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Abstract—We work out a classification scheme for quantum
modeling in Hilbert space of any kind of composite entity
violating Bell’s inequalities and exhibiting entanglement. Our
framework includes situations with entangled states and prod-
uct measurements, and also situations with both entangled
states and entangled measurements. We show that entan-
glement is structurally a joint property of states and mea-
surements, and that entangled measurements enable quantum
modeling of situations that are usually believed to be ‘beyond
quantum’. Our results are extended from pure states to quan-
tum mixtures. Entanglement classification has potentially an
impact on quantum technologies and quantum cryptography,
where entanglement is employed as a fundamental resource.

Keywords-quantum modeling; Bell inequalities; entanglement;
marginal law; Tsirelson bound.

I. INTRODUCTION

Entanglement is one of the most intriguing aspects of
quantum physics. Entailing the violation of ‘Bell’s inequal-
ities’, it is responsible for a number of non-classical and
far from well understood phenomena, such as quantum non-
locality [1] and quantum non-Kolmogorovness [2], [3], [4].
Several powerful potential applications of entanglement have
been identified, which make it one of the most important
study objects in quantum information theory and quantum
technology. Otherwise impossible tasks, such as ‘superdense
coding’ and ‘teleportation’, the ‘quantum key distribution’
and other protocols in quantum cryptography, the basic
algorithms in quantum computation, exploit entanglement
and its basic features. And, more, advanced experimental
techniques, such as ion trapping and some fundamental
processes in quantum interferometry, need entanglement and
its purification, characterization and detection.

What was additionally very amazing is that entanglement
appears, together with some other quantum features (con-
textuality, emergence, indeterminism, interference, superpo-
sition, etc.), also outside the microscopic domain of quantum
theory, in the dynamics of concepts and decision processes
within human thought, in computer science, in biological
interactions, etc. These results constituted the beginning of
a systematic and promising search for quantum structures
and the use of quantum-based models in domains where
classical structures show to be problematical [5], [6], [7], [8],
[9], [10], [11]. Coming to our research, many years ago we
already identified situations in macroscopic physics which
violate Bell’s inequalities [12], [13]. More recently, we have

performed a cognitive test showing that a specific combi-
nation of concepts violates Bell’s inequalities [14], [15],
[16]. These two situations explicitly exhibit entanglement
and present deep structural and conceptual analogies [17],
[18], [19]. Resting on these findings, in the present paper,
we put forward a general analysis and elaborate a global
framework for the mathematical description of (not necessar-
ily physical) composite entities violating Bell’s inequalities.
The entanglement in these situations is detected, represented
and classified within explicit quantum models, where states,
measurements and probabilities are expressed in the typical
Hilbert space formalism. Our quantum-theoretic approach
identifies different types of situations according to the quan-
tum description that is required for their modeling.

(i) Bell’s inequalities are violated within ‘Tsirelson’s
bound’ [20] and the marginal distribution law holds (‘cus-
tomary quantum situation’). In this case, entangled states
and product measurements are present.

(ii) Bell’s inequalities are violated within Tsirelson’s
bound and the marginal distribution law is violated (‘non-
local non-marginal box situation 1’). In this case, both
entangled states and entangled measurements are present.

(iii) Bell’s inequalities are violated beyond Tsirelson’s
bound and the marginal distribution law is violated (‘non-
local non-marginal box situation 2’). In this case, both
entangled states and entangled measurements are present.

(iv) Bell’s inequalities are violated beyond Tsirelson’s
bound and the marginal distribution law holds (‘nonlocal box
situation’). In this case, both entangled states and entangled
measurements are present.

Technical aspects, definitions and results will be intro-
duced in Sections II-A (pure states) and II-B (mixtures).
We will show that entanglement is generally a joint feature
of states and measurements. If only one measurement is
at play and the situation of a pure state is considered,
entanglement is identified by factorization of probabilities
and can be distributed between state and measurement.
If more measurements are at play, the violation of Bell’s
inequalities is sufficient to reveal entanglement in both the
pure and the mixed case. But, in both cases the marginal
distribution law imposes serious contraints in the ways this
entanglement can be distributed.

Cases (i) are the customary situations considered in Bell-
type experiments on microscopic quantum particles, but
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they are very special in our analysis and approach. They
correspond to situations where the symmetry of the entity
is such that all the entanglement of the situation can be
pushed into the state, allowing a model with only product
measurements, where the marginal distribution law is satis-
fied. Cases (ii) instead seem to be present in situations of real
quantum spin experiments (a mention of the ‘experimental
anomaly’ indicating in our opinion the presence of entangled
measurements occurs already in Alain Aspect PhD thesis
[21], and was identified more explicitly in [22]). Case (iii)
will be studied in Section III, where we observe that a
quantum model can be worked out also for situations beyond
Tsirelson’s bound, contrary to widespread beliefs. Finally,
in Section IV we put forward an example of case (iv),
namely, the so-called ‘nonlocal box’, which is studied as a
purely theoretical construct – no physical realizations have
been found prior than the ones we present here – in the
foundations of quantum theory [23].

II. EXPERIMENTS ON COMPOSITE ENTITIES

In this section, we introduce the experimental setup we
aim to represent in our formalism. Let S be a composite
entity made up of the sub-entities SA and SB , and let S be
prepared in the state p. A ‘Bell-type experimental setting’
can be described as follows.

