
A Branch-and-Cut Algorithm to Solve the Container Storage Problem

Ndèye Fatma Ndiaye

University of Le Havre
Le Havre, France

 e-mail: farlou@live.fr

Adnan Yassine
Superior institute of logistic studies

Le Havre, France
e-mail: adnan.yassine@univ-lehavre.fr

Ibrahima Diarrassouba

University Institute of Technology
Le Havre, France

e-mail: diarrasi@univ-lehavre.fr

Abstract— We study the Container Storage Problem in port
terminal (CSP), which consists to effectively manage the
storage space so as to increase the productivity of port. When a
ship arrives, the inbound containers are unloaded by Quay
Cranes (QC) and then placed on quays. So, they are collected
by Straddle Carriers (SC). Each is able to carry one container
at a time, and store it in its storage location. In order to reduce
the waiting times of ships, we propose a mathematical model
which minimizes the total distance traveled by SC between
quays and container yards. In this paper, we take into account
additional constraints which are not considered previously. We
also propose an effective branch-and-cut algorithm (BC-CSP),
which is an optimal resolution method. Performed simulations
prove the effectiveness of our algorithm.

Keywords-Container Storage Problem; complexity; branch-
and-bound; CPLEX.

I. INTRODUCTION

In a seaport, the container terminal manages all actions
concerning containers. Generally, three types of containers
are distinguished: outbound, inbound, and transshipment
containers. All these containers are temporarily stacked in
the container yard, before leaving the port. Outbound
containers are brought by External Trucks (ET), also picked
up by SC which store them in their storage location, and then
loaded onto vessels. Inbound containers are unloaded from
vessels by QC, transported to their storage locations by SC,
and then recuperated later by ET. Nowadays, the competition
between ports is very high. Therefore, each of them tries to
improve continuously the quality of its service in order to
attract more customers. The most important criteria to
measure service level include the waiting time of ET which
collect inbound containers. In fact, when an ET arrives at
port and claims a specific container, it waits during all the
time required to retrieve it. If the desired container is under
others, it may be necessary to move these containers in first.
This kind of movements, named reshuffles, are unproductive
and require so much time. Therefore, it is very important to
optimally store containers so as to avoid them. Another
important criterion to measure the quality of service is the

time required to unload ships. The importance of this factor
is justified by the fact that it is more beneficial for both the
port and the customers to shorten the stay of vessels. First, it
is better for the port to quickly free the berths in order to
allocate them to others incoming vessels. Second, generally,
ship-owners rent vessels; therefore, they tend to minimize
the berthing durations in order to reduce rental costs. These
two issues are addressed in this paper. We consider a modern
container terminal, which uses SC instead of Internal Trucks
(IT). The advantage of a SC is that it is able to lift and to
store a container itself; therefore it is not necessary to use
Yard Cranes (YC). A storage yard is composed of several
blocks. In order to allow good circulation of SC, each block
is composed of bays which are separated by small spaces. In
every bay, there are stacks wherein containers are stored. A
stack must have a height inferior or equal to the limit fixed
by the port authorities. Fig. 1 shows an example of block
wherein circulate straddle carriers.

Fig. 1 Straddle carriers circulating in a containers yard

We propose in this paper an effective method to solve the
container storage problem. For this, we propose a new
mathematical model which determines the optimum storage
plan and minimizes the time required to transport containers
between quays and storage areas. For the numerical solution

226Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

of the model, we propose an effective branch and cut
algorithm (BC-CSP), which is an exact method.

The remainder of the paper is organized as follows: a
literature review is given in the second part. A detailed
description of the addressed problem is exposed in the third
part. The complexity of the problem is discussed in the
fourth section, while the proposed mathematical model is
explained in the fifth section. The branch-and-cut algorithm
is itemized in the sixth section; the numerical results are
presented in the seventh section. Our conclusion is given in
the eighth section.

