
SmartModels – A Framework for Generating

On-line Assessment Systems

Emanuel Ţundrea

Griffiths School of Management

“Emanuel” University of Oradea

Oradea, Romania

emanuel@emanuel.ro

Abstract - Globalization has set a strong mark on the way
education can be provided. Every knowledge institution
provider has to publish and offer his expertise for a wider
readership in order to stay on top. One of the prime-time
opportunities is to build web-based software solutions in
order to support distance learning. There are so many
ways to organize a class and professors can imagine so
many ways to evaluate students that the complexity of
such a software system can be hard to implement and it
can hardly foresee future education forms. The Model-
Driven Architecture (MDA) project from OMG promotes
the use of meta-modeling in order to drive the system’s
design and implementation. In this context, this paper
presents (i) an approach – it reviews the SmartModels
approach briefly introducing its principles, basic entities
and main elements when defining a business-model; and
(ii) a prototype – SmartFactory, which is based on Eclipse
platform and its role is to validate the new approach. It
addresses the paradigm of how to practically implement
MDA principles and rules for software engineering.
Therefore, it deals with important implementation issues
based on Eclipse Platform. The examples in this paper
target the process of developing e-learning deployment
tools for on-line assessment solutions.

Keywords-meta-modeling; SmartModels; SmartFactory;
software product lines; on-line learning assessment system.

I. INTRODUCTION

SmartModels aims to address in a practical way the
MDE [6] principles. It is an approach which integrates
these concepts and proposes a way of developing
domain-specific software based on models as a more
flexible option to the Meta-Object Facility (MOF) [6]
plus Unified Modeling Language (UML) [11] approach.
It gains know-how from a previous research also on
meta-modeling [5]; together with it, a prototype called
SmartFactory was developed in order to validate and get
feed-back from users.

MDA approach, as Object Management Group
(OMG) [6] established it, has the advantages of stability
and platform-independence through defining business
functionality and behavior in a base Platform-
Independent Model (PIM) technology-independent way.
This means that an approach based on models has many
advantages primarily from the design point of view, but
also from the implementation point of view (application
coding, management and maintenance). There are many

proven examples on developing standards like SQL,
GUI builders, HTML or regular expressions.

One of the main problems companies face today is
that even if there is a perfect model, the programmers
have to make a lot of compromises when trying to
implement the model using a specific programming
language, when mapping to a platform and when
needing to adapt to new requirements and redeploy.

This is one of the main concerns of the Object-
Oriented Programming (OOP) principles which did not
cure important issues faced by software companies
these days on developing complex software for reuse
and protecting the more and more evolving applications
against technological obsolescence.

This problem applies to the process of developing e-
learning deployment tools, when trying to encapsulate
all type of possible knowledge presentations or
questions from an assessment.

A very interesting technical solution comes from
adaptable Service-Oriented Architectures (SOA) [14]
which integrates the Aspect-Oriented Programming
(AOP) [4] as a new design solution. For example,
Monfort et al. [12] have implemented an infrastructure
to dynamically reroute messages according to changes
without redeployment. This way, companies gain
flexibility, but it is still much to be done in order to
obtain genuine flawless applications, and current market
implementations still do not provide means for easy
adaptable application behavior.

Section III presents SmartModels response to this
challenge by the way it encapsulates meta-information
of complex entity families. Thus, the meta-level defined
in the design phase can dynamically control the
reification level and even the instance level of an
application. More objective, section III.C shows how
SmartModels integrates AOP technology through
dynamic aspects called actions.

Another interesting trend is well ascertained by Pohl
et al. [13]. This solution makes use of Data-Flow
Diagrams (DFD) [11] as a basis for a model-driven
development framework for embedded target platforms.
New target platforms can be easily added using
platform specifications based on Orthogonal Variability
Models (OVM) [11]. The downside is the fact that in
reality these tools are tailored to produce code for a
specific hardware platform or virtual machine. Tailoring
is mainly done with hand-written code or generation
through restrictive and complex formal specifications.

116Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

There is no broader vision on what is to be done if the
platform evolves (which is the case so often).

SmartModels tries to reduce this gap between the
design and implementation and to ensure the
independence between the model, future family of
applications and the pressing need for technological
adaptability. Through its small kernel and a set of basic
entities, it provides a framework to describe models and
a software factory to automatically generate code as
much as possible. This means that the applications may
be re-generated at any time if the model or the
technology evolves and also the model instances can
drive the behavior of the application at code generation
time or at run-time.

For the time being, one last argument for choosing
SmartModels is that, together with its SmartFactory
prototype, it forms a possible and feasible way to apply
these principles. The tool is implemented on Eclipse
platform which has prime time today in the realm of
researchers on software engineering.

Figure 1. Elements of a business-model in SmartModels

Therefore, SmartModels applies MDA [6] and
DomainDriven Development (DDD) [3] principles
through reusing the know-how of promising platforms
for building Integrated Development Environments
(IDEs) like SmartTools [1] or Eclipse [10].

The main objective of SmartModels is, on the one
hand, to clearly identify, thanks to a metalevel, the
semantics of concepts used for the modeling of a given
domain, and, on the other hand, thanks to approaches by
separation of concerns and generative programming [2],
to equip, in a modular way, the applications related to
this domain [9].

Next section will present each entity of SmartModels
with respect to the level it manifests. Section III
presents the process of deploying these models built
around e-learning tool examples using the SmartFactory
prototype. Section IV summarizes the results of the
experiment and provides insights on potential
perspectives on how to further develop the
expressiveness of both the approach and the tools.

II. SMARTMODELS – AN APPROACH BASED ON

MODELS

Figure 1 distinguishes between the different levels of
the architecture of the meta-model: the main elements
proposed by SmartModels in order to define business
models.

A. SmartModels Meta-Level

First of all, the meta-level is the top level of
SmartModels business-model reification and it handles
the meta-information through concepts. A concept
participates to the definition and the management of the
meta-information of a business-model. A separation
between the meta-level and the reification-level is
important in order to clearly identify the relevant
common and variable concerns of a family of entities
which compound a domain and even identify inter-
related concerns of a set of closely-related domains. The
meta-level contains the model’s entities information
(abstract) and rules which define their behavior and set
the foundation for describing their infrastructure
requirements.

The definition of the meta-information of a model is
under the responsibility of an expert of the business
domain to which the model is dedicated. Therefore, it
encapsulates the semantics of entities and their
treatments. It can be related to one or a number of atoms
and drives their behavior. Just as a forward-looking it is
important to mention that in SmartModels’ approach an
atom is the structure which encapsulates the description
of an entity.

The main entity which points out the clear separation
between the semantics (meta-level) and their reification
(reification-level) of the SmartModels model entities is
the Concept. The choice to encapsulate the meta-
information at the meta-level has a couple of very
important advantages:

 The support for reuse of the semantics in other
(closely related) models;

 The maintenance of the semantics (updating and
redefining of the semantics) deals only with the
meta-level (concepts);

 The model transformation, which is one of the
goals of the approach.

The semantics of a business-model stored in a
concept are reified through a set of hyper-generic
parameters and characteristics [5] (which form the
meta-information) and a set of actions (which perform
treatments on the entities according to their meta-
information). The identification of the parameters and
characteristics and their possible values is the job of the
meta-programmer which addresses the know-how of the
business-domain. Based on the set of parameters
corresponding to a SmartModels’ concept, the approach
can make a differentiation between the families of
entities of a domain and based on their values it can
distinguish the entities within a family.