We denote the single (dichotomic) measurements on SA

and SB by eA, eA′ , respectively, eB , eB′ , with outcomes
λA1 , λA2 , λA′

1
, λA′

2
, λB1 , λB2 and λB′

1
, λB′

2
, respectively.

Let us consider eA. If the outcome λA1 (λA2 ) is obtained
for eA, then the state p changes into a state pA1 (pA2).
Analogously, we can associate final states with the other
measurements.

We denote the coincidence measurements on S by eAB ,
eAB′ , eA′B and eA′B′ , which involve both SA and SB

(eAB can, e.g., be performed by performing eA on SA and
eB on SB , but it can be a more general measurement).
The measurement eAB has four outcomes λA1B1 , λA1B2 ,
λA2B1 and λA2B2 , and four final states pA1B1 , pA1B2 ,
pA2B1 and pA2B2 . The measurement eAB′ has four outcomes
λA1B′

1
, λA1B′

2
, λA2B′

1
and λA2B′

2
, and four final states

pA1B′
1
, pA1B′

2
, pA2B′

1
and pA2B′

2
. The measurement eA′B

has four outcomes λA′
1B1

, λA′
1B2

, λA′
2B1

and λA′
2B2

, and
four final states pA′

1B1
, pA′

1B2
, pA′

2B1
and pA′

2B2
. Finally,

the measurement eA′B′ has four outcomes λA′
1B

′
1
, λA′

1B
′
2
,

λA′
2B

′
1

and λA′
2B

′
2
, and four final states pA′

1B
′
1
, pA′

1B
′
2
, pA′

2B
′
1

and pA′
2B

′
2
.

Let us now consider the coincidence measurement eAB .
In it, the outcomes λA1B1 , λA1B2 , λA2B1 and λA2B2

are respectively associated with the probabilities p(λA1B1),
p(λA1B2), p(λA2B1) and p(λA2B2) in the state p. We define
in a standard way the expectation value E(A,B) for the
measurement eAB as E(A,B) = p(λA1B1) + p(λA2B2) −
p(λA1B2)−p(λA2B1), hence considering λA1B1 = λA2B2 =
+1 and λA1B2 = λA2B1 = −1. Similarly, we define the

expectation values E(A,B′), E(A′, B) and E(A′, B′) in
the state p for the coincidence measurements eAB′ , eA′B

and eA′B′ , respectively.
Finally, we introduce the quantity ∆ = E(A′, B′) +

E(A,B′) + E(A′, B) − E(A,B), and the Clauser-Horne-
Shimony-Holt (CHSH) version of Bell’s inequalities, that is,
−2 ≤ ∆ ≤ 2 [24]. If Sp is a set of experimental data on the
entity S in the state p for the measurements eAB , eAB′ , eA′B

and eA′B′ and the CHSH inequality is satisfied, then a single
probability space exists for Sp, which satisfies the axioms of
Kolmogorov (classical, or ‘Kolmogorovian’, probability). If
the CHSH inequality is violated, we say that entanglement
occurs between SA and SB , since such a classical space
does not exist in this case [2], [3], [4].

A. Entanglement and pure states

Let us now come to a quantum-mechanical repre-
sentation of the situation in Section II in the Hilbert
space C2 ⊗ C2, canonically isomorphic to C4 by means
of the correspondence |1, 0, 0, 0⟩ ↔ |1, 0⟩ ⊗ |1, 0⟩,
|0, 1, 0, 0⟩ ↔ |1, 0⟩ ⊗ |0, 1⟩, |0, 0, 1, 0⟩ ↔ |0, 1⟩ ⊗ |1, 0⟩,
|0, 0, 0, 1⟩ ↔ |0, 1⟩ ⊗ |0, 1⟩, where {|1, 0⟩, |0, 1⟩} and
{|1, 0, 0, 0⟩, |0, 1, 0, 0⟩, |0, 0, 1, 0⟩, |0, 0, 0, 1⟩} are the canon-
ical bases of C2 and C4, respectively. Let us also recall
that the vector space L(C4) of all linear operators on
C4 is isomorphic to the vector space L(C2) ⊗ L(C2),
where L(C2) is the vector space of all linear operators on
C2. The canonical isomorphism above introduces hence a
corresponding canonical isomorphism between L(C4) and
L(C2) ⊗ L(C2). Both these isomorphisms will be denoted
by ↔ in the following, and we will work in both spaces C4

and C2 ⊗ C2 interchangeable.
Let us put forward a completely general quantum

representation, where the state p is represented by the
unit vector |p⟩ ∈ C4, and the measurement eAB

by the spectral family constructed on the ON basis
{|pA1B1⟩, |pA1B2⟩, |pA2B1⟩, |pA2B2⟩}, where the unit vector
|pAiBj ⟩ represents the state pAiBj , i, j = 1, 2. Hence,
eAB is represented by the self-adjoint operator EAB =∑2

i,j=1 λAiBj |pAiBj ⟩⟨pAiBj |. Analogously, we can con-
struct the self-adjoint operators EAB′ , EA′B , EA′B′ respec-
tively representing eAB′ , eA′B and eA′B′ .

