
Robustness Analysis for Indoor Lighting Systems

An Application of Model Checking in Large-Scale Distributed Control Systems

Richard Doornbos, Jacques Verriet

TNO-ESI

Eindhoven, Netherlands

e-mail:{richard.doornbos, jacques.verriet}@tno.nl

Mark Verberkt

Philips Lighting

Eindhoven, Netherlands

e-mail: mark.verberkt@philips.com

Abstract—Modern lighting systems are configurable systems-

of-systems that have to operate in an environment that they

cannot fully control. These systems have to guarantee the

continuation of their functionality regardless of the events in

their environment. As testing and simulation are not able to

identify all possible interactions of a lighting system and its

environment we propose a model checking approach to analyze

a lighting system’s robustness. To allow easy integration in

lighting system development, the approach uses the same

configuration options as the lighting systems under study. We

apply our approach to an office lighting system and show how

model checking can be used to analyze the robustness against

network failures and to investigate communication protocols to

improve system robustness.

Keywords-distributed systems; system robustness; model

checking; Uppaal; indoor lighting systems.

I. INTRODUCTION

Many believe that current trends like Internet of Things
(IoT) will only thrive when a well-established industry will
take them up. This industry could well be the lighting
industry, which is going through a number of paradigm
shifts: from traditional light sources (incandescent,
fluorescent lamps) to LED (light emitting diode), from
simple light sources to intelligent, networked, multi-sensor
luminaires, and from individually controlled light points to
large-scale distributed control systems. These major changes
fit well to the IoT idea of having many internet-connected
sensor/actuator nodes distributed over an area of interest,
e.g., an office building.

A lighting system for an office building is a prime
example of a complex system: it is a large-scale distributed
system, containing thousands of sensor and actuator
components, which exhibit event-based behavior. The
system can have very many configurations, but is comprised
of only a limited number of types of components. Typical for
modern systems is the complicating factor that it has to
cooperate with other systems (heating/cooling, network,
power, security), sometimes leading to conflicting
requirements.

A. Related Work

In this paper, we present a model checking approach to
analyze the robustness of large-scale indoor lighting systems
to (erroneous) events in its environment. Robustness is the

ability of a system to continue to operate correctly across a
wide range of operational conditions, and fail gracefully
outside of that range [7].

To the best of our knowledge, model checking has not
been applied to large-scale lighting systems. There are many
examples of other (industrial) systems that have been
analyzed using model checking. Examples include elevator
control systems [9] and railway interlockings [12].

In another example, van den Berg et al. [11] use a
domain-specific language for specifying medical imaging
systems. This domain-specific language is translated into
Uppaal [10] for performance analysis. The output of this
analysis in translated in information understandable to
system designers: analysis results are transformed into lower
and upper bounds of system response times. Hendriks et al.
[8] have applied a similar approach to create optimal
schedules of a wafer scanner.

Similar results have been achieved using
MechatronicUML, an Eclipse-based tool suite for the design
of cyber-physical systems [2]. It comprises a modeling
language and a development process. To validate software
correctness, Gerking [3] has developed transformations from
MechatronicUML to Uppaal [10] and vice versa: a
MechatronicUML design is transformed into an Uppaal
model and counterexamples identified by Uppaal are
translated back into the MechatronicUML language. This
allows system designers to formally validate their system
designs without knowledge of Uppaal’s timed automata
formalism.

Combemale et al. [1] present a formal approach to
tracing back analysis results. Their approach requires an
input language with an operational semantics definable as
finitely-branching transition systems; it transforms analysis
results back to the syntax and operational semantics of a
domain-specific input language. Input for their approach is a
formal relation between the states of the input language and
those of the target language. They illustrate their approach
using a timed process modeling language as input language
and a timed Petri net language as analysis language.

The systems for which formal analysis and back
transformations have been used are quite different from the
types of systems that we consider in this paper. The basis of
our approach is the configurability of lighting systems: a
huge variety of lighting systems can be constructed from a
few configurable component types. This also holds for
logistic control systems. Verriet et al. [13] have shown how

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

warehouse controllers can be configured using domain-
specific tooling. A controller can be configured by selecting
the appropriate planning and scheduling components and
instantiating their behaviors from a library of configurable
protocols. This tooling allows warehouse designers to
specify a warehouse control system without knowledge of
implementation details. A back transformation is not
required, because the generated controller provides feedback
in terms understandable to the warehouse designer.