II. LITERATURE REVIEW

There are many papers addressing the storage of
outbound containers than inbound containers. However,
there are some papers which consider both simultaneously.
Zhang et al. [2] considered in addition to these two
categories, those which are in transition, that means
containers which are unloaded from some vessels and are
waiting for being loaded onto others. They used the rolling-
horizon approach [2] to solve the storage space allocation
problem. For each planning horizon, they solved the problem
in two steps formulated as mathematical programs. In the
first step, they determined the total number of containers
assigned to each block at a period so that the workloads of
loading and unloading of each vessel are balanced. Then, in
the second step they determined the number of containers
associated to every vessel in order to minimize the total
distance traveled to transport these containers from quays to
the storage blocks. Bazzazi et al. [3] proposed a genetic
algorithm to solve an extended version of the Storage Space
Allocation Problem (SSAP). It consists to allocate
temporarily locations to the inbound and outbound
containers in the storage yard according to their types
(regular, empty, and refrigerated). They aimed to balance the
workloads between blocks with the goal to minimize the
time required to store or to retrieve containers. Park and Seo
[4] dealt the Planar Storage Location Assignment Problem
(PSLAP), in which only planar movements are allowed. The
purpose of PSLAP is to store inbound and outbound
containers so as to minimize the number of moving
obstructive objects. The authors made a mathematical
formulation of PSLAP and proposed a genetic algorithm to
solve it. Lee et al. [5] combined the truck scheduling and the
storage allocation problems. They considered inbound and
outbound containers, and tend to minimize the weighted sum
of total delay of requests and the total travel time of yard
trucks. For numerical resolution, they proposed a hybrid
insertion algorithm. Kozan and Preston [6] developed an
iterative search algorithm using a transfer model and an
assignment model. At first, the algorithm determined
cyclically the optimum storage locations for inbound and
outbound containers, and secondly, it found the
corresponding handling schedule. They solved the problem
using a genetic algorithm, a tabou search algorithm and a
hybrid algorithm.

 Concerning inbound containers, most of papers deal with
the management of reshuffles. Sauri and Martin [7] proposed
three different strategies to store inbound containers. The

purpose of their work is to determine the best strategy which
minimizes re-handles in an import container yard. For this,
they developed a mathematical model based on probabilistic
distribution functions to evaluate the number of reshuffles.
Kim and Kim [8] considered a segregation strategy to store
inbound containers. This method does not allow placing
newly arriving containers over those which arrived earlier.
Therefore, storage spaces are allocated to each vessel so as to
minimize the number of reshuffles expected during the
loading operations. Jinxin et al. [9] proposed an integer
programming model, which addressed the trucks scheduling
and the storage of inbound containers. They minimized at the
same time the number of congestions, the waiting time of
trucks, and the unloading time of containers. The authors
designed a genetic algorithm to solve the model, and another
heuristic algorithm which gave them best results. Yu and Qi
[10] treated the storage problem of inbounds containers in a
modern automatic container terminal. They aimed to
minimize reshuffles in two steps. For this, they first resolved
the block space allocation problem for newly arriving
inbound containers, and then after the retrieving of some
containers they tackled the re-marshaling processes in order
to re-organize the block space allocation. They suggested
three mathematical models of storage containers, the first is a
non-segregation model, the second is a single-period
segregation model, and the last is a multiple-period
segregation model. They conceived a convex cost network
flow algorithm for the first and the second models, and a
dynamic programming for the third. They found that the re-
marshaling problem is NP-hard and then designed a heuristic
algorithm to solve it. We considered in [1] a container
terminal wherein reshuffles are not allowed. We proposed a
new mathematical model to allocate storage spaces to
inbound containers in such a way that no reshuffles will be
necessary to retrieve them later. We designed a hybrid
algorithm including genetic algorithm and simulated
annealing to solve it.

In most container terminals, the departure times of
inbound containers are unknown. K. H. Kim and K. Y. Kim
considered in [11] a container terminal in which there is
limited free time storage for inbound containers, beyond
which customers have to pay storage costs per time unity.
The authors proposed a mathematical model to find the
optimal price schedule.