The probabilities of the outcomes of eAB , eAB′ , eA′B and
eA′B′ in the state p are respectively given by p(λAiBj ) =
|⟨pAiBj

|p⟩|2, p(λAiB′
j
) = |⟨pAiB′

j
|p⟩|2, p(λA′

iBj
) =

|⟨pA′
iBj

|p⟩|2 and p(λA′
iB

′
j
) = |⟨pA′

iB
′
j
|p⟩|2.

Moreover, if we put λXiYi = +1, λXiYj = −1, i, j =
1, 2, j ̸= i, X = A,A′, Y = B,B′, we can write the expec-
tation value in the state p as E(X,Y ) = ⟨p|EXY |p⟩ and the
Bell operator by B = EAB′ +EA′B+EAB′ −EAB . Thus, the
CHSH inequality can be written as −2 ≤ ⟨p|B|p⟩ ≤ +2.

Let us now introduce the notions of ‘product state’ and
‘product measurement’.
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Definition 1. A state p, represented by the unit vector |p⟩ ∈
C4, is a ‘product state’ if there exists two states pA and pB ,
represented by the unit vectors |pA⟩ ∈ C2 and |pB⟩ ∈ C2,
respectively, such that |p⟩ ↔ |pA⟩ ⊗ |pB⟩. Otherwise, p is
an ‘entangled state’.

Definition 2. A measurement e, represented by a self-adjoint
operator E in C4, is a ‘product measurement’ if there exists
measurements eA and eB , represented by the self-adjoint
operators EA and EB , respectively, in C2, such that E ↔
EA ⊗ EB . Otherwise, e is an ‘entangled measurement’.

Let now p be a product state, represented by |pA⟩⊗ |pB⟩,
where |pA⟩ and |pB⟩ represent the states pA and pB , re-
spectively. And let e be a product measurement, represented
by EA ⊗EB , where EA and EB represent the measurements
eA and eB , respectively. The following theorems, that are
proved in [17], establish a connection between product
states, measurements and the marginal law, and they will
be used repeatedly in the following sections.

Theorem 1. The spectral family of the self-adjoint operator
EA ⊗ EB representing the product measurement e has the
form |pA1⟩⟨pA1| ⊗ |pB1⟩⟨pB1|, |pA1⟩⟨pA1| ⊗ |pB2⟩⟨pB2|,
|pA2⟩⟨pA2|⊗|pB1⟩⟨pB1| and |pA2⟩⟨pA2|⊗|pB2⟩⟨pB2|, where
|pA1⟩⟨pA1| and |pA2⟩⟨pA2| is a spectral family of EA and
|pB1⟩⟨pB1| and |pB2⟩⟨pB2| is a spectral family of EB .

Theorem 1 states that the spectral family of a product
measurement is constructed on an ON basis of product
states.

Theorem 2. Let p be a product state represented by |pA⟩⊗
|pB⟩, and e a product measurement represented by EA⊗EB .
Then, there exists probabilities p(λA1), p(λB1), p(λA2) and
p(λB2), where p(λAi) (p(λBi)) is the probability for the
outcome λAi (λBi ) of eA (eB) in the state pA (pB), i = 1, 2,
such that p(λA1) + p(λA2) = p(λB1) + p(λB2) = 1, and
p(λAiBj ) = p(λAi)p(λBj ), where λAiBj , i, j = 1, 2 are the
outcomes of e in the state p.

From Th. 2 follows that, if the probabilities p(λAiBj ) do
not factorize, then only three possibilities exist: (i) the state
p is not a product state; (ii) the measurement e is not a
product measurement; (iii) both p is not a product state, and
e is not a product measurement.

Let us consider the coincidence measurements eAB , eAB′ ,
eA′B and eA′B′ introduced above, together with their out-
comes and probabilities in the state p.

Definition 3. We say that a set of experimental data Sp(AB)
collected on the measurement eAB satisfies the ‘marginal
distribution law’ if, for every i = 1, 2,∑

j=1,2

p(λAiBj ) =
∑
j=1,2

p(λAiB′
j
) (1)∑

j=1,2

p(λAjBi) =
∑
j=1,2

p(λA′
jB1

) (2)

We say that the marginal distribution law is satisfied in a
Bell test if it is satisfied by all measurements eAB , eAB′ ,
eA′B and eA′B′ .

Theorem 3. Let e be a product measurement. Then, the
marginal distribution law is satisfied by e.

Theorem 4. If no measurement among eAB , eAB′ , eA′B and
eA′B′ satisfy the marginal distribution law, then at least two
measurements are entangled.

The latter provide a sharp and complete description of the
structural situation: ‘entanglement is a relational property of
states and measurements’. If Th. 2 is not satisfied by a set of
data collected in a single measurement, then one can transfer
all the entanglement in the state, or in the measurement,
or in both. Theorem 4 then shows that, if the marginal
distribution law is violated, no more than two measurements
can be products. The main consequence is that, if a set
of experimental data violate both Bell’s inequalities and
the marginal distribution law, then a quantum-mechanical
representation in the Hilbert space C2⊗C2 cannot be worked
out, which satisfies the data and where only the initial state
is entangled while all measurements are products.

