and store them in the container yard. 
The firsts containers which are placed on quays are the first 
picked up. In order to avoid congestion on quays, which 
could increase the time required to unload ships, we 
minimize the total distance traveled by SCs between quays 
and the container yard. In this study, we consider the 
following five main hypotheses: 
(1) Reshuffles are not allowed, 
(2) In each stack, containers are arranged according to: 

(2.a) the same order that they are unloaded from ships, 
(2.b) and the descending order of their departure time, 

(3) In a stack, all containers have same dimensions, 
(4)We take into account containers which are already present 
in the storage areas before the start of the new storage period, 
(5) We respect the maximum capacity of each stack. 
 
       Excepted (2.a), these hypotheses are considered in [1]. 

IV. COMPLEXITY OF THE PROBLEM 

In this section, we study the complexity of the CSP. In 
particular, we show that it is equivalent to the Bounded 
Coloring Problem (BCP); therefore, is NP-hard in the 
general case. 

A. Some reminders about the BCP 

Let us begin by recalling some concepts and definitions 
that will be useful for the following. 

1) Preliminary notions: Let G(V,E) be an undirected 
graph, V is the set of vertices and E is the set of edges.  
 
  G is a comparability graph if and only if there are a 
sequence of vertices nvv ,...,1  of V such that for each (p, q, 

r) checking 1 < p < q < r < n, if  Evv qp ∈),( and 
Evv rq ∈),(  then Evv rp ∈),( . 

 
 A co-comparability graph is the complement of a 
comparability graph. 

 
An undirected graph G = (V,E) is a permutation graph if 

and only if there are a sequence of vertices  nvv ,...,1  of V 

and a permutation σ of the vertices such that for all i and j 

satisfying nji ≤≤≤1 , Evv ji ∈),(  if and only if 

σ(i)≥σ(j). 
 
Theorem 1:  A graph G is a permutation graph if and only 

if G and its complement are comparability graphs [18]. 
 

2) The bounded coloring problem: Given an undirected 
graph G = (V,E), a set of s colors sll ,...,1 , an integer H and 
a vector that gives the weight of assigning a color il  to a 
vertex of the graph. The bounded coloring problem with 
minimum weight consists to determine a minimum weight 
coloring of G using at most s colors in such a way that a 
color is assigned to at most H vertices. 

 
Theorem 2: [19] The bounded coloring problem with 

minimum weight is NP-hard for the class of permutation 
graphs for all 6≥H . 

B. Equivalence between the CSP and the BCP 

       We show that the CSP is NP-hard. For this, we introduce 
an undirected graph G(N,O,T) = (V,E) constructed from an 
instance of the CSP, where N is the set of containers and O 
and T are vectors, which give respectively the unloading 
order and the departure times of each container. The graph G 
is constructed as follows. A vertex of the graph corresponds 
to a container. To simplify notation, the index k is used to 
denote both a container and the vertex of the graph which 
corresponds to it. There is an edge between two vertices k 

and k’ if and only if 'kk OO <  and 'kk TT < . We have the 

following lemma. 
 

Lemma 1: The graph G(N,O,T) obtained from a instance 
of CSP is a permutation graph. 

 
       Proof: To prove that the graph G(N,O,T) is a 
permutation graph, it suffices to show that it is a 
comparability graph as well as its complement (see Theorem 
1). 
 
       First, we show that G(N,O,T) is a comparability graph. 
The vertices are ordered according to the same order that the 
unloading of the corresponding containers from ships. If two 
containers k and k’ are unloaded from ships at the same time 

(that is to say if 'kk OO = ), then the vertices k and k’ are 

ordered in the ascending order of their departure times. If 
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'kk OO =  and 'kk TT =  then the vertices are ordered in the 

lexicographical order. Without loss of generality, we 
consider that the vertices are numbered in the order that is 
previously determined. Now, consider any three vertices k, k’ 
and k’’  of the graph such that Ekkkkk ∈<< )',(,"'  and 

.)'','( Ekk ∈ We will prove that necessarily 

Ekk ∈)'',( . As Ekk ∈)',(  and Ekk ∈)'','( , we have 

'kk OO <  and 'kk TT <  , and we have also ''' kk OO <  

and ''' kk TT <  . We thus obtain that ''' kkk OOO <<  and 

''' kkk TTT << , which implies that the graph G(N,O,T) has 

an edge between vertices k and k’’ . So G(N,O,T) is a 
comparability graph.    
       Now, we will prove that the complement of G(N,O,T), 

denoted ),,( TONG  is also a comparability graph. First, 
note that there is an edge between two vertices k and k’ of 

 ),,( TONG   if and only if there is no edge in G(N,O,T) 

between k and k’ in other words 'kk OO <  and 'kk TT >  . 

