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Abstract — This work develops an innovative approach for 
guiding high-level software caches’ eviction policy. The 
decision on which data to keep in the cache is made according 
to a stochastic analysis over the application data access 
behaviour. This approach shows it is possible to achieve high 
cache hit ratios with a reduced cache size. The effectiveness of 
the policy is tested and validated through the execution of two 
distinct benchmarks – the TPC-W and the oo7 benchmarks. 
The newly developed approach is flexible enough to be applied 
to any high-level software cache in an object-oriented system. 

Keywords-software cache; stochastic approach; 
performance; data access. 

I.  INTRODUCTION 

A cache is a small, high-performance memory-buffer 
abstraction used to store temporarily data that is deemed to 
be important for whatever operations may be taking place 
currently or in the near future. Most of the time, the data held 
by the cache originates from a (much) larger and (several 
orders of magnitude) slower medium, which is either the 
source or provides storage for the whole range of existing 
data. As a result, caches provide increased system 
performance by offering shorter access times to data, 
keeping the available processing units busy with work. The 
most common restriction of a cache, however, is that it 
cannot hold all the existing data. This may happen for 
several reasons – the cache may be physically unable to 
provide enough storage space for all the available 
information, or, even if there is enough space, it may be 
better to keep the size of the cache to a minimum because a 
bigger volume of data (being held in cache) usually leads to 
slower execution times of the lookup operations. 

The success of caching mechanisms results from the 
“principle of locality”, which was first introduced by 
Denning [1]. The principle of locality, also known as locality 
of reference, has two basic variants, temporal and spatial. 
Over short periods of time, a program distributes its memory 
references non-uniformly over its address space, but the 
portions of the address space that are favoured remain 
largely the same for long periods of time. Temporal locality 
implies that the information that will be in use in the near 
future is likely to be already in use. Spatial locality states that 
the portions of the address space that are in use consist of a 
small number of individually contiguous segments of that 
address space. As a consequence, locality of space denotes 

that the referenced locations of the program in the near future 
are likely to be near the currently referenced locations.  

Optimizing the design of a cache revolves around four 
aspects: maximizing the probability of finding a piece of data 
in the cache (the hit ratio), minimizing the access time to 
information already in the cache (access time), minimizing 
the delay due to a cache miss, and minimizing the overheads 
of cache management, such as propagating modifications to 
the means that backs the cache, or dealing with consistency 
protocols (cache coherence). 

The principles upon which the concept of caching is 
based are present in many contexts and situations. This 
makes it possible to employ them in a variety of different 
contexts to improve the system performance. Caching 
mechanisms can be divided into two main categories, namely 
hardware caching and software caching. Given that the main 
purpose of this work is to improve the hit ratios of a high-
level software cache, hardware caches are not considered 
here.  

Significant research has been carried out in software 
caching. As has been pointed out, the four major 
characteristics upon which a cache can be improved are its 
hit ratio, access times, speed at which update propagations 
are performed, and coherence. If we group existing research 
according to affinity with these four aspects, a trend becomes 
apparent – namely, most cache-related work concentrates on 
coherence, as can be seen in [2], [3], and [4]. At the same 
time, the hit ratio is an important property, especially for 
software caches. It has been systematically identified as 
being the main reason leading to poorer performance of 
software cache approaches, in comparison with their 
hardware counterparts, as has been reported in [4] and [5]. 

Bennet et al. [6] identified and classified several classes 
of shared data accesses, in the context of distributed shared 
memory systems. They proposed a number of memory 
coherence approaches tailored for these access categories 
and demonstrated that specialized approaches can 
significantly outperform general ones, whenever the 
expected type of access behaviour manifests itself in a 
consistent fashion. 

Dash and Demsky [7] presented an innovative distributed 
transactional memory system that mitigates the effects of 
network latency by prefetching and caching domain objects. 
The authors developed several extensions to the Java 
programming language with the goal of allowing the use of a 
distributed transactional memory within any application that 
employs their system. 
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The objective of this work is to develop an innovative 
stochastic approach for guiding high-level software caches. It 
consists in using a guided cache policy to decide which data 
to keep in memory and which data may be discarded. The 
cache policy is guided because it adapts to the behaviour 
displayed by the application, and its goal is to provide the 
highest possible cache hit ratio, while keeping in memory 
(cache) the minimum amount of data. 

The article has the following structure. Section II 
describes the system. Section III presents the results obtained 
through the benchmark execution and evaluates the system 
effectiveness. Finally, Section IV derives the concluding 
remarks. 

II. SYSTEM DESCRIPTION 

The system is composed of two parts: a stochastic access-
prediction module and a high-level software cache. The 
access-prediction module is responsible for analysing the 
behaviour of the underlying application and in identifying 
the most common data access patterns performed. This 
information is subsequently used to guide the cache policy 
with the aim of improving its performance (at the level of its 
hit ratio). The software cache consists in a transparent data-
storage component, responsible for supplying with data any 
request issued by the overlaying application, with the goal of 
improving the performance of an application. 

A. Stochastic Behaviour Analysis 

The stochastic behaviour analysis module is made up of 
three sub-modules: a code-injection module, a data-
acquisition module, and a data-analysis module. An 
overview of their functionality is given here, while a detailed 
discussion of their implementation and behaviour may be 
found in [8], [9] and [10]. The model of Bayesian Updating, 
first presented in [8], is employed here for the stochastic 
behavioural analysis of the target application. An alternative 
model, based on discrete-time Markov Chains, may be seen 
in [9], whilst [10] deals with an Importance Analysis model. 