Finally, we remind a technical result on the violation
of the CHSH inequalitiy with product measurements. The
standard quantum inequality ∆ ≤ 2

√
2 holds for product

measurements and is called ‘Tsirelson’s bound’ [20]. This
is typically considered the maximal violation of Bell’s
inequalities that is allowed by quantum theory, and will be
discussed in the following sections.

B. Entanglement and mixtures

We have proved in Section II-A, Th. 2, that entanglement
in a state-measurement situation can be traced by investigat-
ing whether the probabilities factorize, in the case of pure
states. We show in this section that this does not hold any
longer in the case of mixtures and provide a criterion for
the identification of entanglement in the latter case. To this
end, let us consider an entity S prepared in the mixture
m of the pure product states r1, r2, . . . , represented by
the unit vectors |rA1⟩ ⊗ |rB1⟩, |rA2⟩ ⊗ |rB2⟩, . . . , with
weights w1, w2, . . . , respectively (wi ≥ 0,

∑
i wi = 1).

The mixture m is thus represented by the density operator
ρ =

∑
i wi|rAi⟩⟨rAi | ⊗ |rBi⟩⟨rBi |. Suppose that the mea-

surement eAB is a product measurement, represented by the
self-adjoint operator EAB = EA⊗EB , with spectral family on
the ON basis {|pA1B1⟩, |pA1B2⟩, |pA2B1⟩, |pA2B2⟩}, where
|pAiBj ⟩ = |pAi⟩ ⊗ |pBj ⟩, i, j = 1, 2, while the spectral
families of EA and EB are constructued on the ON bases
{|pAi⟩}i=1,2 and {|pBj ⟩}j=1,2, respectively. The probability
pm(λA1B1) that the outcome λA1B1 is obtained when eAB
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is performed on S in the mixture m is

pm(λA1B1) = Tr[ρ|pA1B1⟩⟨pA1B1 |]
=

∑
i

wipi(λA1)pi(λB1) (3)

where pi(λA1) and pi(λB1) are the probabilities for the sub-
measurements eA and eB , respectively. Analogous formulas
hold for the other outcomes, as follows

pm(λA1B2) =
∑
i

wipi(λA1)pi(λB2) (4)

pm(λA2B1) =
∑
i

wipi(λA2)pi(λB1) (5)

pm(λA2B2) =
∑
i

wipi(λA2)pi(λB2) (6)

Hence, if we start with the numbers pm(λAiBj ), i, j = 1, 2,
then it is not possible in general to prove that no mixture of
product states that exist that gives rise to these numbers.

The violation of the marginal distribution law remains
however a criterion for the presence of genuine entan-
glement. Indeed, let m be a mixture represented by the
density operator ρ, and let us suppose that, e.g., the mea-
surement eAB , is a product measurement, represented by
the self-adjoint operator EA ⊗ EB , with spectral family on
the ON basis {|pA1B1

⟩, |pA1B2
⟩, |pA2B1

⟩, |pA2B2
⟩}, where

|pAiBj ⟩ = |pAi⟩ ⊗ |pBj ⟩, i, j = 1, 2. We have

pm(λA1B1) + pm(λA1B2)

= Tr[ρ|pA1B1⟩⟨pA1B1 |] + Tr[ρ|pA1B2⟩⟨pA1B2 |]
= pm(λA1) = pm(λA1B′

1
) + pm(λA1B′

2
) (7)

This means that the identification of a violation of the
marginal law remains an indication of the presence of
genuine entanglement.

Let us now consider Bell’s inequalities in case of a
mixture of product states and product measurements eAB ,
eAB′ , eA′B and eA′B′ . They are respectively represented
by the ‘expectation value operators’ EAB = EA ⊗ EB ,
EAB′ = EA ⊗ EB′ , EA′B = EA′ ⊗ EB and EA′B′ =
EA′ ⊗ EB′ , where EA = |pA1⟩⟨pA1 | − |pA2⟩⟨pA2 |, . . . ,
EB′ = |pB′

1
⟩⟨pB′

1
| − |pB′

2
⟩⟨pB′

2
|. We have

EAB′ + EA′B′ = (EA + EA′)⊗ EB′ (8)
EA′B − EAB = (EA′ − EA)⊗ EB (9)

Hence, one of the Bell operators is given by

B = EAB′ + EA′B′ + EA′B − EAB

= (EA + EA′)⊗ EB′ + (EA′ − EA)⊗ EB (10)

Suppose we consider a product state p represented by the
unit vector |p⟩ = |rA⟩ ⊗ |rB⟩. The factor ∆ in the CHSH
inequality is, in this case,

∆ = ⟨p|B|p⟩ = ⟨rA|EA|rA⟩⟨rB|EB′ |rB⟩
+⟨rA|EA′ |rA⟩⟨rB|EB′ |rB⟩+ ⟨rA|EA′ |rA⟩⟨rB |EB|rB⟩

−⟨rA|EA|rA⟩⟨rB |EB |rB⟩ (11)

Let us consider the following mathematical result.

Lemma 1. If x, x′, y and y′ are real numbers such that
−1 ≤ x, x′, y, y ≤ +1 and ∆ = x′y′+x′y+xy′−xy, then
−2 ≤ ∆ ≤ +2.

