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Abstract—Modern lighting systems are configurable systems-

of-systems that have to operate in an environment that they 

cannot fully control. These systems have to guarantee the 

continuation of their functionality regardless of the events in 

their environment. As testing and simulation are not able to 

identify all possible interactions of a lighting system and its 

environment we propose a model checking approach to analyze 

a lighting system’s robustness. To allow easy integration in 

lighting system development, the approach uses the same 

configuration options as the lighting systems under study. We 

apply our approach to an office lighting system and show how 

model checking can be used to analyze the robustness against 

network failures and to investigate communication protocols to 

improve system robustness.  

Keywords-distributed systems; system robustness; model 

checking; Uppaal; indoor lighting systems. 

I.  INTRODUCTION 

Many believe that current trends like Internet of Things 
(IoT) will only thrive when a well-established industry will 
take them up. This industry could well be the lighting 
industry, which is going through a number of paradigm 
shifts: from traditional light sources (incandescent, 
fluorescent lamps) to LED (light emitting diode), from 
simple light sources to intelligent, networked, multi-sensor 
luminaires, and from individually controlled light points to 
large-scale distributed control systems. These major changes 
fit well to the IoT idea of having many internet-connected 
sensor/actuator nodes distributed over an area of interest, 
e.g., an office building.  

A lighting system for an office building is a prime 
example of a complex system: it is a large-scale distributed 
system, containing thousands of sensor and actuator 
components, which exhibit event-based behavior. The 
system can have very many configurations, but is comprised 
of only a limited number of types of components. Typical for 
modern systems is the complicating factor that it has to 
cooperate with other systems (heating/cooling, network, 
power, security), sometimes leading to conflicting 
requirements. 

A. Related Work 

In this paper, we present a model checking approach to 
analyze the robustness of large-scale indoor lighting systems 
to (erroneous) events in its environment. Robustness is the 

ability of a system to continue to operate correctly across a 
wide range of operational conditions, and fail gracefully 
outside of that range [7]. 

To the best of our knowledge, model checking has not 
been applied to large-scale lighting systems. There are many 
examples of other (industrial) systems that have been 
analyzed using model checking. Examples include elevator 
control systems [9] and railway interlockings [12].  

In another example, van den Berg et al. [11] use a 
domain-specific language for specifying medical imaging 
systems. This domain-specific language is translated into 
Uppaal [10] for performance analysis. The output of this 
analysis in translated in information understandable to 
system designers: analysis results are transformed into lower 
and upper bounds of system response times. Hendriks et al. 
[8] have applied a similar approach to create optimal 
schedules of a wafer scanner. 

Similar results have been achieved using 
MechatronicUML, an Eclipse-based tool suite for the design 
of cyber-physical systems [2]. It comprises a modeling 
language and a development process. To validate software 
correctness, Gerking [3] has developed transformations from 
MechatronicUML to Uppaal [10] and vice versa: a 
MechatronicUML design is transformed into an Uppaal 
model and counterexamples identified by Uppaal are 
translated back into the MechatronicUML language. This 
allows system designers to formally validate their system 
designs without knowledge of Uppaal’s timed automata 
formalism. 

Combemale et al. [1] present a formal approach to 
tracing back analysis results. Their approach requires an 
input language with an operational semantics definable as 
finitely-branching transition systems; it transforms analysis 
results back to the syntax and operational semantics of a 
domain-specific input language. Input for their approach is a 
formal relation between the states of the input language and 
those of the target language. They illustrate their approach 
using a timed process modeling language as input language 
and a timed Petri net language as analysis language. 

The systems for which formal analysis and back 
transformations have been used are quite different from the 
types of systems that we consider in this paper. The basis of 
our approach is the configurability of lighting systems: a 
huge variety of lighting systems can be constructed from a 
few configurable component types. This also holds for 
logistic control systems. Verriet et al. [13] have shown how 
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warehouse controllers can be configured using domain-
specific tooling. A controller can be configured by selecting 
the appropriate planning and scheduling components and 
instantiating their behaviors from a library of configurable 
protocols. This tooling allows warehouse designers to 
specify a warehouse control system without knowledge of 
implementation details. A back transformation is not 
required, because the generated controller provides feedback 
in terms understandable to the warehouse designer. 

