
Mobile Agent Synchronizer for a Real-time Architecture

Ali Esserhir and Fabrice Mourlin

Algorithmic, Complexity and Logic Laboratory

Paris-Est University (U-PEC)

Créteil, France

{ali.esserhir, fabrice.mourlin}@u-pec.fr

Abstract—In this paper, we use mobile agents in order to

synchronize real-time distributed system. We present a way to

exchange mobile agents from an agent server to agent hosts.

Imported agents are used to apply actions in their host context.

We solve security problems by a negotiation step between the

host and the server. Locally, we use a specific thread to execute

the imported agent. Its mission uses time vector for event

synchronization. When the mission of the mobile agent is

ended, it goes back to the server and waits for a future

demand. We apply this strategy to implement mobile agents,

which import the time of the server, and synchronize the

actions between source and target hosts and keeps the real-

time properties.

Keywords-agents; mobile code; real-time system; task

synchronization

I. INTRODUCTION

Mobile agents provide a new approach of distributed
systems. They give a solution for moving part of code from
an agent host to another one where the data are installed. If
developers have the habit to transfer data from a software
layer to another one, this technique has limits. When the size
of data exceeds a limit, the exchange cannot be possible.
Again, security reasons can filter data transfers. It depends
on the semantics of the data: results of a company, hybrid
mesh for numerical simulation, etc.

Many works are about the subject of mobile agents. Java
Agent DEvelopment Framework (JADE) toolkit [1] is one of
the most famous solutions for the development of software
agents. Jade is a middleware that facilitates the development
of Agent Management System (AMS). The need of mobility
becomes greater in network management and other platforms
exist, such as Tracy toolkit [2] or Mobile Computation
Architecture (MCA) platform [3]. They allow moving agents
from one node to another node of a network. MCA is
designed for building a fault tolerance layer into a numerical
application. When a distributed application is deployed over
a set of processors, events can occur during the runtime. This
set of computing resources is not fixed, the new processors
can be free and few nodes can fail. Also, the execution
should continue despite these events. MCA allows moving a
part of the execution if the new computing resource appears
or disappears. The mobile agent can be considered as a
vehicle which leads a piece of code towards a computing
resource. This approach can be done because the parts of the

application are loosely coupled. The exchanges of data are
few and predictive.

When the exchanges are based on time synchronization,
this means that a time control algorithm is applied to a
business application, such as a distributed numerical
simulation. The main constraint of a real-time application is
to respond to an event at a scheduled time. We did not find
an existing work which groups mobile agent and real-time.
For example, this requirement occurs when specific events
happen, such: hardware interrupts, local clock,
communication, etc. The traditional operating systems
cannot guarantee that the latency is below a certain
threshold. In fact, during some very resource-intensive
operations (such as inputs / outputs), these systems can be
temporarily blocked. This leads to the use of real-time
operating systems, such as QNX [4], which ensures latency
known by its micro-kernel structure. Deployment of
applications on to such operating system allows users to
exploit real-time features.

Our work is about distributed architecture and the use of
mobile agents for synchronizing tasks in real-time context.
Section 2 is about the requirements of our work. Section 3,
we present our approach of mobile agent under the
development constraints. In Section 4, we describe our
algorithm and our implementation. Section 5 is about our
measures and results. Finally, we review the main features of
our contribution and the future directions.

II. REQUIREMENTS AND CONSTRAINTS

A. Operating system and libraries

A real-time system is a combination software / hardware
where the software allows adequate management of material
resources to complete certain tasks or functions in very
specific time limits. Real-time applications are often
embedded applications. Constraints of standard software,
add the notions of response time, latency, clock, timing
tasks,f etc. We use an operating system with a real-time
kernel. A real-time kernel is the minimal implementation to
make real-time scheduler, task management, and inter-task
communication.

There are differences between a true and a real-time
system. The first kind of system has completed a real-time
kernel with modules and libraries to facilitate the design of
real-time application: memory management, management of

132Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

input/output management, timer management, network
access, file management. A real-time operating system is the
special case where the host system communicates with the
target system. So, here we have chosen a development
environment natively based on RT-Linux [5].