Proof: Since ∆ is linear in all the variables x, x′, y,
y′, it must take on its maximum and minimum values at the
corners of the domain of this quadruple of variables, that
is, where each of x, x′, y, y′ is +1 or -1. Hence at these
corners ∆ can only be an integer between -4 and +4. But
∆ can be rewritten as (x+ x′)(y + y′)− 2xy, and the two
quantities in parentheses can only be 0, 2, or -2, while the
last term can only be -2 or +2, so that ∆ cannot equal -3,
+3, -4, or +4 at the corners.

One can verify at once that Eq. (11) satisfies Lemma 1,
i.e., −2 ≤ ⟨p|B|p⟩ ≤ +2. Hence, the CHSH inequality holds
whenever p is a product state.

Let us investigate whether we can prove that Bell’s
inequalities are satisfied also when p is a mixture of product
states. Hence, let m be a mixture of the pure product states
r1, r2, . . . , represented by the unit vectors |rA1⟩ ⊗ |rB1⟩,
|rA2⟩ ⊗ |rB2⟩, . . . , with weights w1, w2, . . . , respectively,
so that m is represented by the density operator ρ =∑

i wi|rAi⟩⟨rAi | ⊗ |rBi⟩⟨rBi |. We have, by using Eq. (11),

∆ = Tr[ρB] =
∑
i

wi

(
⟨rAi |EA|rAi⟩⟨rBi |EB′ |rBi⟩

+⟨rAi |EA′ |rAi⟩⟨rBi |EB′ |rBi⟩
+⟨rAi |EA′ |rAi⟩⟨rBi |EB |rBi⟩
−⟨rAi |EA|rAi⟩⟨rBi |EB |rBi⟩

)
(12)

If we now put, for every i,

δi = ⟨rAi |EA|rAi⟩⟨rBi |EB′ |rBi⟩
+⟨rAi |EA′ |rAi⟩⟨rBi |EB′ |rBi⟩
+⟨rAi |EA′ |rAi⟩⟨rBi |EB|rBi⟩
−⟨rAi |EA|rAi⟩⟨rBi |EB|rBi⟩ (13)

we get from Lemma 1 that, for every i, −2 ≤ δi ≤ +2.
Then, we can prove that −2 ≤ ∆ =

∑
i wiδi ≤ +2.

Indeed, if, for every i, δi = +2, we have
∑

i wiδi =
2
∑

i wi = +2. Analogously, if, for every i, δi = −2, we
have

∑
i wiδi = −2

∑
i wi = −2. Since now

∑
i wiδi is

a convex combination of δi, with weights wi, its value lies
in the convex set of numbers with extremal points -2 and
+2, hence in the interval [−2,+2], as maintained above.
This proves that the CHSH inequality is satisfied when the
situation is such that we have product measurements and a
mixture of product states.

Summing up the results obtained in this section, we can
say that the structural situation is the following.

(i) If product measurements are performed, the marginal
distribution law holds whenever the state is a pure product
state or a mixture of product states. This entails that there
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is genuine entanglement when the marginal distribution law
is violated, independent of the state of the entity.

(ii) When the marginal distribution law is satisfied and
Bell’s inequalities are violated, we have genuine entangle-
ment. Indeed, Bell’s inequalities hold also for a mixture
of product states. In this case, the validiy of the marginal
distribution law entails that all the entanglement can be
pushed into the state.

(iii) When the marginal distribution law is satisfied, and
the state is pure, we have genuine entanglement when the
probabilities do not factorize. Indeed, for a pure product state
and the marginal law satisfied, hence product measurements,
the probabilities factorize.

It remains to investigate whether we can find more direct
criteria for genuine entanglement allowing states to be
mixtures, without the need to recur to the violation of Bell’s
inequalities. Indeed, entanglement exists which does not
violate Bell’s inequalities, hence the latter violation is only
a sufficient condition.

III. QUANTUM REALIZATION OF A NONLOCAL
NON-MARGINAL BOX

In this section, we elaborate a quantum model in Hilbert
space for an entity violating both Tsirelson’s bound and
the marginal distribution law. This case study manifestly
reveals that the costruction of a quantum model is allowed by
entangled measurements. Experimental realizations of this
situation in physical and cognitive situations can be found
in [18], [19].

Let S be an entity prepared in the pure entangled state
p. Bell-type measurements are defined as usual. The mea-
surement eAB has the outcomes λA1B1 , λA1B2 , λA2B1

and λA2B2 , and the final states, pA1B1 , pA1B2 , pA2B1 and
pA2B2 . The measurement eAB′ has the outcomes λA1B′

1
,

λA1B′
2
, λA2B′

1
and λA2B′

2
, and the final states, pA1B′

1
, pA1B′

2
,

pA2B′
1

and pA2B′
2
. The measurement eA′B has four outcomes

λA′
1B1

, λA′
1B2

, λA′
2B1

and λA′
2B2

, and the final states pA′
1B1

,
pA′

1B2
, pA′

2B1
and pA′

2B2
. The measurement eA′B′ has the

outcomes λA′
1B

′
1
, λA′

1B
′
2
, λA′

2B
′
1

and λA′
2B

′
2
, and the final

states pA′
1B

′
1
, pA′

1B
′
2
, pA′

2B
′
1

and pA′
2B

′
2
.