B. Outline 

The paper is organized as follows. Section II explains the 
robustness challenges in the design of lighting systems. The 
indoor lighting case is introduced in Section III. Section IV 
describes the lighting system model, which is used for the 
robustness analysis described in Section V. Section VI 
describes the validation of the model by coupling the model 
to a test setup. In Section VII, we present strategies to 
improve the robustness of lighting systems against failures in 
the communication network. Section VIII reflects on the 
modeling approach and its industrial applicability and 
describes future work. Section IX summarizes the paper. 

II. PROBLEM STATEMENT 

The paradigm shifts mentioned in Section I lead to many 
technical and business challenges. The technical challenges 
can be summarized in non-functional aspects, such as 
interoperability (cooperation/collaboration between 
components from different vendors), availability and 
robustness (correct lighting behavior at all times), and 
security (system integrity and user privacy). 

A. Goal 

For a lighting company, it is crucially important to 
guarantee correct behavior of a lighting system. In this paper, 
we use a model-based approach to address this challenge. In 
particular, we apply model checking to assess the robustness 
of a lighting system’s distributed control system.  

Our goal to identify robustness issues in a lighting system 
has led to a two-step approach. The first step focuses on 
modeling normal system behavior and identifying the 
system’s reactions to events in its environment. These events 
include normal events like occupancy detection events, but 
also failures, such as loss or delay of messages. The second 
step involves finding improvements to make the system less 
sensitive to undesirable environmental events. 

B. Approach 

Understanding and predicting the behavior of lighting 
systems is hard without formal modeling. This is due to the 
complex interaction of a vast number of parallel processes 
and events. Simulation provides little chance of identifying 
(rare) robustness flaws. Since model checking allows even 
the rarest events to be found, we apply formal modeling and 
model checking as the main direction for our research. We 
propose a model checking approach that fits the 
configurability of distributed lighting systems. We require 
therefore that a large variety of system models can be 
configured from a small set of model elements in the same 

manner that many lighting systems can be configured using a 
small set of component types. 

Because formal modeling skills are not commonly 
available in industry, we propose an approach where a 
system configuration is converted into a formal model that is 
used to analyze a lighting system. An important aspect of our 
work is the translation of the model checking results back to 
the lighting system domain. 

We aim to eventually hide the complexity of the formal 
modeling tools completely by adaptation of tooling so that it 
can easily be integrated in an industrial way of working.  

III. CASE DESCRIPTION 

Our robustness analysis is instigated by a real-world 
application: an office lighting system being developed by 
Philips Lighting. This office lighting system provides a 
complete lighting solution in office spaces (cell office, open 
plan) and central spaces, such as corridors, lounges and 
entrance areas. The system is typically deployed in an office 
building and cooperates with other systems, such as HVAC 
(heating, ventilation, and air conditioning), security, network 
and power systems. The system comprises networked 
luminaires with LED-based light sources, a set of sensors 
(occupancy, luminosity, etc.), and a microcontroller. The 
number of luminaires in a building is in the order of 
thousands; typically half of them have a set of sensors. 

The office worker, i.e., a lighting system user, has control 
over the lighting behavior of an area via a button panel (and 
via a mobile app, but this is not considered in this paper). A 
button panel allows the selection of a number of predefined 
lighting settings (relax, concentrate, presentation, etc.), called 
presets. Occupancy sensors provide automatic switching 
on/off behavior of the lights in an area. Another feature is 
daylight regulation, which uses the amount of available 
daylight for setting the light intensity to a constant level. 
Other features like linking rooms to corridors (keeping the 
corridor lights on as long as neighboring rooms are occupied, 
etc.) are not considered in this paper. 

System control is distributed in the sense that each 
luminaire has a controller that exchanges control and 
synchronization messages with other luminaire controllers. 
This paper focuses on robustness issues to understand the 
impact of a change in the technology for message transport. 
In particular, we investigate the robustness issues when 
changing from an RS485-based system to an IP-based 
system, either using Ethernet or wireless. These issues are of 
extreme importance for Philips Lighting as the possible 
issues are usually immediately visible to the users. For 
example, a delayed response to a button press (poor 
responsiveness) and a single ‘dark’ luminaire in a ‘lit’ room 
(inconsistency) are very noticeable.  