 Papers dealing with the storage problem of outbound
containers have generally different goals. Preston and Kozan
[12] proposed a Container Location Model (CLM) to store
outbound containers in such a way that the time service of
container ships is minimal. They designed a genetic
algorithm for the numerical resolution. Kim et al. [13]
developed a dynamic programming model to determine the
storage locations for outbound containers according to their
weight. They minimized the number of relocations expected
during the ships loading. They also made a decision tree
using the set of optimal solutions to support real-time
decisions. Chen and Lu [14] addressed in two steps the
storage space allocation problem of outbound containers. In
the first step, they used a mixed integer programming model
to calculate the number of yard bays and the number of

227Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

locations in each of them. So, in the second step, they
determined for each container the exact location where it
must be stored. Woo and Kim [15] proposed a method to
allocate storage spaces to groups of outbound containers.
They reserved for each group of containers having the same
attributes, a collection of adjacent stacks. At the end, the
authors proposed a method to determine the necessary size of
the storage space expected for all the outbound containers.
Kim and Park [16] gave two linear mathematical models to
store outbound containers. In the first, they considered a
direct transfer, and so, in the second, they dealt with an
indirect transfer system. They designed two heuristic
algorithms to solve these models. The one is based on the
duration-of-stay of containers, and then, they used the sub-
gradient optimization technique in the other.

Among the few papers dealing only transshipment
containers include that of Nishimura et al. [17]. They
developed an optimization model to store temporarily
transshipment containers in the storage yard, and proposed a
heuristic based on lagrangian relaxation method for the
numerical resolution.

III. CONTEXT

When a container ship arrives at port, QCs unload
containers and place them on quays. So, they are picked up
by SCs, which carry and store them in the container yard.
The firsts containers which are placed on quays are the first
picked up. In order to avoid congestion on quays, which
could increase the time required to unload ships, we
minimize the total distance traveled by SCs between quays
and the container yard. In this study, we consider the
following five main hypotheses:
(1) Reshuffles are not allowed,
(2) In each stack, containers are arranged according to:

(2.a) the same order that they are unloaded from ships,
(2.b) and the descending order of their departure time,

(3) In a stack, all containers have same dimensions,
(4)We take into account containers which are already present
in the storage areas before the start of the new storage period,
(5) We respect the maximum capacity of each stack.

 Excepted (2.a), these hypotheses are considered in [1].

IV. COMPLEXITY OF THE PROBLEM

In this section, we study the complexity of the CSP. In
particular, we show that it is equivalent to the Bounded
Coloring Problem (BCP); therefore, is NP-hard in the
general case.

A. Some reminders about the BCP

Let us begin by recalling some concepts and definitions
that will be useful for the following.

1) Preliminary notions: Let G(V,E) be an undirected
graph, V is the set of vertices and E is the set of edges.

 G is a comparability graph if and only if there are a
sequence of vertices nvv ,...,1 of V such that for each (p, q,

r) checking 1 < p < q < r < n, if Evv qp ∈),(and
Evv rq ∈),(then Evv rp ∈),(.

 A co-comparability graph is the complement of a
comparability graph.

An undirected graph G = (V,E) is a permutation graph if

and only if there are a sequence of vertices nvv ,...,1 of V

and a permutation σ of the vertices such that for all i and j

satisfying nji ≤≤≤1 , Evv ji ∈),(if and only if

σ(i)≥σ(j).

Theorem 1: A graph G is a permutation graph if and only

if G and its complement are comparability graphs [18].

2) The bounded coloring problem: Given an undirected
graph G = (V,E), a set of s colors sll ,...,1 , an integer H and
a vector that gives the weight of assigning a color il to a
vertex of the graph. The bounded coloring problem with
minimum weight consists to determine a minimum weight
coloring of G using at most s colors in such a way that a
color is assigned to at most H vertices.

Theorem 2: [19] The bounded coloring problem with

minimum weight is NP-hard for the class of permutation
graphs for all 6≥H .