B. Programming languages

Our experience about mobile agent development has
shown that object interpreted languages are useful for
exchanging between two parts of code: a requestor and a
server. Many programming languages exist, which are
interpreted with object paradigm. We have already
developed projects based on mobile agent architecture. Our
approach has been validated in the distinct domain, such:
web server monitoring, numerical analysis, business process
management, etc. We have chosen Java language because it
possesses useful features such: serialization, garbage
collection, class loading, network, Just-in-time compilation,
and thread scheduling. But, traditional implementations are
incapable of running applications with real-time behavior.

Fortunately, real-time extensions to Java technology,
based on the real-time specification for Java (RTSJ) [6],
enable JVMs with real-time features. The RTSJ provides an
API is enabling real-time scheduling, advanced memory
management, high-resolution timers, asynchronous event
handling, and asynchronous interruption of threads. Of
course, standard Java applications can run without
modification in a real-time JVM, but some APIs ,such as the
threads and timers APIs, APIs are enriched. Also, when
developers would like to create a new project with the real-
time Java development kit [7], they can set their own
configuration.

Because mobile agents move from a Java virtual machine
towards another one, network protocols are necessary.
Default implementation (provided by Sun, Oracle) of RTSJ
does not provide any solution. Research works exist about
real-time Remote Method Invocation (RMI) framework, but
the libraries are not maintained or are not available. For
instance, the RT-RMI framework supports timely invocation
of remote objects. The thread classes defined by the RTSJ
are used to provide the client and server threading
mechanisms in the invocation process [8]. But, this
framework is not available for four years

Also, we have selected a Jamaica virtual machine [9]
because it provides a complete implementation of the RMI
protocol. This software product is frequently updated, its
roadmap is public and reference documentation is available.
The use of RMI protocol means a rich protocol where object
can be serialized on an RMI socket. Also, this feature allows
developers to separate the concerns: agent server, agent host
and mobile agent.

In the next section, we give details about our mobile
agent design and implementation with this restricted
development context.

III. MOBILE AGENT IN AN RT CONTEXT

The software architecture of a distributed mobile system
is based on two main strategies. In the first strategy, agent
hosts provide a remote service for reaching them. Next, an

agent server configures a mobile agent to visit a set of hosts
with these remote stubs. Then, the mobile agent starts its
visits by using the remote services. By the end of its mission,
it comes back to the server through a call to a remote service
on the server.

A second strategy consists in the creation of mobile
agents which have a remote call. Then, the agent hosts can
send a demand to a specific mobile agent if is needed.
Because, we believe that a mobile agent has to be
autonomous, we have selected the first approach. Thus, the
agent host is passive until the agent decides to reach it. Then,
the host will allow the mobile agent to realize its mission in
the context of the agent host.

A. Necessary conditions

Whatever the strategy is, it is necessary to have technical
skills. The migration of agent can be realized onto the
network with the following concerns:

 Common execution in virtual machine on all the
nodes,

 Process persistence: saving and spawning

 Communication mechanism between agent hosts

 Security to protect mobile agents and agent hosts
In a heterogeneous environment, many different system

architectures can be connected. An interpreted language that
is capable of executing machine code solves the problem of a
common execution language. A Java virtual machine
answers to that constraint even if the versions are not the
same. The use of timers is a first need to settle task
management. Existing Timer class in standard JDK is not
powerful enough for clock synchronization. RTSJ provides
new timer with a richer API.

For agents to migrate to remote machines, they must be
capable of saving their execution state, or spawning a new
process whose execution state will be saved. This
persistently means the conversion of the object's state into a
data form suitable for transmission over a network. Mobile
agents should not have to be responsible for achieving this
themselves. Again, Java language takes into account the
serialization concern and of course the deserialization.

Some communication mechanisms exist to transfer
mobile agents across networks. A mobile agent might be
transferred using TCP/IP, or by using a higher level of
communication such as RMI, Internet Inter-ORB Protocol
(IIOP), Simple Mail Transfer Protocol (SMTP) or even
HyperText Transfer Protocol (HTTP). RMI is a sub part of
Java language since its first version. This is also true for the
real-time implementation.