The technology transition leads to a more cost-effective 
solution as the building’s existing network can be used. A 
second important improvement is the use of Power over 
Ethernet (PoE) technology that not only leads to discarding 
the power lines for each luminaire, but it also allows 
installation by less expensive personnel. Using the existing 
network, however, entails that the network has become part 
of the lighting system’s environment. There are risks 
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involved in migrating from an internal to an external 
network. In particular, there is no control of the environment: 
a high network load may cause loss or delay of messages, 
and the start-up behavior of routers and switches may 
influence the lighting system behavior. 

IV. LIGHTING SYSTEM MODEL 

In this section, we present the models that we have used 
to analyze the robustness of indoor lighting systems. These 
models are based on the observation that there are a few 
basic events in a lighting system: 

 An occupancy event is triggered by the detection of 
occupancy by a sensor in an area and causes a 
change of the area’s preset. 

 A vacancy event is triggered by the absence of area 
occupancy for a certain time period, called the hold 
time, and causes a change of the area’s preset. 

 A button event is triggered by the press of a button in 
an area and causes a change of the area’s preset. 

 

Using these events, one can configure a controller for an 

area. This configuration involves selecting the appropriate 

parameters for the events: the presets, the dwell times (a 

period without preset change), and the hold times. 
This will be illustrated using a simple example, which 

includes all three events. Consider a workspace within an 
open office. When someone enters the workspace area, the 
lights switch on to a low light level (of 50%). If the 
workspace is occupied for more than a dwell time of 15 
seconds, the light switches to a medium light level (of 75%). 
A workspace occupant can manually toggle the light level 
between medium (75%) and high (100%) by pressing a 
button on a panel. The light switches off (i.e., 0%) 
automatically if no occupancy has been detected for a hold 
time of 10 minutes. 

The workspace example involves four presets with seven 
transitions between them. The presets and the transitions are 
visualized in Figure 1. 
 

High
100%

Occupancy

Occupancy
Timeout
(10 min.)

Occupancy
Timeout
(10 min.)

Button
press

Occupancy
(15 sec.)

Occupancy
Timeout
(10 min.)

Med
75%

Low 
50%

Off
0%

 
Figure 1.  Workspace preset transitions. 

Based on the parameterized events, we have created an 

Uppaal model that can be configured in the same manner as 

the events. The model consists of two main elements, a 

controller model and an environment model. These are 

described in the following subsections. 

A. Controller Model 

The controller model contains a parameterized timed 
automaton for each of the events described earlier. The 

values of the automata’s parameters for the workspace 
example in Figure 1 are given between brackets. 

 The occupancy automaton has four parameters: a 
controller id, an active preset (Off/Low), a dwell time 
(0/15 seconds), and a new preset (Low/Med). 

 The vacancy automaton has four parameters: a 
controller id, an active preset (Low/Med/High), a 
hold time (10 minutes), and a new preset (Off). 

 The button automaton has three parameters: a 
controller id, an active preset (Med/High), and a new 
preset (High/Med). 

 
The occupancy automaton is shown in Figure 2. As 

explained earlier, the automaton has four parameters: a 
controller id (lumId), an active preset (p1), a dwell time 
(tDwell), and a new preset (p2). The Uppaal automaton 
consists of three locations (denoted with a circle symbol) 
connected by five edges (denoted with an arrow symbol). 
Edges are annotated with selections (e.g., p: preset_t), 
guards (e.g., sensor[lumId]), synchronizations (e.g., 
PB[lumId][p]), and updates (e.g., t=0) [10]. 

The automaton’s initial location (indicated with a circle 
in the location symbol) is the Off state. If the corresponding 
luminaire has a sensor and its power supply gets enabled 
(channel powerOn), it changes to the On state. It then resets 
its internal clock t, which determines the time since the last 
preset change. If occupancy is detected (channel occupancy) 
after the dwell time tDwell has elapsed, it communicates a 
preset change via channel PLocal and resets clock t. Clock t 
is also reset if a preset change is reported via channel PB. If 
the luminaire loses power (channel powerOff), it changes 
back to the Off state. 
 