B. Equivalence between the CSP and the BCP

 We show that the CSP is NP-hard. For this, we introduce
an undirected graph G(N,O,T) = (V,E) constructed from an
instance of the CSP, where N is the set of containers and O
and T are vectors, which give respectively the unloading
order and the departure times of each container. The graph G
is constructed as follows. A vertex of the graph corresponds
to a container. To simplify notation, the index k is used to
denote both a container and the vertex of the graph which
corresponds to it. There is an edge between two vertices k

and k’ if and only if 'kk OO < and 'kk TT < . We have the

following lemma.

Lemma 1: The graph G(N,O,T) obtained from a instance
of CSP is a permutation graph.

 Proof: To prove that the graph G(N,O,T) is a
permutation graph, it suffices to show that it is a
comparability graph as well as its complement (see Theorem
1).

 First, we show that G(N,O,T) is a comparability graph.
The vertices are ordered according to the same order that the
unloading of the corresponding containers from ships. If two
containers k and k’ are unloaded from ships at the same time

(that is to say if 'kk OO =), then the vertices k and k’ are

ordered in the ascending order of their departure times. If

228Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

'kk OO = and 'kk TT = then the vertices are ordered in the

lexicographical order. Without loss of generality, we
consider that the vertices are numbered in the order that is
previously determined. Now, consider any three vertices k, k’
and k’’ of the graph such that Ekkkkk ∈<<)',(,"' and

.)'','(Ekk ∈ We will prove that necessarily

Ekk ∈)'',(. As Ekk ∈)',(and Ekk ∈)'','(, we have

'kk OO < and 'kk TT < , and we have also ''' kk OO <

and ''' kk TT < . We thus obtain that ''' kkk OOO << and

''' kkk TTT << , which implies that the graph G(N,O,T) has

an edge between vertices k and k’’ . So G(N,O,T) is a
comparability graph.
 Now, we will prove that the complement of G(N,O,T),

denoted),,(TONG is also a comparability graph. First,
note that there is an edge between two vertices k and k’ of

),,(TONG if and only if there is no edge in G(N,O,T)

between k and k’ in other words 'kk OO < and 'kk TT > .

The vertices of G are ordered in the same order as those of
G. As before, for any three vertices k, k’, and k’’ of the graph

),,(TONG such that Ekkkkk ∈<<)',(,''' and

,)'','(Ekk ∈ we have ''' kkk OOO << and

''' kkk TTT >> . So, ''kk OO < and ''kk TT > , and then

there is an edge between k and k’’ in),,(TONG .

Therefore,),,(TONG is also a comparability graph.�

 Now, it is easy to see that a solution of the container
storage problem is a solution of the corresponding bounded
coloring problem. In fact, a similar result is given in [20].

Consider an instance ICSP = (N,O,T, pN ,H,r,R,d) of the

CSP and the graph G(N,O,T) associated. Now, consider an
H-coloring of G(N,O,T) that has s colors. Each color of the
bounded coloring problem is matched to a stack of the CSP.
Indeed, as all vertices having the same color form a stable
set, in other words they are not connected by any edge,
therefore any two containers corresponding to two vertices of

this stable set satisfy these two inequalities 'kk OO < and

'kk TT ≥ . The unloading order as well as the departure

times of containers corresponding to the vertices of a stable
set are compatible; thereby, they can be stored in a same
stack if it has enough empty slots. In addition, there are at
most H vertices in this stable set. So, the number of
containers assigned to the corresponding stack is inferior or
equal to H. Therefore, an H-coloring corresponds to a valid
assignment for the CSP. Similarly, it is easy to see that a
solution of the CSP is a solution of the H-bounded coloring
problem in the graph G(N,O,T). We have the following
lemma.

Lemma 2: Let ICSP = (N,O,T, pN ,H,r,R,d) an instance of

the container storage problem. The CSP has a solution for
this instance if and only if the bounded H-coloring problem
on the graph G(N,O,T) has a solution.

 We now give the main result of this section.

Theorem 3: The container storage problem is equivalent to
the bounded coloring problem with minimum weight.