Security is critical when mobile agent is transferred
across a network. Depending on the mission of the agent, it
could write local resources of the agent host. Mobile agents
themselves need protection against hostile hosts. Java
runtime forces the creation of a security manager which
observes and checks all the actions of incoming agents. So,
by default, a mobile agent has no permission at all and when
an agent leaves for a new host, extreme care must be taken to
prevent unauthorized modification or analysis of the agent.
This can be done during the code loading of mobile agents.

133Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Under this set of constraints, we propose into the next
section an object approach of RT mobile code. We stress the
importance of the state of the agent which ensures that a
mission starts with a first agent host and continues on the
next one and so on.

B. Object description

1) Architecture descriptions.
Our approach is based on the use of the object model.

First, we provide a high level deployment diagram, where
main nodes are presented. The Server node plays the role of
the agent factory. It supports component called Agent Server
in the following section. The Host nodes play the role of
agent client, which waits for the visit of mobile agents.
Figure 1 gives a picture where the links support RMI
protocol and nodes support Jamaica virtual machine.

This hardware architecture supports several components.
For our design, all Host nodes have the same deployed
components called AgentHost. This choice can evolve
whether an agent host filters mobile agents through its type.
The server node receives an agent server at deployment step.
It will create mobile agents as demand. It configures them by
injection of remote accesses and mission description. Then,
mobile agents start and are autonomous during their whole
activity. Figure 2 shows the dependencies of a mobile agent
component. It depends on the provided interfaces of all the
agent host components and also the remote interface of the
agent server for the end of its mission.

The mobile agent provides two local interfaces. At first
one, called IAgent is used by the agent server to configure
locally the agent. Another one is called IMobileAgent, which
is called by the agent host to start or to suspend the activity
of the mobile agent locally to the host. This software
architecture leads to the creation of three artifacts which will
be assigned to the nodes of the Figure 1. Globally, all nodes
which wish mobile agents needs to support an AgentHost
component.

2) Class structure.

a) Mobile agent component structure.
Minimal structure of the Mobile Agent component

contains a class which implements two main interfaces
(IMobileAgent and IAgent) (Figure 3). This class has a
behavior called configure method: it allows an agent server
to provide remote stubs about the hosts to visit, a set of
properties and a task. The task describes the activity of a
mobile agent. This can be a data collection. For instance, at
the end of a distributed application, a mobile collector can
gather the partial results on each node. Each new task type is
defined by a subset of classes. The main one implements
Task interface. All tasks are placed on the agent server in the
workspace directory. The properties are useful to provide a
specific working context. So, the description of the features
of agent host1 is set into a file called host1.properties on the
agent server. In the configuration step, the URL of this input
stream is provided by the server. Next, the mobile agent
extracts the data set into a Properties object. These data will
be used during the activity of the mobile agent.

A mobile agent is composed with a Stateinstance, which
manages local data during its activity. This state is a data
structure which is encoded during a transfer from on the
agent host to another one or the agent server.

b) Agent host component structure.

The AgentHost component plays the role of the requestor.
Its interaction sequence of the demand is as follows. First,
the agent hosts are registered in the locate registry of the
agent server. Then, it configures one or more mobile agent
with the remote stubs. Next, the mobile agents use the
remote access to move onto the agent hosts through a
serialization step. It invokes a remote call through RMI
protocol. This is why the IHostService interface is a
generalization of Remote interface. In Figure 4, the
implementation, called AgentHost is an extension of a
technical RMI class. It generates automatically a remote stub

Figure 1. deployment diagram for a minimal network

Figure 2. component diagram with provided interfaces

Figure 3. minimal class diagram of MobileAgent component

134Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

for the publication into the server registry. So, it exposes a
remote interface called IHostService, for mobile agents.

When the mobile agent is received by the agent host, it
performs a check of the byte code and permissions useful to
execute its activity. Then, it loads the code of the mobile
agent and assigns needed permissions. It launches its
mission. By the end of its job, the host invokes the stop
method which triggers the continuation of the mission onto
another agent host.