To work out a quantum-mechanical model for the latter
situation in the Hilbert space C2 ⊗ C2, considering it
canonical isomorphic with C4, we represent the entangled
state p by the unit vector |p⟩ = |0,

√
0.5eiα,

√
0.5eiβ , 0⟩.

The measurement eAB is represented by the ON (canon-
ical) basis |pA1B1⟩ = |1, 0, 0, 0⟩, |pA1B2⟩ = |0, 1, 0, 0⟩,
|pA2B1

⟩ = |0, 0, 1, 0⟩, |pA2B2
⟩ = |0, 0, 0, 1⟩, and hence the

probabilities of the outcomes λAiBj of eAB in the state p
are given by p(λA1B1) = |⟨pA1B1 |p⟩|2 = 0, p(λA1B2) =
|⟨pA1B2 |p⟩|2 = 0.5, p(λA2B1) = |⟨pA2B1 |p⟩|2 = 0.5,
p(λA2B2) = |⟨pA2B2 |p⟩|2 = 0.

The measurement eAB′ is represented by the ON
basis |pA1B′

1
⟩ = |0,

√
0.5eiα,

√
0.5eiβ , 0⟩, |pA1B′

2
⟩ =

|0,
√
0.5eiα,−

√
0.5eiβ , 0⟩, |pA2B′

1
⟩ = |1, 0, 0, 0⟩, |pA2B′

2
⟩ =

|0, 0, 0, 1⟩, and the probabilities of the outcomes λAiB′
j

of eAB′ in the state p are given by p(λA1B′
1
) =

|⟨pA1B′
1
|p⟩|2 = 1, p(λA1B′

2
) = |⟨pA1B′

2
|p⟩|2 = 0,

p(λA2B′
1
) = |⟨pA2B′

1
|p⟩|2 = 0, p(λA2B′

2
) = |⟨pA2B′

2
|p⟩|2 =

0.
The measurement eA′B is represented by the ON

basis |pA′
1B1

⟩ = |0,
√
0.5eiα,

√
0.5eiβ , 0⟩, |pA′

1B2
⟩ =

|1, 0, 0, 0⟩, |pA′
2B1

⟩ = |0,
√
0.5eiα,−

√
0.5eiβ , 0⟩, |pA′

2B2
⟩ =

|0, 0, 0, 1⟩, which entails probability 1 for the outcome
λA′

1B1
in the state p.

Finally, the measurement eA′B′ is represented by
the ON basis |pA′

1B
′
1
⟩ = |0,

√
0.5eiα,

√
0.5eiβ , 0⟩,

|pA′
1B

′
2
⟩ = |1, 0, 0, 0⟩, |pA′

2B
′
1
⟩ = |0, 0, 0, 1⟩, |pA′

2B
′
2
⟩ =

|0,
√
0.5eiα,−

√
0.5eiβ , 0⟩, which entails probability 1 for

the outcome λA′
1B

′
1

in the state p.
Let us now explicitly construct the self-adjoint operators

representing the measurements eAB , eAB′ , eA′B and eA′B′ .
They are respectively given by

EAB =
∑2

i,j=1 λAiBj |pAiBj ⟩⟨pAiBj | (14)

EAB′ =
∑2

i,j=1 λAiB′
j
|pAiB′

j
⟩⟨pAiB′

j
| (15)

EA′B =
∑2

i,j=1 λA′
iBj

|pA′
iBj

⟩⟨pA′
iBj

| (16)

EA′B′ =
∑2

i,j=1 λA′
iB

′
j
|pA′

iB
′
j
⟩⟨pA′

iB
′
j
| (17)

The self-adjoint operators corresponding to measuring the
expectation values are obtained by putting λAiBi = λAiB′

i
=

λA′
iBi

= λA′
iB

′
i
= +1, i = 1, 2 and λAiBj = λAiB′

j
=

λA′
iBj

= λA′
iB

′
j
= −1, i, j = 1, 2; i ̸= j. If we now insert

these values into Eqs. (14)–(17) and define one of the ‘Bell
operators’ as

B = EAB′ + EA′B + EAB′ − EAB

=


0 0 0 0
0 2 2ei(α−β) 0
0 2e−i(α−β) 2 0
0 0 0 0

 (18)

and its expectation value in the entangled state p, we get
∆ = ⟨p|B|p⟩ = 4 in the CHSH inequality.

We add some conclusive remarks that are discussed in
detail in [18], [19]. The measurement eAB is a product
measurement, since it has the product states represented
by the vectors in the canonical basis of C4 as final states.
Hence, eAB ‘destroys’ the initial entanglement to arrive
at a situation of a product state. The measurements eAB′ ,
eA′B and eA′B′ are instead entangled measurements, since
they are represented by spectral families constructed on
entangled states (Th. 1). We finally observe that the marginal
ditribution law is violated. Indeed, we have, e.g., 0.5 =
p(λA1B1) + p(λA1B2) ̸= p(λA1B′

1
) + p(λA1B′

2
) = 1. Since

then the situation above violates Bell’s inequalities beyond
Tsirelson’s bound, we can say that we have an example
of a ‘nonlocal non-marginal box situation 2’, if we follow
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the classification in Section I. The locution ‘nonlocal non-
marginal box situation 1’ has instead been used to denote
a situation violating the marginal distribution law, but not
Tsirelson’s bound [17], [18], [19]. It seems that situations
of this kind have been observed in Bell-type experiments
on microscopic quantum particles, where they have been
classified as ‘anomalies’ [21], [22]. We are elaborating an
explanation of these anomalies in terms of entangled mea-
surements within our quantum-theoretic framework. From
a quantum foundational point of view, such an explanation
would (i) constitute a breakthrough toward understanding
the mechanism of entanglement, (ii) shed new light into the
so-called ‘no-signaling problem’.

