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Abstract—In this paper, we use mobile agents in order to 

synchronize real-time distributed system. We present a way to 

exchange mobile agents from an agent server to agent hosts. 

Imported agents are used to apply actions in their host context. 

We solve security problems by a negotiation step between the 

host and the server. Locally, we use a specific thread to execute 

the imported agent. Its mission uses time vector for event 

synchronization. When the mission of the mobile agent is 

ended, it goes back to the server and waits for a future 

demand. We apply this strategy to implement mobile agents, 

which import the time of the server, and synchronize the 

actions between source and target hosts and keeps the real-

time properties. 

Keywords-agents; mobile code; real-time system; task 

synchronization 

I.  INTRODUCTION 

Mobile agents provide a new approach of distributed 
systems. They give a solution for moving part of code from 
an agent host to another one where the data are installed. If 
developers have the habit to transfer data from a software 
layer to another one, this technique has limits. When the size 
of data exceeds a limit, the exchange cannot be possible. 
Again, security reasons can filter data transfers. It depends 
on the semantics of the data: results of a company, hybrid 
mesh for numerical simulation, etc. 

Many works are about the subject of mobile agents. Java 
Agent DEvelopment Framework (JADE) toolkit [1] is one of 
the most famous solutions for the development of software 
agents. Jade is a middleware that facilitates the development 
of Agent Management System (AMS). The need of mobility 
becomes greater in network management and other platforms 
exist, such as Tracy toolkit [2] or Mobile Computation 
Architecture (MCA) platform [3]. They allow moving agents 
from one node to another node of a network. MCA is 
designed for building a fault tolerance layer into a numerical 
application. When a distributed application is deployed over 
a set of processors, events can occur during the runtime. This 
set of computing resources is not fixed, the new processors 
can be free and few nodes can fail. Also, the execution 
should continue despite these events. MCA allows moving a 
part of the execution if the new computing resource appears 
or disappears. The mobile agent can be considered as a 
vehicle which leads a piece of code towards a computing 
resource. This approach can be done because the parts of the 

application are loosely coupled. The exchanges of data are 
few and predictive. 

When the exchanges are based on time synchronization, 
this means that a time control algorithm is applied to a 
business application, such as a distributed numerical 
simulation. The main constraint of a real-time application is 
to respond to an event at a scheduled time. We did not find 
an existing work which groups mobile agent and real-time. 
For example, this requirement occurs when specific events 
happen, such: hardware interrupts, local clock, 
communication, etc. The traditional operating systems 
cannot guarantee that the latency is below a certain 
threshold. In fact, during some very resource-intensive 
operations (such as inputs / outputs), these systems can be 
temporarily blocked. This leads to the use of real-time 
operating systems, such as QNX [4], which ensures latency 
known by its micro-kernel structure. Deployment of 
applications on to such operating system allows users to 
exploit real-time features. 

Our work is about distributed architecture and the use of 
mobile agents for synchronizing tasks in real-time context. 
Section 2 is about the requirements of our work. Section 3, 
we present our approach of mobile agent under the 
development constraints. In Section 4, we describe our 
algorithm and our implementation. Section 5 is about our 
measures and results. Finally, we review the main features of 
our contribution and the future directions.  

II. REQUIREMENTS AND CONSTRAINTS 

A. Operating system and libraries 

A real-time system is a combination software / hardware 
where the software allows adequate management of material 
resources to complete certain tasks or functions in very 
specific time limits. Real-time applications are often 
embedded applications. Constraints of standard software, 
add the notions of response time, latency, clock, timing 
tasks,f etc. We use an operating system with a real-time 
kernel. A real-time kernel is the minimal implementation to 
make real-time scheduler, task management, and inter-task 
communication. 

There are differences between a true and a real-time 
system. The first kind of system has completed a real-time 
kernel with modules and libraries to facilitate the design of 
real-time application: memory management, management of 
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input/output management, timer management, network 
access, file management. A real-time operating system is the 
special case where the host system communicates with the 
target system. So, here we have chosen a development 
environment natively based on RT-Linux [5]. 