The runtime context of a mobile agent is restricted by the
agent host itself. It does not run into another virtual machine.
So the security is managed by an access controller, which is
created by the host. This one is also responsible of the
permissions which are defined locally to the host with a code
base and a signature. They are not downloaded from the
agent server. Each agent host has a context where the
activities of the mobile agents are interpreted. So, after the
execution of a mobile agent, the agent host suppresses its
demand from the registry of the agent server.

c) Agent server component structure.

The agent server is a clever agent factory. It exposes two
remote interfaces, one for the agent hosts and another for the
mobile agents. The first interface (Registration Service) is
used to collect or remove the demands of agent hosts. They
are stored in a local registry.

The second interface (Server Service) is used by mobile
agents in two situations; (i) on the one hand, when their
mission is

completed and they return to their starting point, and on
the other hand, when a mobile agent needs additional
resources, it can ask the server that created it.

The interaction sequence for a mobile agent creation is as
follows. First, a mobile agent is instantiated by the use of an
extension of MobileAgentFactory class. A task is assigned to
the new mobile agent. Next, it is configured with remote
stubs of agent hosts. Then, its behavior is launched. So, it
can begin its mission by moving onto the first agent host.

The agent server tracks the activities of mobile agents
through incoming messages. By the end of the mission, the
mobile agent uses the interface called Service Server. So, it
returns to the pool of mobile agents pending mission. In a
next request of an agent host, this mobile agent can be used
to receive a new task and receive new information and thus
make a new mission.

Because agents returning to the pool are already
preconfigured with a business task, this can be useful to
select an agent in the pool among all agents. Thus, the pool is
indexed to the task of the agent. This is illustrated by the
class, called ReusableVisitorPool that collects Visitor agents
to be reused.

The creation and management of objects are a tricky
business. It is often useful to create agents only when
necessary. There are situations where it is useful to reuse
objects (reusable agents), in other situations the duration of
activity of an object is important to keep its state. This is the
case of the services offered by the agent server where the
concept of threads is crucial. We develop this notion in the
next section.

C. Real-time description

A real-time system must meet certain performance
constraints expressed in the execution time of tasks, even in
the worst case. A real-time system is not as fast overall
system, but a system fast enough or not too slow.

1) Management of server activity

a) Thread strategy
The RTSJ specification defines two categories of real-

time threads. The difference between these two categories is
the use of memory and whether or not a thread can be
interrupted by the garbage collector. In the first category,
defined by the RealTimeThread class, threads can use the
heap allocation and regions to create objects. Therefore,
these threads can be interrupted, but the garbage collector is
not responsible for the automatic is responsible for the
automatic management of allocated objects. The second

Figure 4. class diagram of AgentHost component

Figure 5. class diagram of AgentServer component

135Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

category is composed of real-time threads where the worst
execution time must be deterministic. These threads are
defined by the class NoHeapRealTimeThread have a higher
priority than the garbage collector to prevent any interference
with its performance. Therefore, they are not allowed to
access the heap allocations. They are forced to use regions
for the allocation of objects.

The agent server component is structured into three parts
which are independent. So, we have developed three classes
which extend RealTimeThread because they can prevent the
garbage collector from running, but would not preempt the
collector if it is already running. These are the reusable agent
pool, the registration implementation and the mobile agent
factory. They run at a priority higher than the garbage
collector. The three classes implement indirectly Schedulable
interface. This means that they use the concepts of cost or
duration, maturity period (for periodic tasks) overrun
handler, if exceeded runtime and miss handler if the deadline
is exceeded. The default scheduler is a priority scheduler and

each real-time thread has its own priority
We have decided that requests from the agent hosts have

to be registered first, next the return of mobile agents, and
finally, the creation of new mobile agents. Also, we have
assigned decreasing priorities. We use an aperiodic
parameter to specify the cost and the deadline of threads.
This set also a deadline missed handler to the schedulable
servers. Then, these three threads are added to the scheduler
to determine whether the system is schedulable. The
scheduler is responsible of the whole runtime as a conductor
in front of an orchestra. By the end of the registration thread,
its callback (finish method) is invoked and this triggers the
end of the whole agent server (figure 6). It means that the

reusable pool of mobile agents is cleaned and the agent
factory is stopped.

b) Memory management strategy

Each of the three threads (registration, agent pool, and
agent factory) has its own memory area. A standard Java
distributed application uses a distributed memory area that is
hidden from the programmer and managed by the garbage
collectors. In our application using real-time extensions,
object creation is performed in the exact same manner, but
now we can control which memory area the new operator
uses to construct objects, and in turn, how that memory is
reclaimed. We use subclasses of ScopedMemory for the
registration requests. They indicate how the memory area
will behave during allocations.