B. Outline

The paper is organized as follows. Section II explains the
robustness challenges in the design of lighting systems. The
indoor lighting case is introduced in Section III. Section IV
describes the lighting system model, which is used for the
robustness analysis described in Section V. Section VI
describes the validation of the model by coupling the model
to a test setup. In Section VII, we present strategies to
improve the robustness of lighting systems against failures in
the communication network. Section VIII reflects on the
modeling approach and its industrial applicability and
describes future work. Section IX summarizes the paper.

II. PROBLEM STATEMENT

The paradigm shifts mentioned in Section I lead to many
technical and business challenges. The technical challenges
can be summarized in non-functional aspects, such as
interoperability (cooperation/collaboration between
components from different vendors), availability and
robustness (correct lighting behavior at all times), and
security (system integrity and user privacy).

A. Goal

For a lighting company, it is crucially important to
guarantee correct behavior of a lighting system. In this paper,
we use a model-based approach to address this challenge. In
particular, we apply model checking to assess the robustness
of a lighting system’s distributed control system.

Our goal to identify robustness issues in a lighting system
has led to a two-step approach. The first step focuses on
modeling normal system behavior and identifying the
system’s reactions to events in its environment. These events
include normal events like occupancy detection events, but
also failures, such as loss or delay of messages. The second
step involves finding improvements to make the system less
sensitive to undesirable environmental events.

B. Approach

Understanding and predicting the behavior of lighting
systems is hard without formal modeling. This is due to the
complex interaction of a vast number of parallel processes
and events. Simulation provides little chance of identifying
(rare) robustness flaws. Since model checking allows even
the rarest events to be found, we apply formal modeling and
model checking as the main direction for our research. We
propose a model checking approach that fits the
configurability of distributed lighting systems. We require
therefore that a large variety of system models can be
configured from a small set of model elements in the same

manner that many lighting systems can be configured using a
small set of component types.

Because formal modeling skills are not commonly
available in industry, we propose an approach where a
system configuration is converted into a formal model that is
used to analyze a lighting system. An important aspect of our
work is the translation of the model checking results back to
the lighting system domain.

We aim to eventually hide the complexity of the formal
modeling tools completely by adaptation of tooling so that it
can easily be integrated in an industrial way of working.

III. CASE DESCRIPTION

Our robustness analysis is instigated by a real-world
application: an office lighting system being developed by
Philips Lighting. This office lighting system provides a
complete lighting solution in office spaces (cell office, open
plan) and central spaces, such as corridors, lounges and
entrance areas. The system is typically deployed in an office
building and cooperates with other systems, such as HVAC
(heating, ventilation, and air conditioning), security, network
and power systems. The system comprises networked
luminaires with LED-based light sources, a set of sensors
(occupancy, luminosity, etc.), and a microcontroller. The
number of luminaires in a building is in the order of
thousands; typically half of them have a set of sensors.

The office worker, i.e., a lighting system user, has control
over the lighting behavior of an area via a button panel (and
via a mobile app, but this is not considered in this paper). A
button panel allows the selection of a number of predefined
lighting settings (relax, concentrate, presentation, etc.), called
presets. Occupancy sensors provide automatic switching
on/off behavior of the lights in an area. Another feature is
daylight regulation, which uses the amount of available
daylight for setting the light intensity to a constant level.
Other features like linking rooms to corridors (keeping the
corridor lights on as long as neighboring rooms are occupied,
etc.) are not considered in this paper.

System control is distributed in the sense that each
luminaire has a controller that exchanges control and
synchronization messages with other luminaire controllers.
This paper focuses on robustness issues to understand the
impact of a change in the technology for message transport.
In particular, we investigate the robustness issues when
changing from an RS485-based system to an IP-based
system, either using Ethernet or wireless. These issues are of
extreme importance for Philips Lighting as the possible
issues are usually immediately visible to the users. For
example, a delayed response to a button press (poor
responsiveness) and a single ‘dark’ luminaire in a ‘lit’ room
(inconsistency) are very noticeable.

The technology transition leads to a more cost-effective
solution as the building’s existing network can be used. A
second important improvement is the use of Power over
Ethernet (PoE) technology that not only leads to discarding
the power lines for each luminaire, but it also allows
installation by less expensive personnel. Using the existing
network, however, entails that the network has become part
of the lighting system’s environment. There are risks

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

involved in migrating from an internal to an external
network. In particular, there is no control of the environment:
a high network load may cause loss or delay of messages,
and the start-up behavior of routers and switches may
influence the lighting system behavior.