Proof: To establish this result, we prove that an instance of
the CSP is equivalent to an instance of the BCP and vice

versa. Let ICSP = (N,O,T, pN ,H,r,R,d) an instance of the

storage container problem and G(N,O,T) the permutation

graph associated. Consider IBCP = (G(N,O,T),H, pN ,d) an

instance defined on the graph G(N,O,T), where Np is the
number of colors, H is the bound, and d a matrix containing
the weights. According to the Lemma 2 a solution of the
CSP is a solution of the BCP, and similarly a stack of CSP
corresponds to a color of BCP and vice versa. It follows then

that the cost k
pd of assigning a container Nk ∈ to the

stack pNp∈ , is the same as the assignment of the vertex k

to the color corresponding to the stack p. So, the cost of H-
coloring in the graph G(N,O,T) is the same as the cost of the
solution of the corresponding CSP and vice versa. Therefore,
we can find the optimal solution of the CSP if and only if we
find the optimal solution of BCP.�

According to the Theorem 2 the bounded coloring problem is
NP-hard for the class of permutation graphs if 6≥H . It
therefore follows from Theorem 3 that the CSP is NP-hard if

6≥H .

Corollary 1: The container storage problem is NP-hard if the
maximum capacity of every stack is superior or equal to six.

V. MATHEMATICAL MODELING

In the mathematical model, we use the following indices:
 p: stack,

 k: container.

The data of the problem are:

 N : number of containers,

 pN : number of stacks,

 pc : number of empty slots in the stack p,

 pr : type of container which can be placed in the stack

p,

 pt : departure time of the container which was on the

top of the stack p at the begin of the new storage
period.

229Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

 kR : type of the container k,

 kT : departure time of the container k,

 kO : unloading order of the container k from ships.

 k
pd : traveled distance to transport the container k from

quay to stack p,
G(V,E): a graph, where V is the set of vertices and E the set
of edges. Every vertex represents a container, and |V| = N.

There is an edge between two vertices kv and 'kv if and

only if 'kk TT < and 'kk OO < , this means that container k

and k’ can’t be assigned to a same stack.

The decision variables are defined as follows:

 1 if container k is assigned to stack p

=k
px

 0 otherwise

We propose the following mathematical model:

∑∑
= =

N

k

N

p

k
p

k
p

p

xdMinimize
1 1

 (1)

∑
=

=
pN

p

k
px

1

,1 Nk ,...,1=∀ (2)

,1' ≤+ k
p

k
p xx pNpEkk ,...,1,)',(=∈∀ (3)

∑
=

≤
N

k
p

k
p cx

1

, pNp ,...,1=∀ (4)

∑
≠>≤≤

=
pkpk rorRtTNk

k
px

,1

,0 pNp ,...,1=∀ (5)

∈k
px 0,1 NkNp p ,...,1,,...,1 ==∀ (6)

 The objective function (1) minimizes the total distance
traveled between ships and the container yard. Constraints
(2) require that each container is assigned to a single stack.
Constraints (3) ensure that the containers of each stack are
arranged following the same order that they were unloaded
from ships, and the decreasing order of their departure times.
Constraints (4) enforce the stack capacity. Constraints (5)
secure the compatibility between containers and stacks.

 Let k a vertex of the graph (Nk ≤≤1), N(k) the set

of its neighbors, p’ a stack (pNp ≤≤ '1). Constraints (3)

lead to the following neighborhood inequality as in [21].

)()('
)('

'
' kNxkNx k

p
kNk

k
p ≤+∑

∈

 (7)

Proposition 1: For an integer solution, the inequalities (3)
and (7) are equivalents.

Proof: It suffices to prove that (7) implies (3), because the
reverse is highlighted by the definition of (7).

Since k
px ' is a binary variable, then it can be equal to either 0

or 1.

 ● If k
px ' = 1 then ∑

∈

=
)('

'
' 0

kNk

k
px . Therefore, for all k’

neighbor of k, we have .0'
' =k

px

Thereby)(',1'
'' kNkxx k

p
k
p ∈∀=+ .