 
Figure 2.  Occupancy automaton. 

The event automata receive triggers from the system’s 
environment (see Section IV-B) and update the internal 
states of the corresponding controllers accordingly. In our 
model, a controller’s internal state includes the active preset 
and a number of clock values. The clock values are updated 
by the event automata; the model includes a separate 
automaton to update a controller’s active preset. 

We model a lighting system that is controlled in a 
distributed manner: one area may have several controllers. 
To avoid undesired behavior, e.g., a controller recalling 
preset Off while another controller has recently detected 
occupancy, the internal states of the controllers need to be 
synchronized. This is done by a synchronization event, for 
which we have created a fourth parameterized automaton. 
This synchronization automaton informs the other controllers 
in the same area of its internal state. 
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B. Environment Model 

As our goal is to analyze lighting systems’ robustness 
against events in their environment, we have created 
automata that model a lighting system’s environment. In 
particular, we have created timed automata for occupancy 
generation, power supplies, and network communication. 

We will focus on the network automata. These automata 
model loss and delay of messages in a generic manner, i.e., 
they are independent of the underlying network technology 
and protocols. The network automata decouple transmission 
and reception of messages. A network automaton for 
communicating presets is shown in Figure 3. The automaton 
uses two channels: an incoming channel PA and an outgoing 
channel PB. If the network automaton receives a message via 
channel PA, then it either forwards it via channel PB or 
discards it. The latter models message loss. Message delays 
have been modeled in a similar manner. 
 

 
Figure 3.  Network automaton. 

To fully control loss and delay of messages, the model 
includes a network automaton for each combination of a 
source controller, a destination controller, and a preset. This 
allows a message to be received by any subset of the 
intended recipients, enabling the analysis of all possible 
scenarios involving message loss and message delay. 

V. ROBUSTNESS ANALYSIS 

As explained in Section III, Philips Lighting is 
considering porting a distributed control concept from an 
RS485 network that is part of the lighting system, to an IP 
network that is part of the lighting system’s environment. 
Philips wants to know the influence of an external network 
on the behavior of their lighting systems. 

The CAP theorem shows that a distributed system cannot 
simultaneously be Consistent, Available, and Partition 
tolerant [6]. Since high network loads may cause message 
loss (a form of partitioning), this practically means that 
inconsistencies between luminaires in one area cannot be 
avoided or that (part) of the system becomes unavailable, 
i.e., unresponsive.  

This can easily be exemplified; consider the preset 
transitions of Figure 1 for an area with two luminaires, one 
of which has an occupancy sensor. Figure 4 shows a Gantt 
chart for a scenario in which this area ends up in an 
inconsistent state. The area starts in preset Off (black). The 
occupancy sensor of luminaire 1 detects occupancy (blue) 
and its controller recalls preset Low (cyan event). Fifteen 
seconds later, this sensor still detects occupancy and preset 
Med is recalled (magenta event). The corresponding message 

from luminaire 1 to luminaire 2 gets lost. This leads to an 
inconsistent situation: luminaire 1 is in preset Med (light 
gray) and luminaire 2 in preset Low (dark gray). This 
inconsistency ends when an occupant presses a button and 
preset High (white) is recalled (yellow event). 
 

 
Figure 4.  Inconsistency due to message loss. 

Section IV has described the automata from which 
lighting system models can be constructed. The example 
shown in Figure 1 involves seven event automata per 
controller. Moreover, all luminaires have an automaton that 
maintains the active preset. On top of that, there are network 
automata for each combination of a source luminaire, a 
destination luminaire, and a preset. For the example area, this 
involves sixteen network automata. 

Using the model elements described in Section IV, we 
have configured and analyzed a number of lighting systems 
including a cell office configuration that Philips has used in 
customer projects. Details regarding these configurations are 
omitted because of confidentiality. 

