
A Protocol for Synchronizing Quantum-Derived Keys in IPsec
and its Implementation

Stefan Marksteiner

JOANNEUM RESEARCH GmbH
DIGITAL - Institute for Information

and Communication Technologies
Graz, Austria

Email: stefan.marksteiner@joanneum.at

Oliver Maurhart

AIT Austrian Institute of Technology GmbH
Digtal Safety & Security Department

Klagenfurt, Austria
Email: oliver.maurhart@ait.ac.at

Abstract—This paper presents a practical solution to the problem
of limited bandwidth in Quantum Key Distribution (QKD)-
secured communication through using rapidly rekeyed Internet
Protocol security (IPsec) links. QKD is a cutting-edge security
technology that provides mathematically proven security by using
quantum physical effects and information theoretical axioms to
generate a guaranteed non-disclosed stream of encryption keys.
Although it has been a field of theoretical research for some
time, it has only been producing market-ready solutions for a
short period of time. The downside of this technology is that its
key generation rate is only around 12,500 key bits per second.
As this rate limits the data throughput to the same rate, it is
substandard for normal modern communications, especially for
securely interconnecting networks. IPsec, on the other hand, is a
well-known security protocol that uses classical encryption and
is capable of exactly creating site-to-site virtual private networks.
This paper presents a solution which combines the performance
advantages of IPsec with QKD. The combination sacrifices only
a small portion of QKD security by using the generated keys
a limited number of times instead of just once. As a part
of this, the solution answers the question of how many data
bits per key bit make sensible upper and lower boundaries to
yield high performance while maintaining high security. While
previous approaches complement the Internet Key Exchange
protocol (IKE), this approach simplifies the implementation with
a new key synchronization concept. Furthermore, it provides a
Linux-based module for the AIT QKD software using the Netlink
XFRM Application Programmers Interface to feed the quantum
key to the IPsec cipher. This enables wire-speed, QKD-secured
communication links for business applications.

Keywords–Quantum Key Distribution; QKD; IPsec; Cryptogra-
phy; Security; Networks.

I. INTRODUCTION AND MOTIVATION

Quantum cryptography, in this particular case quantum key
distribution (QKD), has the purpose to ensure the confidential-
ity of a communication channel between two parties. The main
difference to classical cryptography is that it does not rely on
assumptions about the security of the mathematical problem
it is based on, nor the computing power of a hypothetical
attacker. Instead, QKD presents a secure method of exchanging
keys by connecting the two communicating parties with a
quantum channel and thereby supplying them with guaranteed
secret and true random key material [1, p.743]. When the
key is applied with a Vernam cipher (also called one time
pad - OTP) on a data channel on any public network, this

method provides the channel with information-theoretically (in
other words mathematically proven) security [2, p.583]. The
downside of this combination is the limitation to approximately
twelve kilobits, shown in a practical QKD setup, due to
physical and technical factors, since with OTP one key bit is
consumed by one data bit [3, S.9]. This data rate does not meet
the requirements of modern communications. Another practical
approach came to the same conclusion and therefore uses the
Advanced Encryption Standard (AES) instead of OTP [4, p.6].
To address this problem, this paper presents an approach to
combine QKD with IPsec, a widespread security protocol suite
that provides integrity, authenticity and confidentiality for data
connections [5, p.4], by using QKD to provide IPsec with the
cryptographic keys necessary for its operation. To save valu-
able key material, this solution uses it for more than one data
packet in IPsec, thus increasing the effective data rate, which
is thereby not limited to the key rate anymore. Furthermore,
using this approach, the presented solution benefits from the
flexibility of IPsec in terms of cryptographic algorithms and
cipher modes. In contrast to most of the previous approaches,
that supplemented the Internet Key Exchange (IKE) protocol
or combine in some way quantum-derived and classical keys,
this paper refrains from using IKE (for a key exchange is
rather the objective of QKD, as described later) in favor of a
specialized, lightweight key synchronization protocol, working
with a master/slave architecture. The goal of this protocol is
to achieve very high changing rates of purely quantum-derived
keys on the communicating peers while maintaining the keys
synchronous in a very resilient manner, which means to deal
with suboptimal networking conditions including packet losses
and late or supplicate packets. In order to fulfill this objective,
the following questions need to be clarified:

● What is the minimum acceptable frequency of chang-
ing the IPsec key that will ensure sufficient security?