We use the LTMemory class which ensures that the
allocation time will be linear. Moreover, the initial memory
size, specified when the memory area is constructed, is
contiguous. As a result, LTMemory areas pre allocates the
minimum size specified when constructed. This memory
area is not subject to garbage collection.

As an example, consider a request from an agent host
about a future data collection. This object contains a data
record with: the type of the wished task, reference of the
remote agent host and a validity period for this demand. The
registration is received by the registration implementation
server. As a consequence, a LTMemory area is defined for
this data record. In traditional object programming, this data
record is available for garbage collection when the request is
satisfied. This could perturb the behavior of the whole server
component. The registration implementation is written so
that it can reclaim the space for the temporary request
without garbage collection. First, a scope memory area is
needed; in our case LTMemory is used. Next, the code that is
going to create and use the temporary request is constructed
into a class that implements the Runnable interface; then,
that class is passed as a parameter to enter method. To avoid
creating a public class, a named inner class is used (called
Request Process).

Our approach reclaims the temporary memory every time
the enter method of scope memory is finished. However, as
mentioned above, the creation of a named inner class is
better than the creation of an anonymous class because it will
still use memory in the surrounding memory area. With our
solution, there is just the initial cost of creating the
HostDataRequest object. We can remark that the only way to
pass parameters to the run method (Request Process class) is
by setting attributes of the object from the registration
implementation. This main real-time thread dispatches the
request process with the creation of an instance of
ProcessRequest class which is runnable. So, it is available to
treat next event.

c) Event management strategy

We use an approach to keep plain RMI and follow the
event notification model similar to AWT/Swing. In those
models, an object implements a simple listener interface and
is then added to an appropriate event notification list. When
that event occurs, every object in the list becomes notified of
the event. The object takes whatever action necessary in

Figure 6. advanced class diagram of registration service

136Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

response to the event. Such a model obviously is a better
solution than polling, and solves the problems that polling
has. There is no unnecessary network traffic and clients are
notified instantly when a change in the data has occurred.

Applying this model to RMI is not trivial. Consider the
RMI-based agent server as an example, where agent hosts
registered with this agent server (interface Registration
Service). After creating and configuring a mobile agent, the
RMI agent server fires an event (called AgentCreationEvent)
to inform the agent hosts of the arrival of a new mobile
agent. To successfully do this, first, we enrich the remote
interface named IHostService (Figure 3) with a method
called notify(). The remote interface (called
RegistrationService) with the service() method is analogous
to the setActionListener() methods in Swing only instead of
implementing the ActionListener interface, an object that
implements the IHostService interface is needed. Just as the
ActionListener interface serves to link an event with the
application code that processes the event.

The HostRequest parameter serializes to a byte stream
and is transmitted over the network to the server. The agent
server needs to know how to deserialize the stream and
reconstitute the object. Second, the RequestProcess instance
registers the object by calling the bind() method of the
LocateRegistry. Then the request is saved as a
HostDataRequest instance.

When the same request comes from several agent hosts,
only one mobile agent is created and configured with the set
of remote stubs. It will execute its mission as far as the
server has received corresponding request. All the hosts are
notified by the server, before receiving the mobile agent.
Now two cases can be considered: an aperiodic task as
mentioned in the visit task (Figure 3), a periodic task as a
data collection.

2) Configuration of periodic task
When mobile agents are prepared by a task and

properties, some of them are executed periodically at
different rates for most agents. Some of the agents may be
scheduled for simultaneous execution though. Also, a mobile
agent may need to start executing while another is currently
executing. Many constraints are taken into account when
scheduling, real-time mobile agents.