Uppaal has a requirements specification language in 
which one can formulate system properties [10]. We have 
used this language to formulate desired lighting system 
properties. Combined with a consistency monitoring 
automaton, we have formulated properties regarding the 
occurrence and maximum duration of area inconsistencies. 
With these requirements, we have identified several 
scenarios in which loss or delay of messages causes an area 
to end up in an inconsistent situation. The identified message 
loss scenarios are similar to the one in Figure 4; the 
inconsistencies caused by message delays are mainly due to 
out-of-order message reception. 

VI. MODEL VALIDATION 

As explained in Section V, we have used Uppaal models 
to identify robustness issues, e.g., scenarios in which an area 
becomes inconsistent. These formal models have been 
created from a variety of informal documents and 
observations of actual systems. To gain confidence in the 
correctness of the outcome of the robustness analysis, we 
have coupled our model to a test setup (see Figure 5). This 
test setup is a realistic, small-scale lighting system composed 
of commercial products: luminaire controllers, (simulated) 
sensors, and PoE switches. The simulated sensors allow 
injecting occupancy events into the system when needed. 
Message loss and message delays are controlled by an IP 
bridge. This bridge is realized by two network cards in the 
PC connecting two separate networks. 
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Figure 5.  Lighting system test setup. 

The Uppaal model and the test setup can both be 
configured with occupancy, vacancy, button, and 
synchronization events. 

To validate our models, we have created a two-way 
transformation between the model and the test setup. This 
transformation is based on a domain-specific language 
(DSL) that we have created for lighting system scenarios. 
This DSL has been developed using Xtext technology [4] 
and the transformations using Xtend [3] and Java. 

The test setup allows observing the luminaire controllers 
and the communication network over time and creates a 
record expressed in the DSL. A recorded scenario includes 
occupancy detections, active presets, and output levels. This 
scenario can be translated into an Uppaal automaton that 
replays the occupancy detections and checks whether the 
response of the model corresponds to the response observed 
in the test setup. 

Reversely, the inconsistency scenarios identified using 
the Uppaal models need to be checked on the test setup. We 
have developed a transformation that transforms an 
inconsistency scenario into a script that can be replayed on 
the test setup to check whether the inconsistency actually 
occurs. In the same manner, we can check good-weather 
scenarios. 

Using the described two-way transformation, we have 
successfully validated the Uppaal model. On the one hand, 
the responses of the model correspond to responses observed 
on the test setup. On the other hand, all of the inconsistency 
scenarios identified using our model have been successfully 
reproduced by filtering or delaying the appropriate network 
messages. 

This gives confidence in the correctness of the model and 
therefore in a lighting system’s behavior in case of loss or 
delay of messages. The actual probability of message loss 
and message delay is subject for further study, and involves 
measurements and estimation of loss rates, and other 
implementation-specific details. 

VII. AUTOMATIC RECOVERY  

In Section VI, we have validated that message loss and 
message delay may lead to periods of inconsistency in a 
lighting system. Message loss and message delay are rare in 
practice, but they cannot be avoided by the lighting system, 
because the communication network is not part of the 
lighting system. To be robust against message loss, a lighting 
system needs to cope with these inconsistencies by 
automatically recovering. This requires the introduction of a 
recovery strategy. In this section, we analyze such strategies. 

We will focus our analysis on lighting systems’ recovery 
capability. In particular, we determine the maximum 
duration of area inconsistency if a finite number of messages 
are lost in the communication network. In order to compute 
this maximum duration, we have extended the model with an 
area monitoring automaton that continuously checks for 
inconsistency and starts a clock when it detects area 
inconsistency. 

We have compared three strategies for their recovery 
capability. All strategies involve repeated synchronization of 
a controller’s internal state. For confidentiality reasons, we 
omit the details regarding the strategies. 

 Strategy 1: No additional state synchronization. 

 Strategy 2: The usage of additional occupancy and 
vacancy events for state synchronization. 

 Strategy 3: The usage of new synchronization events 
for state synchronization. 

 
Table I shows the maximum inconsistency duration for 

the different strategies, derived using simple argumentation. 
In this table, N denotes the number of lost messages, TH 
equals the maximum hold time of the vacancy events, TD is 
the maximum dwell time of the occupancy events, and TR is 
the maximum state synchronization time. 