 ● If 0' =k
px then ∑

∈

≤
)('

'
')(

kNk

k
p kNx which means

that for all k’ belonging to N(k), '
'

k
px can be equal to either 0

or 1. Thus,)(',1'
'' kNkxx k

p
k
p ∈∀≤+ .

VI. BRANCH-AND-CUT ALGORITHM

 The branch-and-cut is an improvement of the branch-
and-bound, which is an exact resolution method. Each of
these two methods uses a search tree to explore the solution
space. To do this, the search space is divided into smaller
subsets, each representing a node of the search tree. So, the
problem is solved by considering one by one all subsets.
This strategy is called divide and conquer.

 To build the search tree, we first create the root node; it
corresponds to the released problem. Other nodes of the tree
are obtained by making connections.
 In the branch-and-cut, unlike the branch-and-bound, at
each node of the search tree, some constraints called valid
inequalities are added to the released problem so as to
improve the solution.

A. Relaxation of the problem

 After the relaxation of integrity constraints (6), we find
that the total number of constraints of the mathematical
model remains great. Therefore, since the adjacency
constraints (3) are equivalent to the neighborhood
inequalities (7), so we delete them from the model knowing
that the admissibility of solutions will be ensured by the
gradual addition of valid inequalities along the branch-and-
cut algorithm.

B. Preprocessing

 The number of variables increases depending on the

number of stacks)(pN and containers (N). In the case

where all stacks were empty at the beginning of the storage
period, we can reduce the number of variables. We consider
that all containers are equidistant to the stacks. Knowing

230Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

that, generally, NN p ≥ , we only use the N stacks which

are more near to quays. This allows to significantly reduce
the number of variables and to speed up the computation.

C. Upper bound

 To find an upper bound, we solve the bounded vertex
coloring problem on the graph defined in section V. Each
color corresponds to a stack. We use a heuristic algorithm
which colors vertices one by one following the descending
order of their number of uncolored neighbors. For each
vertex, it chooses among the admissible colors the one that
fits to the nearest stack. The eligible colors are those not
assigned to a vertex which is a neighbor of the considering
vertex, and correspond to the stacks which are not full.
Whenever a vertex is colored, the number of empty slot of
the stack corresponding to the used color is reduced.

D. Branchings rules

 We use the classical branching rule. At each node of the
search tree, we create two branches by rounding the largest

fractional variable. Let k
px this variable. We put 0=k

px in

a branch; it means that container k will not be assigned to
stack p in this branch. Then, in the other branch, we put

1=k
px , which means that container k will inevitably be

assigned to stack p in this branch.

E. Separation method

 At each node of the search tree, before creating
branches, we use a simple heuristic algorithm to look for
neighborhood inequalities which are violated. To do this, we
treat one by one all variable which is superior to 0.5 in the

optimal solution of the current node. Let kpx one of these

variables and S an integer initialized to zero. We calculate
the number |N(k)| of neighbors of the vertex k. Then, we add

to S the value of k
px multiplied by |N(k)|. And we seek all

variables '
'

k
px such that k and k’ are neighbors and p=p’ , and

we add the sum of their values to S. If S > |N(k)| then there
is a violated inequality therefore we add to the sub-problem
a constraint to avoid this.

F. Description of the algorithm

1: We begin by solving the problem using a heuristic
algorithm to find an upper bound named BS.
2: Then, we create the root node of the search tree which
represents the released problem.
3: We solve the sub-problem using the CPLEX solver.

4: Then, we seek all neighborhood inequalities that are not
satisfied by the solution of the current node, and then we
add them to the released problem.
5: We solve the problem again using the CPLEX solver.
6: If the solution is integer and inferior to BS then we
update BS.
7: If the solution is fractional and inferior to BS then we do:
 7.a: Perform connections,
 7.b: Choose an unexploited node,
 7.c: Go back to 3.