The hyper-generic parameters customize the
behavior of the entities (it refers to generic atoms, see
section II.B, and not to their instances) of a business-
model. Their role is to capture and express the
properties which compound the definition of the generic

contains

contains

is-a

Parameters

&

Characteristics

Actions

&

Aspects

Concept

Generic

Concept

M
eta

-L
ev

el

Atom

Generic

Atom

One Derived

Atom

One Derived

Atom

One Atom

is-a
is-a

is-derived is-derived

…

…

is-an-instance-of

is-an-

instance-of

R
eifica

tio
n

-L
ev

e
l

One Instance

of

Business-Model

In
sta

n
ce-L

ev
e
l

One Instance

of

Business-Model

One Instance

of

Business-Model

…

contains

contains

is-a

Parameters

&

Characteristics

Actions

&

Aspects

Concept

Generic

Concept

M
eta

-L
ev

elcontains

contains

is-a

Parameters

&

Characteristics

Actions

&

Aspects

Concept

Generic

Concept

contains

contains

is-a

Parameters

&

Characteristics

Actions

&

Aspects

Concept

Generic

Concept

contains

contains

is-a

Parameters

&

Characteristics

Actions

&

Aspects

Concept

Generic

Concept

M
eta

-L
ev

el

Atom

Generic

Atom

One Derived

Atom

One Derived

Atom

One Atom

is-a
is-a

is-derived is-derived

…

…

is-an-instance-of

is-an-

instance-of

R
eifica

tio
n

-L
ev

e
l

One Instance

of

Business-Model

In
sta

n
ce-L

ev
e
l

One Instance

of

Business-Model

One Instance

of

Business-Model

…

117Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

entities. A parameter expresses a basic type property,
e.g., a boolean or an integer value, an enumeration, a
tuple type or a collection of those values. A
characteristic expresses a property whose value is
defined by atom(s) which are defined within the model
(enumeration, tuple or collection). The programmer has
to set those values to describe the behavior of a generic
entity. For example, a business-model built to
encapsulate the structures (entities) and semantics of a
tool to create on-line assessment (quizzes) solutions
may present parameters like:

- MultipleAnswerCardinality, which tells if a
question corresponds to a single (1) or multiple possible
correct answer (2..*) or

- ForceExactAnswer, which expresses the
requirement to accept only precise answers (TRUE) in
case of expecting a name or checking for spelling
mistakes, or if it is interpreted together with the first
parameter it can have the meaning of accepting an
answer only if all choices are correctly set, or

- TimeLimit, which adds the aspect of time limitation
for the specified assessment or question,

and characteristics like:
- PossibleImageTypes, which indicates the list of

accepted picture file types (let’s assume that images are
reified through basic atoms in the model).

Actions are “first-class” entities described by
concepts in order to dynamically manage the behavior
of atoms according to their meta-information. The body
of an action encapsulates the execution which can be
performed by that action. This execution usually takes
into account the set of parameters and characteristics of
the generic atom to which the action is attached and
optional can present a set of aspects [4], invariants,
preconditions and post-conditions. For example, an
action can check the remaining time to limit the work
on a question or can verify the image links that the user
tries to import in the project.

This is the line of demarcation between semantics
(the meta-level) and data of a business-model (the
reification-level). As it has been anticipated in the
previous section, an atom is the reification of entities of
a business-model. Identifying the atoms of a domain is
an important task of a programmer.

B. SmartModels Reification-Level

The entity of a business-domain is encapsulated in a
model hierarchy through atom – a structure which holds
the entity data and, which is similar to the MOF [6]
“class” notion, is available in most of the object-
oriented programming languages (OOPL). It can be
used to factorize the data of a domain and has instances
within the applications which rely on the given
business-model.

In this context, it is important to learn about the
SmartModels distinction between basic and generic
atoms. An atom is generic if its meta-information
presents parameters and/or characteristics. If an atom
does not need additional semantics besides its data-
model, it is called basic and it will have direct instances
within applications.

Now, it is the time to introduce the notion of derived
atom (Figure 1), which is an instance of a generic atom
obtained through relevant combination of values
associated with the sets of characteristics and
parameters that participate to the definition of its
generic atom.