● What is the maximum acceptable frequency of chang-
ing the IPsec key to save QKD key material?

● Is the native Linux kernel implementation suitable for
this task?

● How can key synchronicity between the communica-
tion peers be assured at key periods of 50 milliseconds
and less?

As a proof of concept, this paper further presents a software
solution, called QKDIPsec, implementing this approach in

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

C++. This software is intended to be used as an IPsec mod-
ule for the multi platform hardware-independent AIT QKD
software, which provides already a market-ready solution for
OTP-based QKD. The module achieves over forty key changes
per second for the IPsec subsystem within the Linux kernel.
At present time, the software uses a static key ring buffer
for testing purposes instead of actual QKD keys, for the
integration of QKDIPsec into the AIT QKD software is yet
to be implemented (although most of the necessary interfaces
are already present). The ultimate goal is to deliver a fully
operational IPsec module for the AIT QKD software.

Section II of this paper describes considerations regarding
necessary and sensible key change rates, while Section III
contains the architecture of the presented solution and the sub-
sequent Section IV its implementation. Section V, eventually,
contains testing results and the conclusions drawn.

II. KEY CHANGE RATE CONSIDERATIONS

The strength of every cryptographic system relies on the
key length, the secrecy of the key and the effectiveness of the
used algorithms [6, p.5]. As this solution relies on QKD, which
generates a secret and true random key [7], this means that
more effective algorithms and more key material are able to
provide more cryptographic security. In this particular case, the
used algorithms are already prescribed by the IPsec standard
[8], therefore the security is mainly determined by the used key
lengths, more precisely by the relation between the amount of
key material and the amount of data, which should be as much
in favor of the key material as possible - given the low key
rate compared to the data rate, naturally the opposite is the
case in practice. This Section aims on giving feasible upper
and lower boundaries of key change rates (or key periods Pk,
respectively) and, thus, how much QKD key material should
be used in order to save precious quantum key material while
maintaining a very high level of security. The two main factors
determining the key period in practice are the used algorithms
(via their respective key lengths - the longer the key, the
more key bits are used in one key period) and the capabilities
of QKD in generating keys. Current working QKD solutions
(such as the one used by the AIT) provide a quantum key rate
Q of up to 12,500 key bits per second at close distances, 3,300
key bits at around 25 kilometers and 550 key bits at around
50 kilometers distance [3, p.9].

In order to fully utilize the possibly QKD key rate and
given the currently shortest recommended key length, which
is 128 bits, a IPsec solution using quantum-derived keys should
thus be able to perform around 100 key changes per second
(12,500

128
≈ 97,65), 50 for every communication direction (for

IPsec connection channels are in principle unidirectional and
therefore independent from each other even if they belong to
the same bidirectional conversation). This corresponds to a key
period Pk of around 20 ms, as it is a function of the Quantum
key rate Q and the algorithm’s key length k. The period for a
bidirectional IPsec link is PK = (

Q
2k
)−1. At longer key lengths,

this period becomes longer, for a single change cycle uses
more key material and, thus, less key changes are necessary
to utilize the full incoming key stream, therefore this period
Pkmin = 20ms presents a feasible lower boundary for the key
period. As stated above, the security of this system depends
also on the data rate. Given a widespread data rate of 100
megabits per second, a key period of 20 ms and 128 key bits

means a ratio of 8000 data bits per key bit (or short dpk, for
the reader’s convenience).