The first constraint is the amount of available resources;
whether there are mobile agents into an agent host using
existing resources. The second constraint is task precedence;
to avoid ambiguous state. In the present work, all the tasks
are considered independent but a task graph could be useful
to organize structured activities. Certain tasks may need to be
executed before others. The third constraint is timing; each
task has its own deadline, some tasks execute longer than
others, some may execute on a steady period, and others may
vary between release times. Each constraint contains many
of its own factors that need to be considered further when
scheduling tasks.

The availability of system resources, such as the
processor, is important to a scheduling multi thread
application. But this goes beyond just the processor; other
resources, such as shared objects that require synchronization
across mobile agents, are to be considered. On agent host, we

need to lock shared resources to avoid errors due to
concurrent access. This limits a resource to being updated
atomically, by one mobile agent at a time. Since resource
locking synchronizes access to a shared resource, one mobile
agent may become blocked when attempting to access a
resourced that is currently locked by another mobile agent or
host itself. In distributed real-time application, we ensure that
high-priority (RegistrationService), real-time threads
continue to make progress towards completion. Resource
locking is commonly a problem since priority inversion can
cause threads to execute out of order. When a request is
received from a host, this host request is treated with care of
resource lock.

A mobile agent is also defined by timed properties. The
three main features are deadline, period and execution time.
The deadline is requested by an agent host; its value is
critical to determining if it can be scheduled feasibly. It is
expressed with a timer local to the host. The host can request
real-time tasks at regular time intervals. The mobile agent is
configured with a value (periodic or aperiodic) along with
the timing characteristics that might apply. The execution
time of the request is the task cost used to know the interval
execution times for a task. All these features are kept for the
configuration step. The periodic feature is particularly useful
by the end of the mission of a mobile agent. It means that the
mobile agent has to start again the tour and performs its task.
The controls are done to know whether the duration of the
tour is permitted by the agent hosts.

3) Exchange management
All RMI services are sources of unbounded interference

and their interaction with the real-time Java virtual machine
and runtime libraries is not clearly defined. Also, delays
occur without reason. Jamaica-RMI implementation avoids
some of these constraints, but RMI communication is always
a source of unpredicted measure. The non-deterministic
behavior has induced many researchers to avoid or forbid
their use in specific environments like high-integrity
applications. Other researchers have developed their own
implementation. First, we can cite the work of A. Ahern and
N. Yoshida [10]. They present an object-oriented, Java-like
core language with primitives for distributed programming
and explicit code mobility. But, this is a formulation to prove
the correctness of distributed programs; it does not provide
an extension a RTSJ specification.

D. Holmes explained in [11] the contributions of the
RTSJ specification, particularly the sequencing, memory
management and asynchronous events. More specifically, it
describes the importance of managing priorities and
resources between threads introduced in [12]. In [13], S. Rho
explains the design a real-time Java remote method
invocation. In their work, remote method invocations are
modeled as sporadic events. So, the overhead of their
employment seems to be negligible. J. S. Iyilade provides a
comparative study of the performance of the modern system,
multi agents with the same criteria to try to limit the cost of
RMI [14].

P. Basanta-Val describes the spectrum of approaches for
distributed real-time [15]. Many projects around RMI and
real-time are born, but often without reaching frameworks

137Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

used by people other than the authors. The approach seems
to Jamaica by far the most successful [16].

We used the results of S. Rho for the management of data
exchange, especially for event notifications. Remote method
invocations are modeled sporadic events and treated by a
specific configured server. The latency of real-time RMI
becomes stable without interference.

IV. SYNCHRONIZATION ALGORITHM

A. Need of the control algorithm

In a distributed application, a question remains often:
how to time the execution of a Java program. Several
answers are possible, depending on the used platform. There
are some issues where System.nanoTime() cannot be reliably
used on multi-core CPU's to record elapsed time. Each core
maintains its own Time Stamp Counter (TSC): this counter is
used to obtain the nano time (it is really the number of ticks
since the CPU booted).

Hence, unless the OS does some TSC time warping to
keep the cores in sync, then if a thread gets scheduled on one
core when the initial time reading is taken, then switched to a
different core, the relative time can sporadically appear to
jump backwards and forwards. Because, a simple use of
timers is not allowed because of the distribution of code over
the network, we developed an approach based on timer
vector. Our approach is implemented through the
development of a new task called TimerTask as an extension
of the Task (Figure 3).