Going back to the previous example of a tool to
create on-line assessment solutions, the user can
identify:

- basic atoms: image types, answers
- generic atoms: a question with hyper-generic

parameters, characteristics and actions like those
presented in Section I.A. One can imagine its heirs
being all sorts of question types: hot-spot (allow student
to answer by selecting an image from a set), forms to
entry text, drag and drop images (set up a draggable
image over a list of possible correponding images),
labelling (label a set of images to match their text
descriptions), text identification (for example to identify
each spelling mistake in a passage), true/false questions.
The list of generic atoms can be designed so it can
benefit by the advantages of polymorphism. This way,
the model can continue to be enriched by adding other
heirs to describe new types of questions at the meta-
level (to enhance their semantic information) and at the
reification level (to enhance their structural properties).

- derived atoms: examples of questions having
different properties: i.e., a free-form text edit derived
atom is a text form question atom with the following
meta-information (Section III.D for a detailed diagram
and presentation):

- forced exact answer: FALSE;
- time limit: NONE.

or a type of image labeling can be described by:
- multiple-answer cardinality: 4 (the correct

choices can be up to four);
- forced exact answer: TRUE;
- time limit: “00:05:00” (exactly five

minutes);
- image types accepted: basic atoms like

JPEGImage, PNGImage, BMPImage.
Actions will check the conformance of the derived

atoms’ parameter values during the creation of new
questions or at run-time checking the constraints (time
limit, mandatory exact answer).

C. SmartModels Instance-Level

At this point, the benefits of the SmartModels
approach can be observed. A possible application to the
example mentioned above can be a tool for easy
developing and deploying flexible and reusable on-line
learning software systems, which describes and presents
knowledge and also which can generate assessments
and provide assistance on the evaluation process.

This section summed up the design of the approach.
Next section presents SmartFactory – a practical
implementation of SmartModels principles. It will try to
demonstrate its interest through building the above
mentioned domain model and generating its
applications.

118Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Figure 2. On-Line Assessment SmartModel Class Diagram

III. SMARTMODEL OF THE ON-LINE LEARNING

ASSESSMENT SYSTEM

This section explores more the example of building a

model through the SmartModels’ approach for
deploying a tool to develop on-line learning assessment
system. It is based on a previous experience
experimented in the I3S research laboratory [7]. Figure
2 presents the UML class diagram of the concepts and
atoms which participate to the semantic and structural
description of the model.

The BasicConcept, BasicAtom and the related
generic atom and concept pointed out as supertypes for
the model entities are presented just for the purpose to
underline the way it attaches each new model to
SmartModels kernel. They represent the abstract entities
from the built-in metamodel.

Before going further it is important to see the
SmartModels methodology to describe a business
model. This is a five-step process:

1) to identify the basic atoms of the model,
2) to identify the generic atoms,
3) to define the criteria of genericity (the hyper-

generic parameters) – typically, this is a step that must
be performed by an expert of the domain. It represents a
part of the knowledge of the business model;

4) to specify the actions attached to generic and
non-generic atoms,

5) to specify the instances of the generic atoms
(derived atoms).

Following this methodology, the next sections will
highlight several important features of SmartModels
and their advantages applied to this specific use-case.

A. Define Meta-Information of Complex Entity Families

One of the hardest part of creating a flexible tool for
developing on-line assessment is that there are many

ways a professor can imagine the evaluation of students.
One can decide to create multiple-choice questions and
require correct answers on all choices to mark all points.
Another professor can decide to mark just the good
answers and offer some points; others may even think
of a weight for each answer and subtract points if a
student makes wrong choices.

A professor can also imagine a requirement for
evaluating a quiz to get an exact answer. This can mean
checking for spelling mistake in case of a free-form text
question or labeling correctly a set of images.

Should the structural entities of the model which
describe the different types of questions of the quiz be
equipped with all the information about all possible
ways to evaluate them? SmartModels is a framework
which makes a clear differentiation between the
semantic information and reification of the families of
entities of a domain. In this paper’s example, the model
can unambiguously separate the description of the
structural features of each question type from the
concerns that deal with the process of evaluating them.