A landmark in this security ratio is 1 dpk. This rate would
provide unconditional security when applied with OTP. For
the cipher and hash suites included in the IPsec protocol
stack, there is no security proof and therefore they are not
unconditionally secure. However, applying an IPsec cipher
(for instance AES) with an appropriately fast key change and
restricted data rate to achieve 1 dpk is the closest match inside
standard IPsec, especially when the block size equals the key
size.

To define an upper boundary (and therefore a minimum
standard for the high security application of the presented
solution), a very unfavorable relation between data and key
bits through a high-speed connection of 10 gigabits of data
is assumed. A recent attack on AES-192/256 uses 269.2 com-
putations with 232 chosen plaintext [9, p.1]. Because of the
AES block size of 128 bits, this corresponds to 232 ∗ 27 = 239

data bits. Although this attack is currently not feasible in
practice, as it works only for seven out of 12/14 rounds and
also has unfeasible requirements to data storage on processing
power for a cryptanalytic machine, it serves as a theoretical
fundament for this upper boundary. A bandwidth of 10 gigabits
per second equals approximately 9.3 gibitbs per second. This
is by the factor of 64 (26) smaller than the amount of data for
the attack mentioned above, which means that it requires 64
seconds to gather the necessary amount of data to (though
only theoretically) conduct the attack. In conclusion (with
AES-192/256), the key should be changed at least every
minute (Pkmax = 60s), while the maximum allowed key period
according to the IPsec standard lies at eight hours or 28,800
seconds [10].

For cryptographic algorithms operating with lower cipher
block sizes (ω), the birthday bound (2

ω
2) is relevant. The

birthday bound describes the number of brute force attempts
to enforce a collision with a probability of 50 percent, such
that different clear text messages render to the same cypher
text. With a block size of 64 (birthday bound = 232), the
example speed of 10 gigabit per second above would lower
the secure key period to under half a second. Because of this
factor, using 64-bit ciphers is generally discouraged for the
use with modern data rates[11, pp.1-3] (although the present
rapid rekeying approach is able to cope with this problem).
Regarding key lengths, 128 bits are recommended beyond 2031
[6, p.67] while key sizes of 256 bits provide good protection
even against the use of Grover’s algorithm in hypothetical
quantum computers for this period [12, p.32].

III. RAPID REKEYING PROTOCOL

This Section describes the rapid rekeying protocol, the
purpose of which is to provide to IPsec peers with QKD-
derived key material and keep these keys synchronous under
the low-key-period conditions (down to Pkmin = 20ms) stated
in Section II.

This protocol pursues the approach that with QKD, there
is no need for a classical key exchange (for instance with
IKE). Relevant connection parameters (like peer addresses)
are available a priori (before the establishment of the connec-
tion) in point-to-point connections, whereas keying material
is provided by QKD, mostly obsoleting IKE. Furthermore,
IPsec only dictates an automatic key exchange, not specifically

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

IKE [5, p.48] and a protocol that only synchronizes QKD-
derived keys (instead of exchanging keys) is therefore deemed
sufficient, yet compliant to the IPsec standard. Consequently,
it is an outspoken objective to create a slender and simple key
synchronization protocol to increase performance and reduce
possible sources of error. Another objective for key synchro-
nization is robustness in terms of resilience against suboptimal
network environment conditions. The protocol described in
this paper uses two channels for encrypted communication:
an Authenticaton Header (AH)-authenticated control channel
(amongst other tasks, signaling for key changes) and an
Encapsulating Security Payload (ESP)-encrypted data channel
to transmit the protected data (see Figure 1). The reason for
the use of AH on the control channel is that it only contains
non-secret information, while its authenticity is crucial for the
security and stability of the protocol. The necessary security
policies (SPs) for the IPsec channels remain constant during
the connection. There are four necessary SPs, one data and
one control SP for each direction. The complete software
solution will, delivered by the AIT QKD software, contain
additionally the quantum channel for key exchange and a Q3P
channel, whereby the latter is another protocol that provides
OTP-encrypted QKD point-to-point links. These two additional
channels are outside of this paper’s scope.