B. Programming languages 

Our experience about mobile agent development has 
shown that object interpreted languages are useful for 
exchanging between two parts of code: a requestor and a 
server. Many programming languages exist, which are 
interpreted with object paradigm. We have already 
developed projects based on mobile agent architecture. Our 
approach has been validated in the distinct domain, such: 
web server monitoring, numerical analysis, business process 
management, etc. We have chosen Java language because it 
possesses useful features such: serialization, garbage 
collection, class loading, network, Just-in-time compilation, 
and thread scheduling. But, traditional implementations are 
incapable of running applications with real-time behavior. 

Fortunately, real-time extensions to Java technology, 
based on the real-time specification for Java (RTSJ) [6], 
enable JVMs with real-time features. The RTSJ provides an 
API is enabling real-time scheduling, advanced memory 
management, high-resolution timers, asynchronous event 
handling, and asynchronous interruption of threads. Of 
course, standard Java applications can run without 
modification in a real-time JVM, but some APIs ,such as the 
threads and timers APIs, APIs are enriched. Also, when 
developers would like to create a new project with the real-
time Java development kit [7], they can set their own 
configuration. 

Because mobile agents move from a Java virtual machine 
towards another one, network protocols are necessary. 
Default implementation (provided by Sun, Oracle) of RTSJ 
does not provide any solution. Research works exist about 
real-time Remote Method Invocation (RMI) framework, but 
the libraries are not maintained or are not available. For 
instance, the RT-RMI framework supports timely invocation 
of remote objects. The thread classes defined by the RTSJ 
are used to provide the client and server threading 
mechanisms in the invocation process [8]. But, this 
framework is not available for four years 

Also, we have selected a Jamaica virtual machine [9] 
because it provides a complete implementation of the RMI 
protocol. This software product is frequently updated, its 
roadmap is public and reference documentation is available. 
The use of RMI protocol means a rich protocol where object 
can be serialized on an RMI socket. Also, this feature allows 
developers to separate the concerns: agent server, agent host 
and mobile agent. 

In the next section, we give details about our mobile 
agent design and implementation with this restricted 
development context.  

III. MOBILE AGENT IN AN RT CONTEXT 

The software architecture of a distributed mobile system 
is based on two main strategies. In the first strategy, agent 
hosts provide a remote service for reaching them. Next, an 

agent server configures a mobile agent to visit a set of hosts 
with these remote stubs. Then, the mobile agent starts its 
visits by using the remote services. By the end of its mission, 
it comes back to the server through a call to a remote service 
on the server. 

A second strategy consists in the creation of mobile 
agents which have a remote call. Then, the agent hosts can 
send a demand to a specific mobile agent if is needed. 
Because, we believe that a mobile agent has to be 
autonomous, we have selected the first approach. Thus, the 
agent host is passive until the agent decides to reach it. Then, 
the host will allow the mobile agent to realize its mission in 
the context of the agent host. 

 

A. Necessary conditions 

Whatever the strategy is, it is necessary to have technical 
skills. The migration of agent can be realized onto the 
network with the following concerns: 

 Common execution in virtual machine on all the 
nodes, 

 Process persistence: saving and spawning 

 Communication mechanism between agent hosts 

 Security to protect mobile agents and agent hosts 
In a heterogeneous environment, many different system 

architectures can be connected. An interpreted language that 
is capable of executing machine code solves the problem of a 
common execution language. A Java virtual machine 
answers to that constraint even if the versions are not the 
same. The use of timers is a first need to settle task 
management. Existing Timer class in standard JDK is not 
powerful enough for clock synchronization. RTSJ provides 
new timer with a richer API. 