This means that the user will define atoms only to
encapsulate the different structural features of each
question type without having to concentrate on the way
they will be evaluated or mixing each type of question
with all its possible evaluation manners. On a meta-
level, the user can concentrate on creating rules to
evaluate a quiz. More than that, he can create rules
which apply at the level of a single question or a set of
question types (i.e., how are multiple-choice questions
marked) or even rules for the whole quiz (i.e., setting a
time limit).

B. Carry on all Benefits of Polymorphism

This paragraph underlines a simple truth about
SmartModels, but very powerful: it is built in the
context of object-oriented technology, and therefore, it
makes use of the notion of polymorphism.

More than that, this statute of SmartModels applies
both at the level of concepts and atoms. This is one of
the main reasons it can create families of entities. As a
consequence, for both the semantic information and the
structure of the entities of a domain it can easily:
- extend or refactor the model;
- reuse entities and their properties in order to

describe more specialized entities in the same
model or even in other closely related models
(inheritance at the level of models).

As it has already been mentioned, a quiz may contain
questions dealing with text and/or images. To keep
things simple this paper considered only the case of
questions with text and images, but a look in the second
diagram one can observe that with a little change it can
encapsulate meta-information of the different question
concepts in different trees.

Figure 2 presents the QuestionConcept, which
addresses the semantic information of a general text
type question, but also its specialization
QuestionWithImagesConcept, which concentrates on
more specific characteristics dealing with image
manipulation. This way, the instances of this concept
(the corresponding questions with images atoms) will

119Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

use semantic information about the text column of the
question through inheritance.

PossibleImageTypes characteristic indicates the
collection of accepted types of images which can be
handled by the tool. Notice that the type of information
that this characteristic uses is also an entity of the
model: the basic atom Image. Again, this is the
distinction that SmartModels makes between
parameters and characteristics (Section I.A). For
example, the parameter MultipleAnswerCardinality is of
type integer with possible value between 1 and usually
4 (most of the quizzes have questions which include 4
choices, but it should not be limited); and parameter
ForceExactAnswer of type boolean.

C. Insert Dynamic Aspects: Actions

What if after deploying the first version of the tool
for developing on-line assessments there is a need to
add a new mode of organizing the exam which was not
planned at the model design stage, for example: “to
enforce a time-limit”. Typically, a professor should be
able to stipulate when he creates the quiz even if it was
not included in the original model because it should be
checked at run-time. In a classical object-oriented
approach, it would lead to considerable changes in the
structure of entities and in their behavior in order to
implement this enhancement.

Thanks to the aspect-oriented approach proposed in
SmartModels, it provides the opportunity to attach
actions (CheckTimeLimit) to each concept to
dynamically control the behavior of entities. This
opportunity combined with the fact that it can benefit
from inheritance, the actions increase the level of
flexibility of the model: a professor may think either to
set a time limit on individual questions if he likes or a
global timer for the whole exam if he places the time-
limit parameter at the level of the assessment question
(Figure 2).

D. Derived-Atoms Explosion

Derived-Atoms are another mean provided by
SmartModels to enrich the model and capture in the
modeling phase as much as possible the commonalities
and variabilities of the domain entities.

Figure 3. Atoms and Derived-Atoms

Returning to the above example, Figure 3 presents a

couple of possible types of text questions and text and
image questions. Now, the on-line assessment

deploying tool can be equipped with more question
types in two ways:

- either to create new atoms (creating new
hierarchies of atoms in case of new entities form the
domain or creating heirs of existing atoms to obtain
specialized atoms through inheritance) or

- to derive new atoms from generic atoms in order to
create new entities through a relevant combination of
parameter and characteristic values. The number of
combination possibilities is therefore limited only by
the richness of the semantic information described
through parameters, their type ranges and relevance in
relation with other parameters from the same conceptual
tree.

Now, the effects of setting the ForceExactAnswer
parameter value to true or false can be seen when
creating a new instance of ForceFormText/
FreeFormText derived-atom at run-time (Figure 4).
Other variation of this edit-text type questions may have
a time limitation, which can also be specialized to be an
exact period of time or a fixed date and time value (a
professor may not want to set a timer on the exam
editing, but to set date and time limit until the
assignment may have to be submitted).