Alice

—

-

/

\

A

B

IP

OUT

IN

+

×

B

A

IP

OUT

IN

Bob

KEY CHG - KEY RST KEY CHG - KEY RST

DATA

DATA

DATA DATA

⤢ ⤡ ⤢ ↕ ⤡ ↔ ↕ ↔ ↕ ↔ ⤢ ⤢ ↕ ⤡ ↔→ →

Quantum Channel

IPsec Control Channel (AH)

IPsec Data Channel (ESP)

Q3P Channel

Figure 1. Rapid Rekeying Channel Architecture

The protocol itself follows, taking account of the unidirec-
tional architecture of IPsec, a master/slave paradigm. Every
peer assumes the master role for the connection in which the
peer represents the sending part. When a key change is due
(for instance because of the expiration of the key period), the
master sends an according message (key change request) to the
slave and the latter changes the key (as does the master). To
compensate lost key change signals, every key change message
contains the security parameters index (SPI) for the next-to-
use key. The SPI is simply calculable for the peers through
a salted hash whereby the salt and a initial seed value are
QKD-derived and each SPI is a hash of its predecessor plus
salt, which makes it non-obvious to third parties. This level of
security is sufficient, for the SPI is a public value, included
non-encrypted in every corresponding IPsec packet, making
it a subject rather to non-predictability than to secrecy. Also,
using only a seed and salt from QKD, the hashing method safes
quantum keying material. As all necessary IPsec parameters
are available beforehand, as well as the keys (through QKD),
IPsec security associations (SAs) may be pre-calculated and
established in advance (which are identified by unique SPIs).

Permanently changing attributes during a conversation are only
the SPI and the key, while all other parameters of an SA (for
instance peer addresses, services, protocols) remain constant.
The master calculates these two in advance and queues them
for future use. Only one SA is actually installed (aplied to the
kernel IPsec subsystem), for only one (per default, at least in
Linux, the most recent) may be used to encrypt data. The slave,
on the other hand, operates differently. For it identifies the right
key to use based on the SPI, it may very well have multiple
matching SAs installed. This makes key queuing expendable
on the receiver side, while the SPI queuing is used as an
indexer for lost key change message detection. For reasons of
data packets arriving out of synchronization, SAs are not only
installed beforehand, but also left in the system for some time
on the receiver side, allowing it to process packets encrypted
with both an older or newer key than the current one.

On every key change event, the master applies a new SA to
the system (using the next following SPI/key from the queues),
prepares a new SPI/key pair (SPI generation as mentioned
above and acquirement of a new key from the QKD system)
and deletes the deprecated data from both its queues and the
IPsec subsystem. The slave also acquires a new SPI/key pair
(the same the sender acquires) but installs it directly as an SA
and only stores the SPI for indexing. It subsequently deletes
the oldest SA from the system and SPI from the queue if the
number of installed SAs exceeds a configured limit. To sum
it up, on every key change event, the two peers conduct the
following steps:

● the master acquires a new key and SPI and ads it to
its queues

● it sends a key change request to the slave
● it fetches the oldest pair from the queue an installs it

as a new SA, replacing the current one
● it deletes the deprecated pair from its queue
● the slave receives the key change request and also

acquires a new SPI/key pair (the same as the master)
● it installs the pair as a new SA and the SPI into the

indexing queue
● it deletes the oldest SA from the system and oldest

SPI from the queue
● it sends a key change acknowledgement

This procedure keeps both of the installed SA types up to
date. For instance, 50 installed SAs for the slave resulting in 25
queued SPI/key pairs on the master, for the latter does not need
to store backward SAs. At the beginning, on every key change,
SPI/key pair is acquired, while the already applied remain.
When the (configurable) working threshold is met, additionally
the oldest SA or SPI/key pair is deleted, keeping the queue
sizes and number of installed SAs constant.