VII. NUMERICAL RESULTS

 In this section, we present the numerical results of our
branch-and-cut algorithm. For the implementation, we use
SCIP, which is a framework allowing a total control of the
solution process. The experiments were performed using a
computer DELL PRECISION T3500 with an Intel Xeon 5
GHz processor.
 To test the effectiveness of our algorithm, we naturally
compare it to CPLEX version 12.5. Performed tests on
several instances prove that BC-CSP is very fast and it is
able to solve large instances which can not be solved by
CPLEX because requiring a lot of memory.
 In Table I, we note the execution times of BC-CSP and
of CPLEX for various instances.
 — means that the execution is interrupted because it
lasted more than 3 hours.
 --- means that the computer memory is insufficient to
resolve this instance.

TABLE I. NUMERICAL RESULTS
N

pN BC-CSP CPLEX

100 500 0 sec 2 min 58 sec
150 500 1 sec 15 min 45 sec
100 700 0 sec 4 min 11 sec
100 1500 0 sec 11 min 16 sec
50 200 0 sec 2 sec
200 200 3 sec 14 min
80 100 0 sec 1 min 5 sec
90 100 0 sec 1 min 29 sec
100 100 0 sec 2 min 11 sec
150 200 1 sec 53 min 50 sec
100 3500 0 sec ---
100 3500 0 sec ---
200 3500 3 sec ---
300 3500 14 sec ---
400 3500 41 sec ---
500 3500 1 min 36 sec ---
600 3500 6 min 13 sec ---
700 3500 5 min 57 sec ---
800 3500 9 min 49 sec ---
900 3500 15 min 35 sec ---
1000 3500 1 h 41 min 26 sec ---
1100 3500 1 h 43 min 47 sec ---
1200 3500 2 h 5 min 4 sec ---
1300 3500 2 h 21 min 20 sec ---
1400 3500 — ---

231Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

 In Table I, we remark that, in the most cases, the
resolution of a great instance requires more time than the
resolution of a small instance. However, in some cases, we
observe the reverse. This phenomenon can be justified by
the influence of the values of parameters like the departure
times, the unloading order, etc. In fact, in some cases the
search tree can have too lot of nodes; therefore its
exploration may require more time. But, even with these
instances, our branch-and-cut algorithm is faster than
CPLEX.

 The mathematical model of our container storage problem
has too many variables, especially when there are a lot of
empty stacks in the terminal. Therefore, the elimination of
the farthest stacks reduces the size of the problem and
improves the resolution. Fig. 2 shows that preprocessing
reduces the execution times.

Fig. 2 Comparisons of execution times

 As can be seen in Fig. 2, the preprocessing is more
efficient when the number of stacks is superior to the
number of containers.

VIII. CONCLUSION AND FUTURE WORK

 In this paper, we studied the container storage problem.
We widely improve the work that we did in [1] by
considering additional constrains in order to avoid reshuffles
at quays. We take into account the order in which containers
are unloaded from vessels, and we minimize the total
distance traveled by SC between quays and container yards
in order to shorten the berthing times of ships. The major
contribution of this paper is the effective branch-and-cut
algorithm, which is very fast and is able to solve great
instances. This is an exact resolution method, unlike the
hybrid algorithm proposed in [1], which has an average
percentage deviation equal to 10.22%. It may be possible to
improve our branch-and-cut algorithm; therefore we
prospect to design more effective branching rules and
separation methods. We also plan to adapt our approach to
container terminals which use modern equipments, such as
automatic guided vehicles.

REFERENCES
[1] R. Moussi, N. F. Ndiaye, and A. Yassine, “Hybrid Genetic Simulated

Annealing Algorithm (HGSAA) to Solve Storage Container Problem
in Port,” Intelligent Information and Database Systems, Lecture
Notes in Computer Science, Pan. Chen. Nguyen. Berlin, Intelligent
Information and Database Systems, Lecture Notes in Computer
Science , vol. 7197, March. 2012, pp. 301-310.

[2] C. Zhang, J. Liu, Y. W. Wan, K. G. Murty, and R. J. Linn,“ Storage
space allocation in container terminals,” Transportation Research Part
B: Methodological, vol. 37, December. 2003, pp. 883-903.