Another interesting illustration would be to consider
a labeling type of question when the student has to
associate to a set of images a set of names or statements
(Figure 5). A derived labeling atom can be obtained
through a combination of values of its concept
parameters. If MultipleAnswerCardinality is set to “4”
then this means that there will be a question where there
will be four choices to be presented to the student. A
timer can be attached to this question and this tool can
enumerate the types of supported images ({JPEGImage,
BMPImage, PNGImage}).

Similar to the previous example, a professor can
imagine other possible derivations. Adding a new
parameter to specify the number of labels and the
number of images to match, the user can obtain an even
more flexible way to manage the creation of labeling
questions. This way, a professor may create a question
with ten labels from which to choose only the four valid
names for the right column images.

Figure 4. Edit-Text Derived Atoms

120Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Figure 5. Labelling Derived-Atoms

Of course, the choice of the concept and/or atoms, as
well as the associated parameters and characteristics
may be discussed by an expert of the domain.

The aim of these examples is only to show the
expressiveness of SmartModels approach to capture
within a model as much as possible information which
can then be automatically generated on a specific
platform and mapped to an up-to-date technology.

IV. CONCLUSION AND FUTURE WORK

It is very important to understand that in the world of

software everything evolves: technologies,
methodologies and applications.

It is believed that in order to provide an approach
centered on models, which capture the know-how of a
domain, it is of primary importance to ensure the
independence between both the model and the software
platform and between the model and the possible
applications. This article promoted the idea that model-
oriented programming is a better approach to solve
these new challenges.

These ideas have been around for a couple of years,
but today there is no major vendor which gets behind
OMG’s MDA initiative and makes it happen in software
development. SmartModels’ approach together with the
SmartFactory prototype wants to form a possible and
feasible way to apply these principles. It can happen in
JetBrains or Eclipse and based on this last experience,
paper [8] proposes a way to address meta-modeling
issues extending their know-how. SmartModels is a
MDA approach which provides a framework to create
models that capture information about a business-
domain independent from a technology, platform or
programming language.

Because of the growing interest around educational
technologies this paper experiments the SmartModels’
approach for the description of various models and their
applications of this domain. Therefore, it investigates
the business model of a development and deploying tool
for on-line learning solution and evaluation. The
objective is to get feedbacks in order to improve the

expressiveness of SmartModels – how to ease the job of
a meta-programmer to describe a model, as well as a
better automation.

Together with its prototype, SmartFactory, this paper
presents a holistic solution to the issues raised. The
objective is to validate the new approach. The
experiment is made on the process of developing e-
learning deployment tools for on-line assessment
applications. It addresses the paradigm of how to
practically implement MDA principles and rules for
software engineering. Therefore, it deals with important
implementation issues based on Eclipse Platform.

Thus, SmartModels inspired a solution which fills
the gaps between the modeling solutions used by
architects, software quality that engineers hope for,
quantity of source-code that programmers have to write,
and productivity targets that companies have to reach:

- an easy understandable and (friendly) usable
approach for creating a coherent group of software
artifacts for a domain (easy to encapsulate the know-
how of a domain);

- flexible adaptation as a response to
technological changes: a clear separation between the
model and the technologies, but also a solid foundation
to map on any software platform;

- a straightforward methodology to model and
then to automate code generation for implementing and
deploying family of software products;

- simple ways for prototyping as an extension of
standard tools accepted on a large scale by the current
research communities;

- an architecture designed for reuse integrating
ideas from Domain Driven Development (DDD) [3],
Aspect Oriented Programming (AOP) [4], Unified
Modelling Language (UML) [11], Model Driven
Architecture (MDA) [6], and generative programming
[2].

REFERENCES

[1] I. Attali, C. Courbis, P. Degenne, A. Fau, D. Parigot, C.
Pasquier, and C. Sacerdoti, “SmartTools: a development
environment generator based on XML technologies,” XML
Technologies and Software Engineering, Toronto, Canada,
ICSE'2001 workshop, May, 2001.