The vertices of G  are ordered in the same order as those of 
G. As before, for any three vertices k, k’, and k’’  of the graph 

),,( TONG such that Ekkkkk ∈<< )',(,'''  and 

,)'','( Ekk ∈ we have ''' kkk OOO << and 

''' kkk TTT >> . So, ''kk OO <  and ''kk TT > , and then 

there is an edge between k and k’’  in ),,( TONG . 

Therefore, ),,( TONG  is also a comparability graph.�  
 
       Now, it is easy to see that a solution of the container 
storage problem is a solution of the corresponding bounded 
coloring problem. In fact, a similar result is given in [20]. 

Consider an instance ICSP = (N,O,T, pN ,H,r,R,d) of the 

CSP and the graph G(N,O,T) associated. Now, consider an 
H-coloring of G(N,O,T) that has s colors. Each color of the 
bounded coloring problem is matched to a stack of the CSP. 
Indeed, as all vertices having the same color form a stable 
set, in other words they are not connected by any edge, 
therefore any two containers corresponding to two vertices of 

this stable set satisfy these two inequalities 'kk OO <  and 

'kk TT ≥ . The unloading order as well as the departure 

times of containers corresponding to the vertices of a stable 
set are compatible; thereby, they can be stored in a same 
stack if it has enough empty slots. In addition, there are at 
most H vertices in this stable set. So, the number of 
containers assigned to the corresponding stack is inferior or 
equal to H. Therefore, an H-coloring corresponds to a valid 
assignment for the CSP. Similarly, it is easy to see that a 
solution of the CSP is a solution of the H-bounded coloring 
problem in the graph G(N,O,T). We have the following 
lemma.  

Lemma 2: Let ICSP = (N,O,T, pN ,H,r,R,d) an instance of 

the container storage problem. The CSP has a solution for 
this instance if and only if the bounded H-coloring problem 
on the graph G(N,O,T) has a solution. 
 
        We now give the main result of this section. 
 
Theorem 3: The container storage problem is equivalent to 
the bounded coloring problem with minimum weight.  
 
Proof: To establish this result, we prove that an instance of 
the CSP is equivalent to an instance of the BCP and vice 

versa. Let ICSP = (N,O,T, pN ,H,r,R,d) an instance of the 

storage container problem and G(N,O,T) the permutation 

graph associated. Consider IBCP = (G(N,O,T),H, pN ,d) an 

instance defined on the graph G(N,O,T), where Np is the 
number of colors, H is the bound, and d a matrix containing 
the weights. According to the Lemma 2 a solution of the 
CSP is a solution of the BCP, and similarly a stack of CSP 
corresponds to a color of BCP and vice versa. It follows then 

that the cost k
pd  of assigning a container Nk ∈  to the 

stack pNp∈ , is the same as the assignment of the vertex k 

to the color corresponding to the stack p. So, the cost of H-
coloring in the graph G(N,O,T) is the same as the cost of the 
solution of the corresponding CSP and vice versa. Therefore, 
we can find the optimal solution of the CSP if and only if we 
find the optimal solution of BCP.�  
 
According to the Theorem 2 the bounded coloring problem is 
NP-hard for the class of permutation graphs if 6≥H . It 
therefore follows from Theorem 3 that the CSP is NP-hard if 

6≥H . 
 
Corollary 1: The container storage problem is NP-hard if the 
maximum capacity of every stack is superior or equal to six. 
 

V. MATHEMATICAL MODELING 

In the mathematical model, we use the following indices: 
 p: stack, 

       k: container. 
 
The data of the problem are: 

  N : number of containers, 

  pN : number of stacks, 

  pc : number of empty slots in the stack p, 

  pr : type of container which can be placed in the stack  

p, 

   pt : departure time of the container which was on the 

top of  the stack p at the begin of the new storage 
period. 
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   kR : type of the container k, 

   kT : departure time of the container k, 

         kO : unloading order of the container k from ships. 

   k
pd : traveled distance to transport the container k  from 

quay to stack p, 
G(V,E): a graph, where V is the set of vertices and E the set 
of edges. Every vertex represents a container, and |V| = N. 

There is an edge between two vertices kv  and 'kv  if and 

only if 'kk TT <  and 'kk OO < , this means that container k 

and k’ can’t be assigned to a same stack. 
 