Figure 2 illustrates this process for a sender (Alice) and a
receiver (Bob), where the arrows show the changes in case of
an induced key change. Naturally, as with SPs, there are four
SA types on a peer: one for data and control channels, each for
sending (master) and receiving (slave). Each SA corresponds
to an SPI and key queue on the master’s side and one SPI
queue on the slave’s side, respectively.

As the data stream is independent from control signaling,
this calculation in advance prevents the destabilization of the

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

SPI=7

SPI=6

SPI=5

SPI=4

KEY=g

KEY=f

KEY=e

KEY=d SA=4/d SA=4/d

SA=3/c

SA=2/b

SA=5/e

SA=6/f

SA=7/g

SPI=4

SPI=3

SPI=2

SPI=5

SPI=6

SPI=7

Inbound SAs Inbound QueueOutbound SAsOutbound QueueKey Queue

Alice Bob
next SA=8

next key=h

next SA=5 next SA=8

delete SA=2

delete SA=4
delete key=d

new current=5

SA in queue installed SA current element key in queue

Figure 2. Key Change Process

key synchronization in case of lost and too early or too late
arriving key change messages. The buffer of previously created
SAs compensates desynchronization. For every receiver is
able to calculate the according SPIs beforehand, it may, by
comparing a received SPI with an expected, detect and correct
the discrepancy by calculating the following SAs. Through this
compensation process, there is neither need to interfere with
the data communication nor to even inform the sender of lost
key change messages; the sender may unperturbedly continue
with data and control communications. This mechanisms make
constant acknowledgements expendable and contribute thereby
to a better protocol performance through omission of the
round trip times for the majority of the necessary control
messages. Because of this, acknowledgement messages (key
change acknowledge) are still sent, but serve merely as a
keepalive mechanism instead of true acknowledgements. In
rare occasions, a key change message might be actually
received, but the slave might not be able to apply the key for
some reason (for instance issues regarding the QKD system
or the Kernel). In this case, it reports the failure to the master
with an appropriate message (key change fail). In case too
many control packets go missing (what the receiver is able to
detect by SPI comparisons and the sender by the absence of
keepalive packets) or the key application fails, every peer is
able to initiate a reset procedure (master or slave reset). The
actual threshold of allowed and compensated missing messages
is a matter of configuration and corresponds to the queue
sizes for the SAs and therefore the ability of the system to
compensate these losses. The master does not need to report
key change fails, for it is in control of the synchronization
process and might just initiate a reset if it is unable to apply
its key. An additional occasion for a reset is the beginning
of a conversation. At that point, the master starts the key
synchronization process with an initial reset. A reset consists
of clearing and refilling all of the queues and installed SAs.
For the same reason as for the data channel, the authentication
key for the control channel changes periodically. Due to the
relatively low transmission rates on the control channel the
key period is much longer (the software’s default is 3 seconds)
than on the data channel. As, therefore, control channel key
changes are comparatively rare and reset procedures should
only occur in extreme situations, both types implement a three
way handshake. This is, on the one hand, because of the low
impact on the overall performance due to the rare occurences,
on the other hand due to higher impact of faulty packets. The
control channel, however, implements the same SA buffering

method as the data channel (only with AH SAs).

IV. IMPLEMENTATION

The presented solution, called QKDIPsec, consists of three
parts (see also Figure 3):

● key acquisition;
● key application;
● key synchronization;

QKD IPsec

Kernel IPsec Stack

AIT QKDUser

Network Interface

Control, Keys

SPs, SAs, Keys

Params, Key Sync

Data

Encrypt Data

Figure 3. QKDIPsec Systems Context

Each of this tasks has a corresponding submodule inside
QKDIPsec, while the overall control lies within the respon-
sibility of the ConnectionManager class, which provides the
main outside interface and instantiates the classes of said
submodules using corresponding configuration. Also, all of
these classes have corresponding configuration classes using a
factory method pattern [13, p.134] and according configuration
classes, decoupling program data and logic. The first task (key
acquisition) is the objective of an interface to the AIT QKD
software, the KeyManager, which provides the quantum key
material. In this proof of concept, this class generates dummy
key from a ring buffer, while it already has the according
interfaces for the QKD software to serve as a class to acquire
quantum key material and provide it in a an appropriate way
to QKDIPsec. By now, only one function implementation is
missing on the QKD software side to fully integrate QKDIPsec
into the QKD software.