[2] K. Czarnecki and U. Eisenecker, “Generative Programming:
Methods, Techniques and Applications,” ISBN: 0-201-30977-7,
ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, June, 2000.

[3] K. Czarnecki and J. Vlissides, Session: DomainDriven
Development, Special Track, “OOPSLA '03: Companion of the
18th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,”
Anaheim, CA, USA, Published by ACM, ISBN 1-58113-751-6,
2003, http://dl.acm.org/citation.cfm?id=949344&picked=prox#,
doi:10.1145/949344.949346, November, 2013.

[4] G. Kiczales et al., “AspectOriented Programming,” ECOOP'97
– ObjectOriented Programming 11th European Conference,
Jyväskylä, Finland, vol 1241, Lecture Notes in Computer
Science, SpringerVerlag, June, 1997, pp. 220-242.

[5] P. Lahire, D. Parigot, C. Courbis, P. Crescenzo, and E. Ţundrea,
“An Attempt to Set the Framework of Model-Oriented
Programming,” 6th International Conference on Technical
Informatics (CONTI 2004), Timişoara, România, Proceedings
Periodica Politechnica, Transactions on Automatic Control and
Computer Science, vol. 49 (63), 2004, ISSN 1224-600X, May
27-28, 2004, pp. 71-76.

121Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

[6] Object Management Group, “ModelDriven Architecture”
(MDA) and “Meta Object Facility” (MOF) Specification,
http://www.omg.org/mda, November, 2013.

[7] E. Ţundrea, P. Lahire, D. Pescaru, and C. Chirilã, “SmartModels
– A Framework for Generating On-Line Learning Software
Solutions,” Research Report, Laboratoire I3S – Informatique,
Signau et Systemes de Sophia Antipolis, UMR 6070, ISRN
I3S/RR-2006-26-FR, France, August, 2006.

[8] E. Ţundrea, P. Lahire, D. Parigot, C. Chirilã, and D. Pescaru,
“SmartModels – An Approach For Developing Software Based
On Models,” 1st Romanian - Hungarian Joint Symposium on
Applied Computational Intelligence SACI'2004, Timişoara,
Romania, ISBN 963-7154-26-4, May 25-26, 2004, pp. 231-240.

[9] P. Crescenzo, P. Lahire, and E. Ţundrea, “SmartModels:hyper-
generic parameters customizing the business models,” [Original
French title: SmartModels: la généricité paramétrée au service
des modèles métiers], LMO 2006 [Langages et Modèles à
Objets], Hermès Lavoisier, ISBN : 2-7462-1418-0, Nîmes,
France, March 22-24, 2006, pp. 151-166.

[10] Eclipse Foundation Community Inc., Eclipse Project,
http://www.eclipse.org/, November, 2013.

[11] Unified Modeling Language, UML Resource Page,
http://www.uml.org/, November, 2013.

[12] V. Monfort and S. Hammoudi, “Towards Adaptable SOA:
Model Driven Development, Context and Aspect”, Service-
Oriented Computing, Lecture Notes in Computer Science,
Volume 5900, 7th International Joint Conference, ICSOC-
ServiceWave 2009, Stockholm, Sweden, November 24-27,
2009, Springer-Verlag Berlin Heidelberg, pp. 175-189.

[13] Pohl, Klaus, Richard DN Pohl, and Kim Lauenroth, “Framework
development for platform-independent model-driven
development of embedded systems using the example of the
Lego Mindstorms platform”, [Original German title:
"Entwicklung eines Frameworks zur plattformunabhängigen
modellgetriebenen Entwicklung eingebetteter Systeme am
Beispiel der Lego Mindstorms-Plattform"], B.Sc. thesis,
University of Duisburg-Essen, 2010.

[14] Object Management Group, “The OMG and Service Oriented
Architecture”, http://www.omg.org/attachments/pdf/OMG-and-
the-SOA.pdf, November, 2013.

122Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