B. Distributed task synchronizer

In this section, we present our implementation of task
synchronizer based on clock vector. This approach is not
new, for conflict resolution. Some NoSQL databases use this
strategy too. L. Lamport defined the main concerns of this
approach [17]. C.J. Fridge provided an application in the
domain of the message passing system [18]. F. Mattern
developed the clock vector idea for distributed applications.
He proved correctness properties about partial ordering.

1) Initial step
In our context, agent hosts need to synchronize local

activities. So, they need to receive mobile agents to do that.
Mobile agents are initialized with a TimerTask instance and
input data about one agent host. This TimerTask instance,
will be the behavior of mobile agent after its migration onto
the agent host. First mobile agents use accept service of their
agent host. This host controls as mentioned previously. Next,
it starts its mobile agent which starts its task. Each agent host
has its own identifier. Each mobile agent has its local timer
to manage.

2) Core step
The objective of the deployment is to apply a scheduling

to the distributed host. Our scenario is the simplest: it is a
step by step execution. Each time an agent host fires a local
event, it calls the increment method of the mobile agent.
Next, its own logical clock is incremented in the vector by
one. Because, the role of the mobile agent is to synchronize
the set of hosts, it needs to send its data to the other mobile
agents.

Before sending the messages, it increments its own
logical clock in the vector by one and then sends its entire
vector. Each time a mobile agent receives a message, it
increments its own logical clock in its vector by one and
updates each element in its vector by computing the
maximum of the value in its own vector clock and the value
in the vector in the received message (Figure 6, arrows 11
and 12). Then, when the agent host (called agentHost2) fires
a local event, its mobile agent (called maB) uses the updated
vector to add a tick to its clock (Figure 6, arrows 15 and 16).
As before, this time data is sent to all active mobile agents
(only maA on Figure 6)

3) End step
The pilots of the distributed synchronization are the agent

hosts. When a host decides to stop its partnership with the
group, it just invokes the stop method of the mobile agent.
Then, the mobile agent informs all the other that it does not
accept future clock vectors. Next, it uses the ServerService
interface of the agent server to go back to the server.

Figure 6 shows an agent host (called agentHost3) which
stops the behavior of mobile agent called maC. So, it won’t
receive the next update from the other mobile agents. All
steps of a task are released into the class called TimerTask,
which implements the interface Task. This one requires three
methods called: init, doWork, end. All the methods are not
visible in Figure 6 because of visibility. But, this design
corresponds to a Template design pattern which is wrapped
into the class MobileAgent. In the next section, we present
the results of this scenario and how it is possible to realize
more complex interaction sequence.

Figure 6. collaboration diagram of Task Synchronization

138Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

V. OBSERVATIONS AND RESULTS

This experiment mixes real-time constraints and test
construction. Because a distributed system is a set of local
properties, it is not easy to discover global properties. Any
observation involves perturbation on the whole program.

A. Information description

The great thing is that this time control extends to any
number of agent hosts. It's just easier to understand in a
context with two agent hosts (Figure 1), but the same
mechanism works for any number of vector dimensions.
Missing agent host is assumed to have version 0. The clock
vectors can be used to describe temporal relations between
events in a distributed system. A vector clock can be
considered as a list of (place, transition) pairs, in which each
place occurs at most once.

The clock vectors have a partial ordering, which captures
the idea of before/after a given point in clock vector. It's
partially because there exist pairs of clock vectors so that one
is neither before nor after the other; they are "concurrent".

But this partial order stresses only on test path. The
TimerTask instances can be created to stress other test paths.
The initial properties of a mobile agent have consequences
onto the interaction with its agent host. So, test coverage can
be designed by setting precise properties for mobile agents
before migration. After the execution, the observation of the
state of each host allows the developer to validate or not the
test. For instance, a given execution can achieve in a
blocking state because a resource is not available. Such timer
task is a helper class to detect anomalies into a distributed
system.

B. More complex interaction development

This paper presented a simple scenario of test
construction, but the more specific timer task is defined. This
is particularly crucial when data injections are useful for the
agent hosts. This can be occurred when the data environment
of the host is set by the mobile agent.