For agents to migrate to remote machines, they must be 
capable of saving their execution state, or spawning a new 
process whose execution state will be saved. This 
persistently means the conversion of the object's state into a 
data form suitable for transmission over a network. Mobile 
agents should not have to be responsible for achieving this 
themselves. Again, Java language takes into account the 
serialization concern and of course the deserialization. 

Some communication mechanisms exist to transfer 
mobile agents across networks. A mobile agent might be 
transferred using TCP/IP, or by using a higher level of 
communication such as RMI, Internet Inter-ORB Protocol 
(IIOP), Simple Mail Transfer Protocol (SMTP) or even 
HyperText Transfer Protocol (HTTP). RMI is a sub part of 
Java language since its first version. This is also true for the 
real-time implementation. 

Security is critical when mobile agent is transferred 
across a network. Depending on the mission of the agent, it 
could write local resources of the agent host. Mobile agents 
themselves need protection against hostile hosts. Java 
runtime forces the creation of a security manager which 
observes and checks all the actions of incoming agents. So, 
by default, a mobile agent has no permission at all and when 
an agent leaves for a new host, extreme care must be taken to 
prevent unauthorized modification or analysis of the agent. 
This can be done during the code loading of mobile agents. 
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Under this set of constraints, we propose into the next 
section an object approach of RT mobile code. We stress the 
importance of the state of the agent which ensures that a 
mission starts with a first agent host and continues on the 
next one and so on. 

B. Object description 

1) Architecture descriptions. 
Our approach is based on the use of the object model. 

First, we provide a high level deployment diagram, where 
main nodes are presented. The Server node plays the role of 
the agent factory. It supports component called Agent Server 
in the following section. The Host nodes play the role of 
agent client, which waits for the visit of mobile agents. 
Figure 1 gives a picture where the links support RMI 
protocol and nodes support Jamaica virtual machine. 

This hardware architecture supports several components. 
For our design, all Host nodes have the same deployed 
components called AgentHost. This choice can evolve 
whether an agent host filters mobile agents through its type. 
The server node receives an agent server at deployment step. 
It will create mobile agents as demand. It configures them by 
injection of remote accesses and mission description. Then, 
mobile agents start and are autonomous during their whole 
activity. Figure 2 shows the dependencies of a mobile agent 
component. It depends on the provided interfaces of all the 
agent host components and also the remote interface of the 
agent server for the end of its mission. 

The mobile agent provides two local interfaces. At first 
one, called IAgent is used by the agent server to configure 
locally the agent. Another one is called IMobileAgent, which 
is called by the agent host to start or to suspend the activity 
of the mobile agent locally to the host. This software 
architecture leads to the creation of three artifacts which will 
be assigned to the nodes of the Figure 1. Globally, all nodes 
which wish mobile agents needs to support an AgentHost 
component. 

2) Class structure. 

a) Mobile agent component structure. 
Minimal structure of the Mobile Agent component 

contains a class which implements two main interfaces 
(IMobileAgent and IAgent) (Figure 3). This class has a 
behavior called configure method: it allows an agent server 
to provide remote stubs about the hosts to visit, a set of 
properties and a task. The task describes the activity of a 
mobile agent. This can be a data collection. For instance, at 
the end of a distributed application, a mobile collector can 
gather the partial results on each node. Each new task type is 
defined by a subset of classes. The main one implements 
Task interface. All tasks are placed on the agent server in the 
workspace directory. The properties are useful to provide a 
specific working context. So, the description of the features 
of agent host1 is set into a file called host1.properties on the 
agent server. In the configuration step, the URL of this input 
stream is provided by the server. Next, the mobile agent 
extracts the data set into a Properties object. These data will 
be used during the activity of the mobile agent. 

A mobile agent is composed with a Stateinstance, which 
manages local data during its activity. This state is a data 
structure which is encoded during a transfer from on the 
agent host to another one or the agent server. 

b) Agent host component structure. 