The second part (KernelIPsecManager) enters the acquired
key directly into the Linux kernel, which encrypts the data sent
to and decrypts the data received from a peer. Responsible
for this part are a number of C++ classes, which control the
SP and SA databases (SPD and SAD) within the Kernel’s
IPsec subsystem via the Linux Netlink protocol. Therefore,
this solution uses the derived class NetlinkIPsecManager, but
leaves the option to use other methods for kernel access as
well. The reason for using Netlink to communicate with the
kernel is that it was found the most intuitive of the available
methods and that it is also able to handle not only the
IPsec subsystem but a broad span of network functions in
Linux. Furthermore, using a direct kernel API, as opposed
to other IPsec implementations, omits middleware, both en-
hancing performance as well as eliminating potential source
of error. Also using Netlink functions, this part governs the
tunnel interfaces and routing table entries necessary for the
communication via the classes KernelNetworkManager and
NetlinkNetworkManager as well.

Netlink is a socket-oriented protocol and allows therefore
the use of well-known functions from network programming.

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

The difference to the latter is that instead of network peers,
communication runs within the system as inter-process com-
munication (IPC), through which also the kernel (via process
ID zero) is addressable. Due to its network-oriented nature, a
packet structure is used instead of function calls via parame-
ters. This means that commands to the kernel (for instance to
add a new SA) needs to be memory-aligned in the according
packet structure and subsequently send to the kernel via a
Netlink socket. A downside of Netlink during implementation
was the complicated nature and weak documentation of its
IPsec manipulation part (NETLINK XFRM). While the Netlink
protocol itself is present in every message in the form of
its uniform header, the NETLIN XFRM parts use a different
structure plus individual extra payload attributes for every type
of message (add and delete messages for both SAs and SPs),
making the according class hierarchy rather inflated.

The key synchronization, eventually, is the main task of the
Rapid Rekeying Protocol. As this is the very core of the solu-
tion, its implementation resides directly inside the connection
manager. While it uses the classes mentioned above to acquire
and apply the QKD keys in the manner discussed in Section III,
it handles the key synchronization using sender and receiver
threads (representing the master and slave parts, respectively),
as well as a class for key synchronization messages. Within
this class, also the described lost message compensation and
reset, as well as initialization and clean-up procedures are
implemented. The reset procedure may also include some re-
initialization process for the QKD system, triggered via the
KeyManager. This class also sets the clocking for the key
changes, which is dynamically adjustable during runtime.

V. CONCLUSION

The protocol design of the described solution aims on the
one hand on speed and flexibility and on the other hand on fault
tolerance, hence the architecture is as simple and lightweight as
possible (including abandoning the IKE protocol). Due to this,
very high IPsec key change rates can be achieved, even under
harsh conditions. The solution was implemented in software
using C++ and tested on two to five year-old Linux computers
(Alice and Bob), both in a gigabit Local Area Network (LAN)
and a UMTS-Wide Area Network (WAN) environment (the
latter further aggravated by combining it with WLAN and an
additional TLS-based VPN tunnel - see Figure 4) by means
of data transfer time measurement and ping tests, as well as
validation of the actual key changes by a Wireshark network
sniffer (Eve).