The decision variables are defined as follows: 
 
                1    if container k is assigned to stack p 

=k
px  

                0 otherwise 
 
We propose the following mathematical model: 
 

∑∑
= =

N

k

N

p

k
p

k
p

p

xdMinimize
1 1

          (1) 

∑
=

=
pN

p

k
px

1

,1   Nk ,...,1=∀           (2) 

,1' ≤+ k
p

k
p xx    pNpEkk ,...,1,)',( =∈∀     (3) 

∑
=

≤
N

k
p

k
p cx

1

,    pNp ,...,1=∀            (4) 

∑
≠>≤≤

=
pkpk rorRtTNk

k
px

,1

,0   pNp ,...,1=∀           (5) 

∈k
px   0,1          NkNp p ,...,1,,...,1 ==∀       (6) 

 
        The objective function (1) minimizes the total distance 
traveled between ships and the container yard. Constraints 
(2) require that each container is assigned to a single stack. 
Constraints (3) ensure that the containers of each stack are 
arranged following the same order that they were unloaded 
from ships, and the decreasing order of their departure times. 
Constraints (4) enforce the stack capacity. Constraints (5) 
secure the compatibility between containers and stacks. 
 
         Let k a vertex of the graph ( Nk ≤≤1 ), N(k) the set 

of its neighbors, p’ a stack ( pNp ≤≤ '1 ). Constraints (3) 

lead to the following neighborhood inequality as in [21]. 
 

)()( '
)('

'
' kNxkNx k

p
kNk

k
p ≤+∑

∈

                  (7) 

 

Proposition 1: For an integer solution, the inequalities (3) 
and (7) are equivalents. 
 
Proof: It suffices to prove that (7) implies (3), because the 
reverse is highlighted by the definition of (7). 
 

Since k
px '  is a binary variable, then it can be equal to either 0 

or 1. 

       ● If k
px ' = 1 then ∑

∈

=
)('

'
' 0

kNk

k
px . Therefore, for all k’ 

neighbor of k, we have .0'
' =k

px  

Thereby )(',1'
'' kNkxx k

p
k
p ∈∀=+ . 

       ● If 0' =k
px  then ∑

∈

≤
)('

'
' )(

kNk

k
p kNx   which means 

that for all k’ belonging to N(k),  '
'

k
px  can be equal to either 0 

or 1. Thus, )(',1'
'' kNkxx k

p
k
p ∈∀≤+ . 

VI. BRANCH-AND-CUT ALGORITHM 

       The branch-and-cut is an improvement of the branch-
and-bound, which is an exact resolution method. Each of 
these two methods uses a search tree to explore the solution 
space. To do this, the search space is divided into smaller 
subsets, each representing a node of the search tree. So, the 
problem is solved by considering one by one all subsets. 
This strategy is called divide and conquer. 

       To build the search tree, we first create the root node; it 
corresponds to the released problem. Other nodes of the tree 
are obtained by making connections.  
        In the branch-and-cut, unlike the branch-and-bound, at 
each node of the search tree, some constraints called valid 
inequalities are added to the released problem so as to 
improve the solution.   
         

A. Relaxation of the problem 

        After the relaxation of integrity constraints (6), we find 
that the total number of constraints of the mathematical 
model remains great. Therefore, since the adjacency 
constraints (3) are equivalent to the neighborhood 
inequalities (7), so we delete them from the model knowing 
that the admissibility of solutions will be ensured by the 
gradual addition of valid inequalities along the branch-and-
cut algorithm. 
 

B. Preprocessing 

      The number of variables increases depending on the 

number of stacks )( pN  and containers (N). In the case 

where all stacks were empty at the beginning of the storage 
period, we can reduce the number of variables. We consider 
that all containers are equidistant to the stacks. Knowing 
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that, generally, NN p ≥ , we only use the N stacks which 

are more near to quays. This allows to significantly reduce 
the number of variables and to speed up the computation. 
 

C. Upper bound 

       To find an upper bound, we solve the bounded vertex 
coloring problem on the graph defined in section V. Each 
color corresponds to a stack. We use a heuristic algorithm 
which colors vertices one by one following the descending 
order of their number of uncolored neighbors. For each 
vertex, it chooses among the admissible colors the one that 
fits to the nearest stack. The eligible colors are those not 
assigned to a vertex which is a neighbor of the considering 
vertex, and correspond to the stacks which are not full. 
Whenever a vertex is colored, the number of empty slot of 
the stack corresponding to the used color is reduced. 
 

D. Branchings rules 

      We use the classical branching rule. At each node of the 
search tree, we create two branches by rounding the largest 

fractional variable. Let k
px  this variable. We put 0=k

px  in 

a branch; it means that container k will not be assigned to 
stack p in this branch. Then, in the other branch, we put 

1=k
px , which means that container k will inevitably be 

assigned to stack p in this branch. 
 

E. Separation method 

      At each node of the search tree, before creating 
branches, we use a simple heuristic algorithm to look for 
neighborhood inequalities which are violated. To do this, we 
treat one by one all variable which is superior to 0.5 in the 

optimal solution of the current node. Let kpx  one of these 

variables and S an integer initialized to zero. We calculate 
the number |N(k)| of neighbors of the vertex k. Then, we add 

to S the value of k
px  multiplied by |N(k)|. And we seek all 

variables '
'

k
px  such that k and k’ are neighbors and p=p’ , and 

we add the sum of their values to S. If S > |N(k)| then there 
is a violated inequality therefore we add to the sub-problem 
a constraint to avoid this. 
 