The AgentHost component plays the role of the requestor. 
Its interaction sequence of the demand is as follows. First, 
the agent hosts are registered in the locate registry of the 
agent server. Then, it configures one or more mobile agent 
with the remote stubs. Next, the mobile agents use the 
remote access to move onto the agent hosts through a 
serialization step. It invokes a remote call through RMI 
protocol. This is why the IHostService interface is a 
generalization of Remote interface. In Figure 4, the 
implementation, called AgentHost is an extension of a 
technical RMI class. It generates automatically a remote stub 

 
Figure 1. deployment diagram for a minimal network 

 
Figure 2. component diagram with provided interfaces 

 
Figure 3. minimal class diagram of MobileAgent component 
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for the publication into the server registry. So, it exposes a 
remote interface called IHostService, for mobile agents. 

When the mobile agent is received by the agent host, it 
performs a check of the byte code and permissions useful to 
execute its activity. Then, it loads the code of the mobile 
agent and assigns needed permissions. It launches its 
mission. By the end of its job, the host invokes the stop 
method which triggers the continuation of the mission onto 
another agent host. 

The runtime context of a mobile agent is restricted by the 
agent host itself. It does not run into another virtual machine. 
So the security is managed by an access controller, which is 
created by the host. This one is also responsible of the 
permissions which are defined locally to the host with a code 
base and a signature. They are not downloaded from the 
agent server. Each agent host has a context where the 
activities of the mobile agents are interpreted. So, after the 
execution of a mobile agent, the agent host suppresses its 
demand from the registry of the agent server. 

c) Agent server component structure. 

The agent server is a clever agent factory. It exposes two 
remote interfaces, one for the agent hosts and another for the 
mobile agents. The first interface (Registration Service) is 
used to collect or remove the demands of agent hosts. They 
are stored in a local registry. 

The second interface (Server Service) is used by mobile 
agents in two situations; (i) on the one hand, when their 
mission is  

completed and they return to their starting point, and on 
the other hand, when a mobile agent needs additional 
resources, it can ask the server that created it. 

The interaction sequence for a mobile agent creation is as 
follows. First, a mobile agent is instantiated by the use of an 
extension of MobileAgentFactory class. A task is assigned to 
the new mobile agent. Next, it is configured with remote 
stubs of agent hosts. Then, its behavior is launched. So, it 
can begin its mission by moving onto the first agent host. 

The agent server tracks the activities of mobile agents 
through incoming messages. By the end of the mission, the 
mobile agent uses the interface called Service Server. So, it 
returns to the pool of mobile agents pending mission. In a 
next request of an agent host, this mobile agent can be used 
to receive a new task and receive new information and thus 
make a new mission. 

Because agents returning to the pool are already 
preconfigured with a business task, this can be useful to 
select an agent in the pool among all agents. Thus, the pool is 
indexed to the task of the agent. This is illustrated by the 
class, called ReusableVisitorPool that collects Visitor agents 
to be reused. 

The creation and management of objects are a tricky 
business. It is often useful to create agents only when 
necessary. There are situations where it is useful to reuse 
objects (reusable agents), in other situations the duration of 
activity of an object is important to keep its state. This is the 
case of the services offered by the agent server where the 
concept of threads is crucial. We develop this notion in the 
next section. 

C. Real-time description 

A real-time system must meet certain performance 
constraints expressed in the execution time of tasks, even in 
the worst case. A real-time system is not as fast overall 
system, but a system fast enough or not too slow. 

1) Management of server activity 

a) Thread strategy 
The RTSJ specification defines two categories of real-

time threads. The difference between these two categories is 
the use of memory and whether or not a thread can be 
interrupted by the garbage collector. In the first category, 
defined by the RealTimeThread class, threads can use the 
heap allocation and regions to create objects. Therefore, 
these threads can be interrupted, but the garbage collector is 
not responsible for the automatic is responsible for the 
automatic management of allocated objects. The second 

 
Figure 4. class diagram of AgentHost component 

 
Figure 5. class diagram of AgentServer component 
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category is composed of real-time threads where the worst 
execution time must be deterministic. These threads are 
defined by the class NoHeapRealTimeThread have a higher 
priority than the garbage collector to prevent any interference 
with its performance. Therefore, they are not allowed to 
access the heap allocations. They are forced to use regions 
for the allocation of objects. 