The mathematical description presented here, modeling
physical and cognitive experimental examples and in other
papers [18], [19] are relevant, in our opinion, because they
explictly show that a quantum model in Hilbert space can
be elaborated also for a situation going beyond Tsirelson’s
bound, if one introduces entangled measurements. This
reveals that the violation of Bell’s inequalities is ‘not limited
by Tsirelson’s bound’ and can even be maximal, as we will
see in the next section, too.

IV. QUANTUM REALIZATION OF A NONLOCAL BOX

In this section, we provide a quantum Hilbert space
modeling for an entity which maximally violate Bell’s
inequalities, i.e., with value 4, but satisfies the marginal
distribution law. In physics, a system that behaves in this
way is called a ‘nonlocal box’ [23]. We will see that such
a system exhibits the typical symmetry which gives rise to
the marginal distribution law being valid in quantum theory.
Concrete experimental realizations of this situation can be
found in [18].

We consider four measurements fAB , fAB′ , fA′B and
fA′B′ , with outcomes µAiBj , . . . , and µA′

iB
′
j
, i, j = 1, 2,

respectively, and a composite entity S in the mixture
m of the pure entangled states p and q, represented by
the unit vectors |p⟩ = |0,

√
0.5eiα, 0.5eiβ , 0⟩ and |q⟩ =

|0,
√
0.5eiα,−0.5eiβ , 0⟩, respectively, with equal weights.

Thus, m is represented by the density operator ρ =
0.5|p⟩⟨p|+ 0.5|q⟩⟨q|.

The first measurement fAB is represented by the ON basis
|rA1B1⟩ = |1, 0, 0, 0⟩, |rA1B2⟩ = |0, 1, 0, 0⟩, |rA2B1⟩ =
|0, 0, 1, 0⟩, |rA2B2⟩ = |0, 0, 0, 1⟩, which gives rise to the
self-adjoint operator

FAB =
∑
i,j

µAiBj |rAiBj ⟩⟨rAiBj | (19)

By applying Lüders’ rule, we can now calculate the
density operator representing the final state of the entity S
after the measurement fAB . This gives

ρAB =

2∑
i,j=1

|rAiBj ⟩⟨rAiBj |ρ|rAiBj ⟩⟨rAiBj | = ρ (20)

as one can easily verify. This means that the nonselective
measurement fAB leaves the state m unchanged or, equiv-
alently, the marginal distribution law holds, in this case.

The second measurement fAB′ is represented by
the ON basis |rA1B′

1
⟩ = |0,

√
0.5eiα,

√
0.5eiβ , 0⟩,

|rA1B′
2
⟩ = |1, 0, 0, 0⟩, |rA2B′

1
⟩ = |0, 0, 0, 1⟩, |rA2B′

2
⟩ =

|0,
√
0.5eiα,−

√
0.5eiβ , 0⟩, which gives rise to a self-adjoint

operator

FAB′ =
∑
i,j

µAiB′
j
|rAiB′

j
⟩⟨rAiB′

j
| (21)

By applying Lüders’ rule, we can again calculate the
density operator representing the final state of the vessels
of water after fAB′ . This gives

ρAB′ =
2∑

i,j=1

|rAiB′
j
⟩⟨rAiB′

j
|ρ|rAiB′

j
⟩⟨rAiB′

j
| = ρ (22)

Also in this case, the nonselective measurement fAB′ leaves
the state m unchanged. If we consider the experimental
realization in [18] of the nonlocal box situation, we can
see that we can represent the measurements fA′B and fA′B′

by the same self–adjoint operators as the one representing
fAB′ . Also in these cases we obviously get that the density
operators after applying Lüders’ rule remain the same. This
implies that the marginal distribution law is always satisfied.

Let us now evaluate the expectation values corresponding
to the four measurements above in the mixed state m and
insert them into the CHSH inequality. The expectation value
operators for this version are given by

FAB =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (23)

FAB′ = FA′B = FA′B′ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (24)

Hence, our Bell operator is given by

B = FAB′+FA′B+FA′B′−FAB =


−4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 −4


(25)

This gives ∆ = TrρB = 4 in the CHSH inequality, which
shows that Bell’s inequalities are maximally violated in the
mixture m. Following our classification scheme in Section
I, we can can regard our quantum model for the nonlocal
box above as an example of a ‘nonlocal box situation’.

In quantum theory, the possibility of constructing a quan-
tum representation for a nonlocal box is usually maintained
to be forbidden by quantum laws, i.e., Tsirelson’s bound.
We have shown here that such a quantum representation
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can indeed be elaborated, once entangled measurements are
taken into account.