IV. LIGHTING SYSTEM MODEL

In this section, we present the models that we have used
to analyze the robustness of indoor lighting systems. These
models are based on the observation that there are a few
basic events in a lighting system:

 An occupancy event is triggered by the detection of
occupancy by a sensor in an area and causes a
change of the area’s preset.

 A vacancy event is triggered by the absence of area
occupancy for a certain time period, called the hold
time, and causes a change of the area’s preset.

 A button event is triggered by the press of a button in
an area and causes a change of the area’s preset.

Using these events, one can configure a controller for an

area. This configuration involves selecting the appropriate

parameters for the events: the presets, the dwell times (a

period without preset change), and the hold times.
This will be illustrated using a simple example, which

includes all three events. Consider a workspace within an
open office. When someone enters the workspace area, the
lights switch on to a low light level (of 50%). If the
workspace is occupied for more than a dwell time of 15
seconds, the light switches to a medium light level (of 75%).
A workspace occupant can manually toggle the light level
between medium (75%) and high (100%) by pressing a
button on a panel. The light switches off (i.e., 0%)
automatically if no occupancy has been detected for a hold
time of 10 minutes.

The workspace example involves four presets with seven
transitions between them. The presets and the transitions are
visualized in Figure 1.

High
100%

Occupancy

Occupancy
Timeout
(10 min.)

Occupancy
Timeout
(10 min.)

Button
press

Occupancy
(15 sec.)

Occupancy
Timeout
(10 min.)

Med
75%

Low
50%

Off
0%

Figure 1. Workspace preset transitions.

Based on the parameterized events, we have created an

Uppaal model that can be configured in the same manner as

the events. The model consists of two main elements, a

controller model and an environment model. These are

described in the following subsections.

A. Controller Model

The controller model contains a parameterized timed
automaton for each of the events described earlier. The

values of the automata’s parameters for the workspace
example in Figure 1 are given between brackets.

 The occupancy automaton has four parameters: a
controller id, an active preset (Off/Low), a dwell time
(0/15 seconds), and a new preset (Low/Med).

 The vacancy automaton has four parameters: a
controller id, an active preset (Low/Med/High), a
hold time (10 minutes), and a new preset (Off).

 The button automaton has three parameters: a
controller id, an active preset (Med/High), and a new
preset (High/Med).

The occupancy automaton is shown in Figure 2. As

explained earlier, the automaton has four parameters: a
controller id (lumId), an active preset (p1), a dwell time
(tDwell), and a new preset (p2). The Uppaal automaton
consists of three locations (denoted with a circle symbol)
connected by five edges (denoted with an arrow symbol).
Edges are annotated with selections (e.g., p: preset_t),
guards (e.g., sensor[lumId]), synchronizations (e.g.,
PB[lumId][p]), and updates (e.g., t=0) [10].

The automaton’s initial location (indicated with a circle
in the location symbol) is the Off state. If the corresponding
luminaire has a sensor and its power supply gets enabled
(channel powerOn), it changes to the On state. It then resets
its internal clock t, which determines the time since the last
preset change. If occupancy is detected (channel occupancy)
after the dwell time tDwell has elapsed, it communicates a
preset change via channel PLocal and resets clock t. Clock t
is also reset if a preset change is reported via channel PB. If
the luminaire loses power (channel powerOff), it changes
back to the Off state.

Figure 2. Occupancy automaton.

The event automata receive triggers from the system’s
environment (see Section IV-B) and update the internal
states of the corresponding controllers accordingly. In our
model, a controller’s internal state includes the active preset
and a number of clock values. The clock values are updated
by the event automata; the model includes a separate
automaton to update a controller’s active preset.

We model a lighting system that is controlled in a
distributed manner: one area may have several controllers.
To avoid undesired behavior, e.g., a controller recalling
preset Off while another controller has recently detected
occupancy, the internal states of the controllers need to be
synchronized. This is done by a synchronization event, for
which we have created a fourth parameterized automaton.
This synchronization automaton informs the other controllers
in the same area of its internal state.

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

B. Environment Model

As our goal is to analyze lighting systems’ robustness
against events in their environment, we have created
automata that model a lighting system’s environment. In
particular, we have created timed automata for occupancy
generation, power supplies, and network communication.

We will focus on the network automata. These automata
model loss and delay of messages in a generic manner, i.e.,
they are independent of the underlying network technology
and protocols. The network automata decouple transmission
and reception of messages. A network automaton for
communicating presets is shown in Figure 3. The automaton
uses two channels: an incoming channel PA and an outgoing
channel PB. If the network automaton receives a message via
channel PA, then it either forwards it via channel PB or
discards it. The latter models message loss. Message delays
have been modeled in a similar manner.