The agent server component is structured into three parts 
which are independent. So, we have developed three classes 
which extend RealTimeThread because they can prevent the 
garbage collector from running, but would not preempt the 
collector if it is already running. These are the reusable agent 
pool, the registration implementation and the mobile agent 
factory. They run at a priority higher than the garbage 
collector. The three classes implement indirectly Schedulable 
interface. This means that they use the concepts of cost or 
duration, maturity period (for periodic tasks) overrun 
handler, if exceeded runtime and miss handler if the deadline 
is exceeded. The default scheduler is a priority scheduler and 

each real-time thread has its own priority 
We have decided that requests from the agent hosts have 

to be registered first, next the return of mobile agents, and 
finally, the creation of new mobile agents. Also, we have 
assigned decreasing priorities. We use an aperiodic 
parameter to specify the cost and the deadline of threads. 
This set also a deadline missed handler to the schedulable 
servers. Then, these three threads are added to the scheduler 
to determine whether the system is schedulable. The 
scheduler is responsible of the whole runtime as a conductor 
in front of an orchestra. By the end of the registration thread, 
its callback (finish method) is invoked and this triggers the 
end of the whole agent server (figure 6). It means that the 

reusable pool of mobile agents is cleaned and the agent 
factory is stopped. 

b) Memory management strategy 

Each of the three threads (registration, agent pool, and 
agent factory) has its own memory area. A standard Java 
distributed application uses a distributed memory area that is 
hidden from the programmer and managed by the garbage 
collectors. In our application using real-time extensions, 
object creation is performed in the exact same manner, but 
now we can control which memory area the new operator 
uses to construct objects, and in turn, how that memory is 
reclaimed. We use subclasses of ScopedMemory for the 
registration requests. They indicate how the memory area 
will behave during allocations.  

We use the LTMemory class which ensures that the 
allocation time will be linear. Moreover, the initial memory 
size, specified when the memory area is constructed, is 
contiguous. As a result, LTMemory areas pre allocates the 
minimum size specified when constructed. This memory 
area is not subject to garbage collection. 

As an example, consider a request from an agent host 
about a future data collection. This object contains a data 
record with: the type of the wished task, reference of the 
remote agent host and a validity period for this demand. The 
registration is received by the registration implementation 
server. As a consequence, a LTMemory area is defined for 
this data record. In traditional object programming, this data 
record is available for garbage collection when the request is 
satisfied. This could perturb the behavior of the whole server 
component. The registration implementation is written so 
that it can reclaim the space for the temporary request 
without garbage collection. First, a scope memory area is 
needed; in our case LTMemory is used. Next, the code that is 
going to create and use the temporary request is constructed 
into a class that implements the Runnable interface; then, 
that class is passed as a parameter to enter method. To avoid 
creating a public class, a named inner class is used (called 
Request Process). 

Our approach reclaims the temporary memory every time 
the enter method of scope memory is finished. However, as 
mentioned above, the creation of a named inner class is 
better than the creation of an anonymous class because it will 
still use memory in the surrounding memory area. With our 
solution, there is just the initial cost of creating the 
HostDataRequest object. We can remark that the only way to 
pass parameters to the run method (Request Process class) is 
by setting attributes of the object from the registration 
implementation. This main real-time thread dispatches the 
request process with the creation of an instance of 
ProcessRequest class which is runnable. So, it is available to 
treat next event. 

c) Event management strategy 

We use an approach to keep plain RMI and follow the 
event notification model similar to AWT/Swing. In those 
models, an object implements a simple listener interface and 
is then added to an appropriate event notification list. When 
that event occurs, every object in the list becomes notified of 
the event. The object takes whatever action necessary in 

 
Figure 6. advanced class diagram of registration service 
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response to the event. Such a model obviously is a better 
solution than polling, and solves the problems that polling 
has. There is no unnecessary network traffic and clients are 
notified instantly when a change in the data has occurred. 