V. CONCLUSIONS

We have presented a quantum-theoretic modeling in
Hilbert space for the description of the entanglement that
characterizes situations experimentally violating Bell’s in-
equalities. We have shown that different types of quantum
models can be constructed, in addition to the ‘customary
quantum situation’, depending on the behavior with respect
to (i) the marginal distribution law, (ii) Tsirelson’s bound.
Moreover, entangled measurements provide an operational
and technical resource for dealing with situations that are
typically considered ‘beyond the customary quantum situa-
tion’. This scheme has been extended to quantum mixtures,
attaining some nontrivial conclusions.

The perspective above is completely general, for it enables
detection and representation of the entanglement that is
present in any kind of composite entity, once experimental
tests are defined giving rise to the scheme necessary to
formulate Bell’s inequalities. We also believe our scheme
to be valuable for the study of quantum foundational prob-
lems in a more general way. Indeed, the introduction of
entangled measurements reveals a new understanding of
the entanglement dynamics in Bell-type experiments, also
on microscopic quantum particles and nonlocal boxes. The
realization of an experimental nonlocal box may have a
deep impact on the technologies employed in quantum
information to detect, measure and preserve entanglement.

REFERENCES

[1] J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,”
Physics, vol. 1, 1964, pp. 195–200.

[2] L. Accardi and A. Fedullo, “On the statistical meaning of
complex numbers in quantum theory,” Lett. Nuovo Cim., vol.
34, 1982, pp. 161–172.

[3] D. Aerts, “A possible explanation for the probabilities of
quantum mechanics,” J. Math. Phys., vol. 27, 1986, pp. 202–
210.

[4] I. Pitowsky, Quantum Probability, Quantum Logic, Berlin:
Springer, 1989.

[5] D. Aerts and S. Aerts, “Applications of quantum statistics in
psychological studies of decision processes,” Found. Sci., vol.
1, 1995, pp. 85–97.

[6] D. Aerts and L. Gabora, “A theory of concepts and their
combinations I: The structure of the sets of contexts and
properties,” Kybernetes, vol. 34, 2005, pp. 167–191.

[7] D. Aerts and L. Gabora, “A theory of concepts and their
combinations II: A Hilbert space representation,” Kybernetes,
vol. 34, 2005, pp. 192–221.

[8] D. Aerts, “Quantum structure in cognition,” J. Math. Psychol.,
vol. 53, 2009, pp. 314–348.

[9] E. M. Pothos and J. R. Busemeyer, “A quantum probability
model explanation for violations of ‘rational’ decision theory,”
Proc. Roy. Soc. B, vol. 276, 2009, pp. 2171–2178.

[10] A. Y. Khrennikov, Ubiquitous Quantum Structure, Berlin:
Springer, 2010.

[11] J. R. Busemeyer and P. D. Bruza, Quantum Models of
Cognition and Decision, Cambridge: Cambridge University
Press, 2012.

[12] D. Aerts, “Example of a macroscopical situation that violates
Bell inequalities”, Lett. Nuovo Cim., vol. 34, 1982, pp. 107–
111.

[13] D. Aerts, S. Aerts, J. Broekaert, and L. Gabora, “The violation
of Bell inequalities in the macroworld,” Found. Phys., vol. 30,
2000, pp. 1387–1414.

[14] D. Aerts and S. Sozzo, “Quantum structure in cognition: Why
and how concepts are entangled,” LNCS, vol. 7052, Berlin:
Springer, 2011, pp. 118–129.

[15] D. Aerts, L. Gabora, and S. Sozzo, “Concepts and their
dynamics: A quantum–theoretic modeling of human thought,”
Top. Cogn. Sci. (in print). ArXiv: 1206.1069 [cs.AI].

[16] D. Aerts, J. Broekaert, L. Gabora, and S. Sozzo, “Quantum
structure and human thought,” Behav. Bra. Sci., vol. 36, 2013,
pp. 274–276.

[17] D. Aerts and S. Sozzo, “Quantum entanglement in con-
cept combinations,” accepted in Int. J. Theor. Phys.,
ArXiv:1302.3831 [cs.AI], 2013.

[18] D. Aerts and S. Sozzo, “Entanglement zoo I. Foundational
and structural aspects, accepted in LNCS, 2013.

[19] D. Aerts and S. Sozzo, “Entanglement zoo II. Applications
in physics and cognition, accepted in LNCS, 2013.

[20] B. S. Tsirelson, “Quantum generalizations of Bell’s inequal-
ity,” Lett. Math. Phys., vol. 4, 1980, pp. 93–100.

[21] A. Aspect, “Bell’s inequality test: More ideal than ever,”
Nature, vol. 398, 1982, pp. 189–190.

[22] G. Adenier and A. Y. Khrennikov, “Is the fair sampling
assumption supported by EPR experiments?,” J. Phys. A, vol.
40, 2007, pp. 131–141.

[23] S. Popescu and D. Rohrlich, “Nonlocality as an axiom,”
Found. Phys., vol. 24, 1994, pp. 379–385.

[24] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
“Proposed experiment to test local hidden-variable theories,”
Phys. Rev. Lett., vol. 23, 1969, pp. 880–884.

40Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-303-2

ICQNM 2013 : The Seventh International Conference on Quantum, Nano and Micro Technologies