Table I shows the results in seconds (four trials each,
separated by slashes) of data transmission and in percent on
ping tests within the mentioned LAN and WAN environments
with various configurations: unencrypted, standard IPsec and
QKDIPsec with different encryption algorithms, the latter also
with different key periods. In these tests, both data transfer
and ping were initiated by one peer (Alice). While the ping
test was continuous, the data transfer consisted each of one
data transfer from Alice to Bob and vice versa. The test file
used on the LAN was a video file of 69.533.696 bytes size,
while the WAN file was also a video, but only 1.813.904 bytes
big. In both cases, key periods of 25 ms and less could be
achieved, maintaining a stable data connection. This, using
the recommended key length of 256 bit, surpasses the goal of
12,500 key bits per second (the currently maximal quantum

TLS/SSL VPN Tunnel

Switch

1Gb

1 Gb

Alice

Bob

Eve

1Gb

WAN

WAN

WLAN

UMTS

Firewall

Internet

LAN

1 Gb

Figure 4. WAN Test Setup

key distribution rate under ideal circumstances), even though
(deliberately) legacy equipment and a less-than-ideal network
environment was used. Comparison of the performance shows
a (expectable) higher data transfer period of QKDIPsec and
unencrypted traffic, but no significant difference to traditional
IPsec. Only the packet losses on a simultaneously running ping
test were a few percentage points higher (mainly in the WAN
environment).

TABLE I. PERFORMANCE TEST RESULTS

LAN
Setting A→B B→A Ping
unencrypted 6/6/7/6 7/9/7/8 100%
AES-256 CCM
standard IPsec 14/14/16/15 17/18/26/18 100%
50 ms 8/10/8/9 14/16/16/16 100%
25 ms 10/9/8/8 14/15/17/16 100%
20 ms 9/9/9/9 11/16/17/12 100%
AES-256 CBC
20 ms 9/7/7 11/13/17 100%
Blowfish-448
20 ms 14/9/7 15/13/14 99%

WAN
Setting A→B B→A Ping
unencrypted 10/10/10/10 9/7/6/7 99%
AES-256 CCM
standard IPsec 11/11/11/11 11/5/6/5 99%
50 ms 14/10/11/13 6/5/5/5 95%
25 ms 10/11/10/10 6/7/6/7 94%
20 ms 12/11/13/10 9/5/6/6 98%
AES-256 CBC
20 ms 10/11/11 9/7/8 100%

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

To verify the key changes, a network sniffer, Eve, was
keeping track of the actual SPI changes of the packets trans-
mitted between Alice and Bob. Table II shows a random
sample of key change periods in milliseconds during the
above mentioned LAN 20ms AES-256-CCM test. Within this
table, the first column shows the key change times for data
(ESP) packets from Alice to Bob while the second shows
the opposite direction. As the recorded data contains one file
copy from Alice to Bob (in the first half of the record) and
one vice versa (in the second half), one randomly chosen
sample of five consecutive key changes for each direction
and from each half is chosen. This form of sample choosing
from different phases and directions of the communication
session and averaging them compensates inaccuracies, induced
by the pause between key change and respective next following
packet, which become greater the less traffic is sent. As
the receiver only acknowledges received data and, therefore,
sends significantly less packets, the vagueness of the non-
averaged results is greater when receiving. The total average
of all four of these averaged values is 0.020495 ms, which is
approximately 2.5% above 20 ms per key change. This may
be explained by the send and receive overhead for processing
the key change messages, for the period is determines only the
sleeping duration of a sender thread.

Because of the lower amount of traffic (due to the lower
speed) and higher latency such exact time readings are not
possible in the WAN environment. Therefore, the measurement
method was changed to averaging a sample set of 20 key
change periods, using the same random choosing as above.
With approximately 0.2475, the total averaged result lies
significantly higher (approximately 19%) than the one of the
LAN setting. One possible explanation for this behavior is the
latency in this environment.