In the previous example, the task is simply an automaton
with three states called init, doWork and end. New kinds of
task classes define such infinite loop behavior or with a
specific skeleton based on a given interaction with en agent
host. For instance, a message format can be forced or a
volume of data.

VI. CONCLUSION

In this paper, we designed and implemented a real-time
distributed application based on mobile agents. Java Remote
Method Invocation is a valid transport protocol for mobile
agent. By using a server centric approach with developer task
classes, we achieved efficient and effective real-time test
construction based on event orders. We believe that this
work is an important and interesting step toward distributed
real-time systems. We defined open frameworks, which can

be completed by new contributors, especially who have
experience with real-time concepts. The clock vectors are
results which can be collected through the use of other
mobile agents configured with CollectorTask class (Figure
3).

REFERENCES

[1] N. Spanoudakis and P. Moraitis: "Modular JADE Agents Design and

Implementation using ASEME", IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'10), Toronto,
Canada, 2010.

[2] P. Braun and W. Rossak. “From Client-Server to Mobile Agents.
Mobile Agents” Basic Concepts, Mobility Models, and the Tracy
Toolkit. Heidelberg: Morgan Kaufmann Publishers, 2005, Germany.

[3] C. Dumont and F. Mourlin. Space Based Architecture for numerical
solving. In IEEE, editor, International Conferences on Computational
Intelligence for Modelling, Control and Automation; Intelligent
Agents, Web Technologies and Internet Commerce; and Innovation
in Software Engineering, IEEE Digital Library, Vienna Austria, pages
309-314, 2008.

[4] F. Kolnick, The QNX 4 Real-time Operating System . Ottawa, Ont.,
Canada: Basis Computer Systems, 2000.

[5] L. M. Voy, “Scaling Linux with (partially) cc clusters,” July 2002,
http://ww.bitmover.com/cc-pitch/, Retrieved: January 2014.

[6] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M.
Turnbull. "The Real-Time Specification for Java". Addison-Wesley,
2000.

[7] P. C. Dibble. Real-time Java Platform Programming. Prentice-Hall,
2002.

[8] A. Borg and A. J. Wellings: A Real-Time RMI Framework for the
RTSJ. ECRTS 2003: 238-246.

[9] Siebert, "The Jamaica VM," available on http://www.aicas.com.
2004, Retrieved: January 2014.

[10] A. Ahern and N. Yoshida: Formalizing Java RMI with explicit code
mobility. OOPSLA 2005: 403-422

[11] D. Holmes, "Introduction to the Real-Time Specification for Java",
Brisbane, Purdue University, Australia, 2002.

[12] S. Rho, B. Choi, and R. Bettati: Design Real-Time Java Remote
Method Invocation: A Server-Centric Approach. IASTED PDCS
2005: pp. 269-276

[13] J. S. Iyilade, G. A. Aderounmu, and M. O. Adigun: Performance
Comparison of Multi-Agent Grid Job Scheduler Organizations.
IASTED PDCS 2005: pp. 1-6

[14] Sun Microsystems, "Java Remote Method Invocation," online at
http://java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf. 2004, Retrieved:
January 2014.

[15] P. Basanta-Val, M. García-Valls, and I. Estévez-Ayres: An
architecture for distributed real-time Java based on RMI and RTSJ.
ETFA 2010: pp. 1-8

[16] L. Lamport and P. M. Melliar-Smith: Byzantine Clock
Synchronization. Operating Systems Review 20 (3): 10-16 (1986)

[17] C. J. Fidge. "Timestamps in Message-Passing Systems That Preserve
the Partial Ordering". In K. Raymond (Ed.). Proc. of the 11th
Australian Computer Science Conference (ACSC'88). pp. 56–66
(February 1988).

[18] F. Mattern, "Virtual Time and Global States of Distributed Systems",
in Cosnard, M., Proc. Workshop on Parallel and Distributed
Algorithms, Chateau de Bonas, France: Elsevier, pp. 215–226,
(October 1988)

139Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

http://ww.bitmover.com/cc-pitch/
http://java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf.%202004