Applying this model to RMI is not trivial. Consider the 
RMI-based agent server as an example, where agent hosts 
registered with this agent server (interface Registration 
Service). After creating and configuring a mobile agent, the 
RMI agent server fires an event (called AgentCreationEvent) 
to inform the agent hosts of the arrival of a new mobile 
agent. To successfully do this, first, we enrich the remote 
interface named IHostService (Figure 3) with a method 
called notify(). The remote interface (called 
RegistrationService) with the service() method is analogous 
to the setActionListener() methods in Swing only instead of 
implementing the ActionListener interface, an object that 
implements the IHostService interface is needed. Just as the 
ActionListener interface serves to link an event with the 
application code that processes the event.  

The HostRequest parameter serializes to a byte stream 
and is transmitted over the network to the server. The agent 
server needs to know how to deserialize the stream and 
reconstitute the object. Second, the RequestProcess instance 
registers the object by calling the bind() method of the 
LocateRegistry. Then the request is saved as a 
HostDataRequest instance. 

When the same request comes from several agent hosts, 
only one mobile agent is created and configured with the set 
of remote stubs. It will execute its mission as far as the 
server has received corresponding request. All the hosts are 
notified by the server, before receiving the mobile agent. 
Now two cases can be considered: an aperiodic task as 
mentioned in the visit task (Figure 3), a periodic task as a 
data collection. 

2) Configuration of periodic task 
When mobile agents are prepared by a task and 

properties, some of them are executed periodically at 
different rates for most agents. Some of the agents may be 
scheduled for simultaneous execution though. Also, a mobile 
agent may need to start executing while another is currently 
executing. Many constraints are taken into account when 
scheduling, real-time mobile agents. 

The first constraint is the amount of available resources; 
whether there are mobile agents into an agent host using 
existing resources. The second constraint is task precedence; 
to avoid ambiguous state. In the present work, all the tasks 
are considered independent but a task graph could be useful 
to organize structured activities. Certain tasks may need to be 
executed before others. The third constraint is timing; each 
task has its own deadline, some tasks execute longer than 
others, some may execute on a steady period, and others may 
vary between release times. Each constraint contains many 
of its own factors that need to be considered further when 
scheduling tasks. 

The availability of system resources, such as the 
processor, is important to a scheduling multi thread 
application. But this goes beyond just the processor; other 
resources, such as shared objects that require synchronization 
across mobile agents, are to be considered. On agent host, we 

need to lock shared resources to avoid errors due to 
concurrent access. This limits a resource to being updated 
atomically, by one mobile agent at a time. Since resource 
locking synchronizes access to a shared resource, one mobile 
agent may become blocked when attempting to access a 
resourced that is currently locked by another mobile agent or 
host itself. In distributed real-time application, we ensure that 
high-priority (RegistrationService), real-time threads 
continue to make progress towards completion. Resource 
locking is commonly a problem since priority inversion can 
cause threads to execute out of order. When a request is 
received from a host, this host request is treated with care of 
resource lock. 

A mobile agent is also defined by timed properties. The 
three main features are deadline, period and execution time. 
The deadline is requested by an agent host; its value is 
critical to determining if it can be scheduled feasibly. It is 
expressed with a timer local to the host. The host can request 
real-time tasks at regular time intervals. The mobile agent is 
configured with a value (periodic or aperiodic) along with 
the timing characteristics that might apply. The execution 
time of the request is the task cost used to know the interval 
execution times for a task. All these features are kept for the 
configuration step. The periodic feature is particularly useful 
by the end of the mission of a mobile agent. It means that the 
mobile agent has to start again the tour and performs its task. 
The controls are done to know whether the duration of the 
tour is permitted by the agent hosts. 