Figure 3. Network automaton.

To fully control loss and delay of messages, the model
includes a network automaton for each combination of a
source controller, a destination controller, and a preset. This
allows a message to be received by any subset of the
intended recipients, enabling the analysis of all possible
scenarios involving message loss and message delay.

V. ROBUSTNESS ANALYSIS

As explained in Section III, Philips Lighting is
considering porting a distributed control concept from an
RS485 network that is part of the lighting system, to an IP
network that is part of the lighting system’s environment.
Philips wants to know the influence of an external network
on the behavior of their lighting systems.

The CAP theorem shows that a distributed system cannot
simultaneously be Consistent, Available, and Partition
tolerant [6]. Since high network loads may cause message
loss (a form of partitioning), this practically means that
inconsistencies between luminaires in one area cannot be
avoided or that (part) of the system becomes unavailable,
i.e., unresponsive.

This can easily be exemplified; consider the preset
transitions of Figure 1 for an area with two luminaires, one
of which has an occupancy sensor. Figure 4 shows a Gantt
chart for a scenario in which this area ends up in an
inconsistent state. The area starts in preset Off (black). The
occupancy sensor of luminaire 1 detects occupancy (blue)
and its controller recalls preset Low (cyan event). Fifteen
seconds later, this sensor still detects occupancy and preset
Med is recalled (magenta event). The corresponding message

from luminaire 1 to luminaire 2 gets lost. This leads to an
inconsistent situation: luminaire 1 is in preset Med (light
gray) and luminaire 2 in preset Low (dark gray). This
inconsistency ends when an occupant presses a button and
preset High (white) is recalled (yellow event).

Figure 4. Inconsistency due to message loss.

Section IV has described the automata from which
lighting system models can be constructed. The example
shown in Figure 1 involves seven event automata per
controller. Moreover, all luminaires have an automaton that
maintains the active preset. On top of that, there are network
automata for each combination of a source luminaire, a
destination luminaire, and a preset. For the example area, this
involves sixteen network automata.

Using the model elements described in Section IV, we
have configured and analyzed a number of lighting systems
including a cell office configuration that Philips has used in
customer projects. Details regarding these configurations are
omitted because of confidentiality.

Uppaal has a requirements specification language in
which one can formulate system properties [10]. We have
used this language to formulate desired lighting system
properties. Combined with a consistency monitoring
automaton, we have formulated properties regarding the
occurrence and maximum duration of area inconsistencies.
With these requirements, we have identified several
scenarios in which loss or delay of messages causes an area
to end up in an inconsistent situation. The identified message
loss scenarios are similar to the one in Figure 4; the
inconsistencies caused by message delays are mainly due to
out-of-order message reception.

VI. MODEL VALIDATION

As explained in Section V, we have used Uppaal models
to identify robustness issues, e.g., scenarios in which an area
becomes inconsistent. These formal models have been
created from a variety of informal documents and
observations of actual systems. To gain confidence in the
correctness of the outcome of the robustness analysis, we
have coupled our model to a test setup (see Figure 5). This
test setup is a realistic, small-scale lighting system composed
of commercial products: luminaire controllers, (simulated)
sensors, and PoE switches. The simulated sensors allow
injecting occupancy events into the system when needed.
Message loss and message delays are controlled by an IP
bridge. This bridge is realized by two network cards in the
PC connecting two separate networks.

49Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

Figure 5. Lighting system test setup.

The Uppaal model and the test setup can both be
configured with occupancy, vacancy, button, and
synchronization events.

To validate our models, we have created a two-way
transformation between the model and the test setup. This
transformation is based on a domain-specific language
(DSL) that we have created for lighting system scenarios.
This DSL has been developed using Xtext technology [4]
and the transformations using Xtend [3] and Java.

The test setup allows observing the luminaire controllers
and the communication network over time and creates a
record expressed in the DSL. A recorded scenario includes
occupancy detections, active presets, and output levels. This
scenario can be translated into an Uppaal automaton that
replays the occupancy detections and checks whether the
response of the model corresponds to the response observed
in the test setup.

Reversely, the inconsistency scenarios identified using
the Uppaal models need to be checked on the test setup. We
have developed a transformation that transforms an
inconsistency scenario into a script that can be replayed on
the test setup to check whether the inconsistency actually
occurs. In the same manner, we can check good-weather
scenarios.