TABLE I.  MAXIMUM INCONSISTENCY PERIOD DURATION 

Strategy Maximum inconsistency 

Strategy 1 N ∙ ∞ 

Strategy 2 N ∙ (TH + max{TR, TD}) 

Strategy 3 N ∙ TR 

 
The results in Table I apply to all system configurations 

that we have analyzed. These include the example in Figure 
1 and configurations used by Philips Lighting. The results in 
Table I show that if no messages are lost, then the lighting 
systems behave consistently. It also shows that without 
additional synchronization, message loss can (in theory) lead 
to infinite periods of inconsistency. Finally, it shows that 
repeatedly synchronizing the internal state provides a 
successful manner to recover from area inconsistency; the 
speed of recovery depends on the strategy. 

VIII. DISCUSSION AND FUTURE WORK 

In the previous sections, we have presented formal 
models to analyze the robustness of distributed lighting 
systems. This section reflects on the modeling approach and 
its industrial applicability and describes future work. 

A. Industrial Fit 

Application of formal modeling and model checking 
techniques in industrial practice has always been a challenge, 
mainly due to the distance between the abstract level of 
reasoning for formal modeling and the concrete level of 
reasoning required in product development and realization. 

In our work at Philips Lighting, we reduce this distance 
by matching our models to the actual design and 
implementation concepts and terminology used by the 
system architects and engineers. Furthermore, we hide the 
complexity of the model checking tooling by creating a 
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transformation of configuration information to Uppaal 
models. This entails the adaptation of our models to the high 
configurability of the actual system. 

The basis of our approach is the configurability of 
lighting systems: these systems are constructed by selecting 
and configuring a few component types. In earlier work, we 
have identified that logistic systems, e.g., warehouses and 
baggage handling systems, share these characteristics [13]. 
Our approach can therefore easily be adapted to validate 
logistic system controllers. 

Note that the approach will also have great value in the 
IoT domain, as there is strong dependency on the good- and 
bad-weather behavior of the (network) environment. 

B. Model and Modeling Experience 

The process of creating a formal model from design 
knowledge and concrete implementations is a challenging 
one: initially the knowledge has to be acquired from experts 
or design documentation (which may be hard to find); next 
the models are created iteratively when the knowledge and 
insight grows. The large number of features and 
configurations that are captured in the model quickly leads 
an unmanageable monolithic model. Therefore, we were 
forced to decompose the monolithic model into logical parts 
exhibiting the same behavior. We have created a modular 
model comprised of parameterized event automata, which 
fits the configuration tooling of Philips Lighting. This, 
however, has consequences for scalability. It is a challenge 
to keep the state space small when having many automata. 
This scalability problem in a realistic industrial context is a 
topic for further research. 

C. Model Extensions 

The current model of the Philips Lighting case captures 
the control behavior of single-area configurations. The model 
can be extended with hierarchy of areas (linking the behavior 
of a corridor to that of connected offices, etc.). We foresee 
additional scalability challenges in such cases. 

Another modeling challenge involves the start-up 
behavior of system components (including switches, routers, 
etc.) and the corresponding lighting behavior. This is 
important in cases of (partial) power failures, or software 
update scenarios. The challenge lies in the acquisition of 
detailed knowledge about the component behavior in non-
specified situations. 

IX. CONCLUSION 

In this paper, we have presented a model checking 
approach to analyze the robustness of distributed lighting 
systems. There is a huge variety of lighting systems that can 
be built from a small set of component types. Our modular 
and parameterized modeling approach addresses this variety, 
because it allows the same configuration options as lighting 
systems. We have shown that our approach is very helpful in 
identifying robustness issues and in analyzing robustness-
improving communication protocols. In particular, we have 
shown that lighting systems can recover from inconsistent 
behavior by having their luminaires communicate their 

internal state periodically. These concrete results are highly 
appreciated by the development organization of Philips 
Lighting. 

A second benefit of our modular and parameterized 
approach is its integration in an industrial way of working. 
Because the models have the same configuration options as 
the distributed lighting systems, formal models can be 
generated automatically from the lighting systems’ 
configuration information. We have shown that it is possible 
to close the loop from formal model to real implementation 
by having a transformation that translates formal analysis 
results back into the lighting domain. 
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