3) Exchange management 
All RMI services are sources of unbounded interference 

and their interaction with the real-time Java virtual machine 
and runtime libraries is not clearly defined. Also, delays 
occur without reason. Jamaica-RMI implementation avoids 
some of these constraints, but RMI communication is always 
a source of unpredicted measure. The non-deterministic 
behavior has induced many researchers to avoid or forbid 
their use in specific environments like high-integrity 
applications. Other researchers have developed their own 
implementation. First, we can cite the work of A. Ahern and 
N. Yoshida [10]. They present an object-oriented, Java-like 
core language with primitives for distributed programming 
and explicit code mobility. But, this is a formulation to prove 
the correctness of distributed programs; it does not provide 
an extension a RTSJ specification. 

D. Holmes explained in [11] the contributions of the 
RTSJ specification, particularly the sequencing, memory 
management and asynchronous events. More specifically, it 
describes the importance of managing priorities and 
resources between threads introduced in [12]. In [13], S. Rho 
explains the design a real-time Java remote method 
invocation. In their work, remote method invocations are 
modeled as sporadic events. So, the overhead of their 
employment seems to be negligible. J. S. Iyilade provides a 
comparative study of the performance of the modern system, 
multi agents with the same criteria to try to limit the cost of 
RMI [14]. 

P. Basanta-Val describes the spectrum of approaches for 
distributed real-time [15]. Many projects around RMI and 
real-time are born, but often without reaching frameworks 

137Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems



used by people other than the authors. The approach seems 
to Jamaica by far the most successful [16]. 

We used the results of S. Rho for the management of data 
exchange, especially for event notifications. Remote method 
invocations are modeled sporadic events and treated by a 
specific configured server. The latency of real-time RMI 
becomes stable without interference. 

IV. SYNCHRONIZATION ALGORITHM 

A. Need of the control algorithm 

In a distributed application, a question remains often: 
how to time the execution of a Java program. Several 
answers are possible, depending on the used platform. There 
are some issues where System.nanoTime() cannot be reliably 
used on multi-core CPU's to record elapsed time. Each core 
maintains its own Time Stamp Counter (TSC): this counter is 
used to obtain the nano time (it is really the number of ticks 
since the CPU booted). 

Hence, unless the OS does some TSC time warping to 
keep the cores in sync, then if a thread gets scheduled on one 
core when the initial time reading is taken, then switched to a 
different core, the relative time can sporadically appear to 
jump backwards and forwards. Because, a simple use of 
timers is not allowed because of the distribution of code over 
the network, we developed an approach based on timer 
vector. Our approach is implemented through the 
development of a new task called TimerTask as an extension 
of the Task (Figure 3). 

B. Distributed task synchronizer 

In this section, we present our implementation of task 
synchronizer based on clock vector. This approach is not 
new, for conflict resolution. Some NoSQL databases use this 
strategy too. L. Lamport defined the main concerns of this 
approach [17]. C.J. Fridge provided an application in the 
domain of the message passing system [18]. F. Mattern 
developed the clock vector idea for distributed applications. 
He proved correctness properties about partial ordering. 

1) Initial step 
In our context, agent hosts need to synchronize local 

activities. So, they need to receive mobile agents to do that. 
Mobile agents are initialized with a TimerTask instance and 
input data about one agent host. This TimerTask instance, 
will be the behavior of mobile agent after its migration onto 
the agent host. First mobile agents use accept service of their 
agent host. This host controls as mentioned previously. Next, 
it starts its mobile agent which starts its task. Each agent host 
has its own identifier. Each mobile agent has its local timer 
to manage. 

2) Core step 
The objective of the deployment is to apply a scheduling 

to the distributed host. Our scenario is the simplest: it is a 
step by step execution. Each time an agent host fires a local 
event, it calls the increment method of the mobile agent. 
Next, its own logical clock is incremented in the vector by 
one. Because, the role of the mobile agent is to synchronize 
the set of hosts, it needs to send its data to the other mobile 
agents. 