Using the described two-way transformation, we have
successfully validated the Uppaal model. On the one hand,
the responses of the model correspond to responses observed
on the test setup. On the other hand, all of the inconsistency
scenarios identified using our model have been successfully
reproduced by filtering or delaying the appropriate network
messages.

This gives confidence in the correctness of the model and
therefore in a lighting system’s behavior in case of loss or
delay of messages. The actual probability of message loss
and message delay is subject for further study, and involves
measurements and estimation of loss rates, and other
implementation-specific details.

VII. AUTOMATIC RECOVERY

In Section VI, we have validated that message loss and
message delay may lead to periods of inconsistency in a
lighting system. Message loss and message delay are rare in
practice, but they cannot be avoided by the lighting system,
because the communication network is not part of the
lighting system. To be robust against message loss, a lighting
system needs to cope with these inconsistencies by
automatically recovering. This requires the introduction of a
recovery strategy. In this section, we analyze such strategies.

We will focus our analysis on lighting systems’ recovery
capability. In particular, we determine the maximum
duration of area inconsistency if a finite number of messages
are lost in the communication network. In order to compute
this maximum duration, we have extended the model with an
area monitoring automaton that continuously checks for
inconsistency and starts a clock when it detects area
inconsistency.

We have compared three strategies for their recovery
capability. All strategies involve repeated synchronization of
a controller’s internal state. For confidentiality reasons, we
omit the details regarding the strategies.

 Strategy 1: No additional state synchronization.

 Strategy 2: The usage of additional occupancy and
vacancy events for state synchronization.

 Strategy 3: The usage of new synchronization events
for state synchronization.

Table I shows the maximum inconsistency duration for

the different strategies, derived using simple argumentation.
In this table, N denotes the number of lost messages, TH
equals the maximum hold time of the vacancy events, TD is
the maximum dwell time of the occupancy events, and TR is
the maximum state synchronization time.

TABLE I. MAXIMUM INCONSISTENCY PERIOD DURATION

Strategy Maximum inconsistency

Strategy 1 N ∙ ∞

Strategy 2 N ∙ (TH + max{TR, TD})

Strategy 3 N ∙ TR

The results in Table I apply to all system configurations

that we have analyzed. These include the example in Figure
1 and configurations used by Philips Lighting. The results in
Table I show that if no messages are lost, then the lighting
systems behave consistently. It also shows that without
additional synchronization, message loss can (in theory) lead
to infinite periods of inconsistency. Finally, it shows that
repeatedly synchronizing the internal state provides a
successful manner to recover from area inconsistency; the
speed of recovery depends on the strategy.

VIII. DISCUSSION AND FUTURE WORK

In the previous sections, we have presented formal
models to analyze the robustness of distributed lighting
systems. This section reflects on the modeling approach and
its industrial applicability and describes future work.

A. Industrial Fit

Application of formal modeling and model checking
techniques in industrial practice has always been a challenge,
mainly due to the distance between the abstract level of
reasoning for formal modeling and the concrete level of
reasoning required in product development and realization.

In our work at Philips Lighting, we reduce this distance
by matching our models to the actual design and
implementation concepts and terminology used by the
system architects and engineers. Furthermore, we hide the
complexity of the model checking tooling by creating a

50Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

transformation of configuration information to Uppaal
models. This entails the adaptation of our models to the high
configurability of the actual system.

The basis of our approach is the configurability of
lighting systems: these systems are constructed by selecting
and configuring a few component types. In earlier work, we
have identified that logistic systems, e.g., warehouses and
baggage handling systems, share these characteristics [13].
Our approach can therefore easily be adapted to validate
logistic system controllers.

Note that the approach will also have great value in the
IoT domain, as there is strong dependency on the good- and
bad-weather behavior of the (network) environment.

B. Model and Modeling Experience

The process of creating a formal model from design
knowledge and concrete implementations is a challenging
one: initially the knowledge has to be acquired from experts
or design documentation (which may be hard to find); next
the models are created iteratively when the knowledge and
insight grows. The large number of features and
configurations that are captured in the model quickly leads
an unmanageable monolithic model. Therefore, we were
forced to decompose the monolithic model into logical parts
exhibiting the same behavior. We have created a modular
model comprised of parameterized event automata, which
fits the configuration tooling of Philips Lighting. This,
however, has consequences for scalability. It is a challenge
to keep the state space small when having many automata.
This scalability problem in a realistic industrial context is a
topic for further research.