F. Description of the algorithm 

1: We begin by solving the problem using a heuristic 
algorithm to find an upper bound named BS. 
2: Then, we create the root node of the search tree which 
represents the released problem. 
3: We solve the sub-problem using the CPLEX solver. 

4: Then, we seek all neighborhood inequalities that are not 
satisfied by the solution of the current node, and then we 
add them to the released problem. 
5: We solve the problem again using the CPLEX solver. 
6: If the solution is integer and inferior to BS then we 
update BS. 
7: If the solution is fractional and inferior to BS then we do: 
     7.a: Perform connections, 
     7.b: Choose an unexploited node, 
     7.c: Go back to 3. 

VII.  NUMERICAL RESULTS 

      In this section, we present the numerical results of our 
branch-and-cut algorithm. For the implementation, we use 
SCIP, which is a framework allowing a total control of the 
solution process. The experiments were performed using a 
computer DELL PRECISION T3500 with an Intel Xeon 5 
GHz processor. 
      To test the effectiveness of our algorithm, we naturally 
compare it to CPLEX version 12.5. Performed tests on 
several instances prove that BC-CSP is very fast and it is 
able to solve large instances which can not be solved by 
CPLEX because requiring a lot of memory. 
       In Table I, we note the execution times of BC-CSP and 
of CPLEX for various instances. 
      — means that the execution is interrupted because it 
lasted more than 3 hours. 
      --- means that the computer memory is insufficient to 
resolve this instance. 
 

TABLE I.      NUMERICAL RESULTS 
N 

pN  BC-CSP CPLEX 

100 500 0 sec 2 min 58 sec 
150 500 1 sec 15 min 45 sec 
100 700 0 sec 4 min 11 sec 
100 1500 0 sec 11 min 16 sec 
50 200 0 sec 2 sec 
200 200 3 sec 14 min 
80 100 0 sec 1 min 5 sec 
90 100 0 sec 1 min 29 sec 
100 100 0 sec 2 min 11 sec 
150 200 1 sec 53 min 50 sec 
100 3500 0 sec --- 
100 3500 0 sec --- 
200 3500 3 sec --- 
300 3500 14 sec --- 
400 3500 41 sec --- 
500 3500 1 min 36 sec --- 
600 3500 6 min 13 sec --- 
700 3500 5 min 57 sec --- 
800 3500 9 min 49 sec --- 
900 3500 15 min 35 sec --- 
1000 3500 1 h 41 min 26 sec --- 
1100 3500 1 h 43 min 47 sec --- 
1200 3500 2 h 5 min 4 sec --- 
1300 3500 2 h 21 min 20 sec --- 
1400 3500        — --- 
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    In Table I, we remark that, in the most cases, the 
resolution of a great instance requires more time than the 
resolution of a small instance. However, in some cases, we 
observe the reverse. This phenomenon can be justified by 
the influence of the values of parameters like the departure 
times, the unloading order, etc.  In fact, in some cases the 
search tree can have too lot of nodes; therefore its 
exploration may require more time. But, even with these 
instances, our branch-and-cut algorithm is faster than 
CPLEX. 
 
    The mathematical model of our container storage problem 
has too many variables, especially when there are a lot of 
empty stacks in the terminal. Therefore, the elimination of 
the farthest stacks reduces the size of the problem and 
improves the resolution. Fig. 2 shows that preprocessing 
reduces the execution times. 
 

 
Fig. 2   Comparisons of execution times 

 
     As can be seen in Fig. 2, the preprocessing is more 
efficient when the number of stacks is superior to the 
number of containers. 
 

VIII.  CONCLUSION AND FUTURE WORK 

      In this paper, we studied the container storage problem. 
We widely improve the work that we did in [1] by 
considering additional constrains in order to avoid reshuffles 
at quays. We take into account the order in which containers 
are unloaded from vessels, and we minimize the total 
distance traveled by SC between quays and container yards 
in order to shorten the berthing times of ships. The major 
contribution of this paper is the effective branch-and-cut 
algorithm, which is very fast and is able to solve great 
instances. This is an exact resolution method, unlike the 
hybrid algorithm proposed in [1], which has an average 
percentage deviation equal to 10.22%. It may be possible to 
improve our branch-and-cut algorithm; therefore we 
prospect to design more effective branching rules and 
separation methods. We also plan to adapt our approach to 
container terminals which use modern equipments, such as 
automatic guided vehicles. 
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