Before sending the messages, it increments its own 
logical clock in the vector by one and then sends its entire 
vector. Each time a mobile agent receives a message, it 
increments its own logical clock in its vector by one and 
updates each element in its vector by computing the 
maximum of the value in its own vector clock and the value 
in the vector in the received message (Figure 6, arrows 11 
and 12). Then, when the agent host (called agentHost2) fires 
a local event, its mobile agent (called maB) uses the updated 
vector to add a tick to its clock (Figure 6, arrows 15 and 16). 
As before, this time data is sent to all active mobile agents 
(only maA on Figure 6) 

3) End step 
The pilots of the distributed synchronization are the agent 

hosts. When a host decides to stop its partnership with the 
group, it just invokes the stop method of the mobile agent. 
Then, the mobile agent informs all the other that it does not 
accept future clock vectors. Next, it uses the ServerService 
interface of the agent server to go back to the server. 

Figure 6 shows an agent host (called agentHost3) which 
stops the behavior of mobile agent called maC. So, it won’t 
receive the next update from the other mobile agents. All 
steps of a task are released into the class called TimerTask, 
which implements the interface Task. This one requires three 
methods called: init, doWork, end. All the methods are not 
visible in Figure 6 because of visibility. But, this design 
corresponds to a Template design pattern which is wrapped 
into the class MobileAgent. In the next section, we present 
the results of this scenario and how it is possible to realize 
more complex interaction sequence. 

 
Figure 6. collaboration diagram of Task Synchronization 
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V. OBSERVATIONS AND RESULTS 

This experiment mixes real-time constraints and test 
construction. Because a distributed system is a set of local 
properties, it is not easy to discover global properties. Any 
observation involves perturbation on the whole program. 

A. Information description 

The great thing is that this time control extends to any 
number of agent hosts. It's just easier to understand in a 
context with two agent hosts (Figure 1), but the same 
mechanism works for any number of vector dimensions. 
Missing agent host is assumed to have version 0. The clock 
vectors can be used to describe temporal relations between 
events in a distributed system. A vector clock can be 
considered as a list of (place, transition) pairs, in which each 
place occurs at most once. 

The clock vectors have a partial ordering, which captures 
the idea of before/after a given point in clock vector. It's 
partially because there exist pairs of clock vectors so that one 
is neither before nor after the other; they are "concurrent". 

But this partial order stresses only on test path. The 
TimerTask instances can be created to stress other test paths. 
The initial properties of a mobile agent have consequences 
onto the interaction with its agent host. So, test coverage can 
be designed by setting precise properties for mobile agents 
before migration. After the execution, the observation of the 
state of each host allows the developer to validate or not the 
test. For instance, a given execution can achieve in a 
blocking state because a resource is not available. Such timer 
task is a helper class to detect anomalies into a distributed 
system. 

B. More complex interaction development 

This paper presented a simple scenario of test 
construction, but the more specific timer task is defined. This 
is particularly crucial when data injections are useful for the 
agent hosts. This can be occurred when the data environment 
of the host is set by the mobile agent.  

In the previous example, the task is simply an automaton 
with three states called init, doWork and end. New kinds of 
task classes define such infinite loop behavior or with a 
specific skeleton based on a given interaction with en agent 
host. For instance, a message format can be forced or a 
volume of data. 

VI. CONCLUSION 

In this paper, we designed and implemented a real-time 
distributed application based on mobile agents. Java Remote 
Method Invocation is a valid transport protocol for mobile 
agent. By using a server centric approach with developer task 
classes, we achieved efficient and effective real-time test 
construction based on event orders. We believe that this 
work is an important and interesting step toward distributed 
real-time systems. We defined open frameworks, which can 

be completed by new contributors, especially who have 
experience with real-time concepts. The clock vectors are 
results which can be collected through the use of other 
mobile agents configured with CollectorTask class (Figure 
3). 
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