A→B B→A
1st 2nd 1st 2nd

LAN 0.0220 0.0216 0.0208 0.0203
0.0187 0.0204 0.0197 0.0235
0.0145 0.0216 0.0203 0.0176
0.0195 0.0243 0.0204 0.0197
0.0225 0.0180 0.0207 0.0238

Ø 0.0194 0.0212 0.0204 0.0210

WAN ∑20 0.5201 0.4899 0.4302 0.5397
Ø 0.0260 0.0245 0.0215 0.0270

TABLE II. Network Sniffing Results

Additionally, the recovery behavior was tested by letting
the master deliberately omit key change notifications through
the introduction of if clauses within the sending routine, while
again running ping tests and file copies. Omitting single key
change messages (and, thus, testing the recovery mechanism)
yield in no measurable impact on the connection (along with
100% of successful pings). Also, by the same method of
omitting key change requests, but this time surpassing the
recovery queue size, the reset procedure was tested. The queue
size was set to 50 and Alice was programmed to omit 50
sending key change messages after 200 sent ones. Expectedly,
Bob initiated a reset procedure during the hiatus, resulting in
a cycle of 200 key changes and a subsequent reset. Despite
these permanent reset-induced interruptions, bidirectional ping
tests only yielded insignificant losses (99.74% from Alice to

Bob and 99.36% vice versa). Furthermore, a file copy in both
directions was still possible.

These proof of concept tests show that using IPsec with ap-
propriate key management is able to overcome the bandwidth
restrictions of QKD, even when operating the data channels
in less-than-ideal conditions. Furthermore, this paper presents
an approach to provide QKD-secured links with high speeds
meeting the bounds discussed in Section II, including a suitable
performant and fault-tolerant key synchronization protocol (the
rapid rekeying protocol) and a corresponding software solution
running under Linux (QKDIPsec), that is to be integrated as a
module into the AIT QKD software.

REFERENCES
[1] H. Zbinden, H. Bechmann-Pasquinucci, N. Gisin, and G. Ribordy,

“Quantum cryptography,” Applied Physics B, vol. 67, no. 6, 1998, pp.
743–748.

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, ser. Lecture Notes in Physics. Cambridge: Cambridge
University Press, 2000.

[3] A. Treiber et al., “A fully automated entaglement-based quantum
cryptography system for telecom fiber networks,” New Journal of
Physics, no. 11, April 2009, p. 045013.

[4] F. Xu et al., “Field experiment on a robust hierarchical metropolitan
quantum cryptography network,” Chinese Science Bulletin, vol. 54,
no. 17, 2009, pp. 2991–2997.

[5] S. Kent and K. Seo, “RFC4301: Security Architecture for the Internet
Protocol,” 2005.

[6] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid,
“Recommendation for Key Management Part 1: General (Revision
3 - NIST Special Publication 800-57),” 2012, retrieved at July 10,
2015. [Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-
57/sp800-57 part1 rev3 general.pdf

[7] A. Poppe et al., “Practical quantum key distribution with polarization
entangled photons,” Optics Express, vol. 12, no. 16, 2004, pp. 3865–
3871.

[8] Internet Assigned Numbers Authority, “IPSEC ESP Transform
Identifiers,” 2012, retrieved at July 10, 2015. [Online].
Available: http://www.iana.org/assignments/isakmp-registry/isakmp-
registry.xhtml#isakmp-registry-9

[9] J. Kang, K. Jeong, J. Sung, S. Hong, and K. Lee, “Collision Attacks
on AES-192/256, Crypton-192/256, mCrypton-96/128, and Anubis,”
Journal of Applied Mathematics, vol. 2013, 2013, p. 713673.

[10] P. Hoffman, “RFC4308: Cryptographic Suites for IPsec,” 2005.
[11] D. A. McGrew, “Impossible plaintext cryptanalysis and probable-

plaintext collision attacks of 64-bit block cipher modes.” IACR Cryp-
tology ePrint Archive, vol. 2012, 2012, p. 623.

[12] “ECRYPT II Yearly Report on Algorithms and Keysizes (2011-
2012),” 2012, retrieved at July 10, 2015. [Online]. Available:
http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf

[13] E. Freeman, E. Robson, B. Bates, and K. Sierra, Head First Design
Patterns. Sebastopol: O’Reilly, 2004.

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