C. Model Extensions

The current model of the Philips Lighting case captures
the control behavior of single-area configurations. The model
can be extended with hierarchy of areas (linking the behavior
of a corridor to that of connected offices, etc.). We foresee
additional scalability challenges in such cases.

Another modeling challenge involves the start-up
behavior of system components (including switches, routers,
etc.) and the corresponding lighting behavior. This is
important in cases of (partial) power failures, or software
update scenarios. The challenge lies in the acquisition of
detailed knowledge about the component behavior in non-
specified situations.

IX. CONCLUSION

In this paper, we have presented a model checking
approach to analyze the robustness of distributed lighting
systems. There is a huge variety of lighting systems that can
be built from a small set of component types. Our modular
and parameterized modeling approach addresses this variety,
because it allows the same configuration options as lighting
systems. We have shown that our approach is very helpful in
identifying robustness issues and in analyzing robustness-
improving communication protocols. In particular, we have
shown that lighting systems can recover from inconsistent
behavior by having their luminaires communicate their

internal state periodically. These concrete results are highly
appreciated by the development organization of Philips
Lighting.

A second benefit of our modular and parameterized
approach is its integration in an industrial way of working.
Because the models have the same configuration options as
the distributed lighting systems, formal models can be
generated automatically from the lighting systems’
configuration information. We have shown that it is possible
to close the loop from formal model to real implementation
by having a transformation that translates formal analysis
results back into the lighting domain.

REFERENCES

[1] B. Combemale, L. Gonnord, and V. Rusu: “A generic tool for
tracing executions back to a DSML's operational semantics,”
in Modelling Foundations and Applications, R.B. France,
J.M. Kuester, B. Bordbar and R.F. Paige, Eds. Berlin:
Springer, pp. 35-51, 2011.

[2] S. Dziwok et al.: “A tool suite for the model-driven software
engineering of cyber-physical systems,” 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), ACM, November 2014, pp. 715-
718, doi:10.1145/2635868.2661665.

[3] Eclipse Foundation: Xtend. [Online]. Available from:
http://www.eclipse.org/xtend/ [retrieved: 2015.03.02].

[4] Eclipse Foundation: Xtext. [Online]. Available from:
http://www.eclipse.org/Xtext/ [retrieved: 2015.03.02].

[5] C. Gerking: “Transparent Uppaal-based verification of
MechatronicUML models,” Master’s thesis, University of
Paderborn, May 2013.

[6] S. Gilbert and N. Lynch, “Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services,” ACM SIGACT News, vol. 33, pp. 51-59, June
2002, doi:10.1145/564585.564601.

[7] S.D. Gribble: “Robustness in complex systems,” Eighth
Workshop on Hot Topics in Operating Systems, IEEE, May
2001, pp. 21-26, doi:10.1109/HOTOS.2001.990056.

[8] M. Hendriks, B. van den Nieuwelaar, and F. Vaandrager:
“Model checker aided design of a controller for a wafer
scanner,” International Journal on Software Tools for
Technology Transfer, vol. 8, June 2006, pp. 633-647,
doi:10.1007/s10009-006-0025-7.

[9] F. Kammüller and S. Preibusch: “An industrial application of
symbolic model checking - The TWIN elevator case study,”
Informatik - Forschung und Entwicklung, vol. 22, February
2008, pp. 95-108, doi: 10.1007/s00450-007-0032-2.

[10] Uppsala Universitet and Aalborg University: UPPAAL.
[Online]. Available from: http://www.uppaal.org/ [retrieved:
2015.03.02].

[11] F. van den Berg, A. Remke, and B.R. Haverkort: “A DSL for
performance evaluation of medical imaging systems,”
Medical Cyber Physical Systems Workshop 2014, April 2014,
pp. 80-93, doi: 10.4230/OASIcs.MCPS.2014.80.

[12] L. van den Berg, P. Strooper, and K. Winter: “Introducing
time in an industrial application of model-checking,” in
Formal Methods for Industrial Critical Systems, S. Leue and
P. Merino, Eds. Berlin: Springer pp. 56-67, 2008.

[13] J. Verriet, H.L. Liang, R. Hamberg, and B. van Wijngaarden:
“Model-driven development of logistic systems using
domain-specific tooling,” in Complex Systems Design &
Management, M. Aiguier, Y. Caseau, D. Krob, and A. Rauzy,
Eds. Berlin: Springer, pp. 165-176, 2013.

51Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