[3] M. Bazzazi, N. Safaei , and N. Javadian, “A genetic algorithm to
solve the storage space allocation problem in a container terminal,”
Computers & Industrial Engineering, vol. 56, February. 2009, pp. 44-
52.

[4] C. Park and J. Seo, “Mathematical modeling and solving procedure of
the planar storage location assignment problem,” Computers &
Industrial Engineering, vol. 57, October. 2009, pp. 1062-1071.

[5] D. Lee, J. X. Cao, Q. Shi, and J. H. Chen, “A heuristic algorithm for
yard truck scheduling and storage allocation problems,”
Transportation Research Part E: Logistics and Transportation Review,
vol. 45, September. 2009, pp. 810-820.

[6] E. Kozan and P. Preston, “Mathematical modeling of container
transfers and storage locations at seaport terminals,” OR Spectrum,
vol. 28, October. 2006, pp. 519-537.

[7] S. Sauri and E. Martin, “Space allocating strategies for improving
import yard performance at marine terminals,” Transportation
Research Part E: Logistics and Transportation Review, vol. 47,
November. 2001, pp. 1038-1057.

[8] K. H. Kim and H. B. Kim, “Segregating space allocation models for
container inventories in port container terminals,” International
Journal of Production Economics, vol. 59, March. 1999, pp. 415-423.

[9] C. Jinxin, S. Qixin, and D. Lee, “A Decision Support Method for
Truck Scheduling and Storage Allocation Problem at Container,”
Tsinghua Science & T echnology, vol. 13, October. 2008, pp. 211-
216.

[10] M. Yu and X. Qi, “Storage space allocation models for inbound
containers in an automatic container terminal,” European Journal of
Operational Research, vol. 226, April. 2013, pp. 32-45.

[11] K. H. Kim and K. Y. Kim, “Optimal price schedules for storage of
inbound containers,” Transportation Research Part B:
Methodological, vol. 41, October. 2007, pp. 892-905.

[12] P. Preston and E. Kozan, “An approach to determine storage
locations of containers at seaport terminals,” Computers &
Operations Research, vol. 28, September. 2001, pp. 983-995.

[13] K. H. Kim, Y. M. Park, and K. Ryu, “Deriving decision rules to
locate export containers in container yards,” European Journal of
Operational Research, vol. 124, July. 2000, pp. 89-101.

[14] L. Chen and Z. Lu, “The storage location assignment problem for
outbound containers in a maritime terminal,” International Journal of
Production Economics, vol. 135, January 2012, pp. 73-80.

[15] Y. J. Woo and K. H. Kim, “Estimating the space requirement for
outbound container inventories in port container terminals,”
International Journal of Production Economics, vol. 133, September
2011, pp. 293-301.

[16] K. H. Kim and K. T. Park, “A note on a dynamic space-allocation
method for outbound containers,” European Journal of Operational
Research, vol. 148, July. 2003, pp. 92-101.

[17] E. Nishimura, A. Imai, G. K. Janssens, and S. Papadimitriou,
“Container storage and transshipment marine terminals,”
Transportation Research Part E: Logistics and ransportation Review,
vol. 45, September. 2009, pp. 771-786.

[18] B. Dushnik and E. W. Miller, “Partially ordered sets, American
Journal of Mathematics”, 1941, vol. 63, pp. 600-610.

[19] K. Jansen, “The mutual exclusion scheduling problem for
permutation and comparability graphs,” STACS 98, Lecture Notes in
Computer Science, vol. 1373, February. 1988, pp. 287-297.

232Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

[20] F. Bonomo, S. Mattia, and G. Oriolo, “Bounded coloring of co-
comparability graphs and the pickup and delivery tour combination
problem,” Theoretical Computer Science, vol. 412, October. 2011,
pp. 6261-6268.

[21] I. Mindez-Diaz and P. Zabal, A Branch-and-cut algorithm for graph
coloring, Discret Applied Mathematics, vol. 154, April. 2006, pp.
826-847.

233Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