The code-injection module is responsible for 
transforming the code of the target applications to inject the 
calls to the functionality present in the other modules. This 
code injection is performed in a completely automatic 
fashion by the system. It avoids the need for the application 
programmers themselves to perform any modifications 
whatsoever to their applications.  

The data-acquisition module is responsible for acquiring 
behavioural data from the target application. This data 
describes how the application behaves, with regard to the 
data accesses that it performs. This module records which 
(application-domain) data is read and/or written, and in 
which contexts (methods, services, etc) this takes place. 

Finally, the data-analysis module contains the 
implementation of the Bayesian Updating Inference model. 
This model corresponds to a stochastic approach for 
modelling the behaviour of the target application. The model 
uses as input the information collected by the data-
acquisition module, about which domain data has been 
accessed by the application, and in which contexts. Initially, 
the input information is split into two sets of data. The first 

of these data sets is designated as prior and contains 
information about the target system behaviour observed in 
the past. The second set is called current and includes more-
recent behavioural information. It covers the time period 
defined between the moment at which the prior set ends, to 
the current point in time. Once these two sets have been 
established, the Bayesian Inference model uses the current 
data to "update" the posterior, generating thus a third set, 
called posterior. The posterior set corresponds to the 
prediction generated by the model. It describes the expected 
behaviour of the application, in the near future, in terms of 
the domain data that it is going to access. This is presented in 
terms of the probabilities of reading and writing domain data, 
depending on the contexts through which the application 
passes during its execution. 

B. Software Cache 

This section describes the implementation of the high-
level software cache and its policy. It should be noted that 
the term “high-level” is used here in the sense that the 
objects being cached correspond to actual domain object 
instances, rather than a derivate of an SQL result set or some 
other lower-level abstraction. The mapping from the format 
used by the underlying persistence layer to the domain object 
instances manipulated by the application is taken care by the 
fenix-framework (Fernandes and Cachopo [11]). 

The software cache implements the identity map design 
pattern, Fowler [12]. This pattern prevents duplicate loading 
of objects from the persistence layer. Consequently, if a 
requested datum has already been loaded from the 
persistence layer, then the identity map returns the same 
instance of the already instantiated object. If it has not been 
loaded yet, then the object is retrieved and stored in the map, 
before being returned to the request that demanded it. 

This cache is implemented on top of Java’s soft 
references. A normal Java reference, also known as a strong 
reference, guarantees that any object that is reachable 
through a chain of strong references is not eligible for 
garbage collection (GC). On the other hand, an object that is 
only weakly reachable is going to be discarded at the 
following cycle of the garbage collect. Soft references are 
not required to behave differently from weak references, but, 
in practice, softly-reachable objects are generally retained (in 
memory) provided that there is enough free space available 
to keep them there. 

Continuing on to the implementation details, the high-
level software cache keeps two collections into which it 
stores the loaded domain object instances. The first 
collection keeps soft references to all of its elements. This 
collection contains all the instances present in the cache. 
From the definition of a softly-referenced object, if the 
application does not hold a strong reference to them, the GC 
may discard them at will, if it deems it necessary to do so. 
However, they are usually kept in memory as long as it is not 
strictly necessary to evict them. 

The second collection holds strong references to its 
elements, and guarantees that these can never be garbage 
collected, provided they remain in this collection. Objects 
being loaded into the cache are selectively added to the 
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strongly-referenced collection. The main idea behind this 
collection is to keep only object instances considered to be 
important for the execution of the application, and that 
should be kept in memory even when they are not currently 
being used. The decision of adding an element to this 
collection belongs to the caching policy, implemented as 
follows.  

The cache policy manager considers, on an instance-by-
instance basis, if a given datum should be placed in the 
strongly-referenced collection. It employs the results 
generated by the stochastic behaviour analysis module to 
infer how strongly referenced these should be. The main 
criterion is to consider the access probability of the type of 
data (class) to which an instance belongs. If this probability 
exceeds a certain threshold, then the datum is deemed critical 
for the application operation and is inserted into the strongly-
referenced collection, besides being added to the softly-
referenced collection. This approach may be complemented 
to take into account further restrictions, such as the available 
free memory, space limitations that the software cache 
should not exceed, or proportions of different domain data 
types kept in memory, among others.  

Additionally, due to the fact that the stochastic analysis 
model is dynamic, it reveals any behavioural change that 
may eventually come to pass within the target application. 
This would bring about an updating of the expected 
application domain data access probabilities. Furthermore, it 
would lead to a change in the data types considered critical 
by the cache policy manager, which would be reflected in the 
contents of the strongly-referenced collection, resulting, 
ultimately, in a caching policy that can adapt itself to deal 
adequately with any behavioural patterns the application may 
exhibit during its life cycle. 

III. RESULTS AND EVALUATION OF THE SYSTEM 

For the validation of the system presented in this paper, 
we used two distinct benchmarks. The first of these is the 
TPC-W benchmark, which was introduced originally by 
Smith [13]. This benchmark specifies an e-commerce 
workload that simulates the activities of a retail store 
website, where emulated users can browse and order 
products from the website. The main evaluation metric is the 
WIPS – web interactions per second that can be sustained by 
the system under test. The TPC-W benchmark execution is 
characterised by a series of input parameters that control its 
behaviour. Among these is the type of workload simulated 
by the benchmark emulated browser clients. The results 
presented in the article are associated with the "Shopping 
Mix" workload, which is composed of 80% read operations 
and 20% write operations. Regarding the main control 
parameters, they are as follows: number of emulated 
browsers - 10; ramp-up time - 600sec; measurement interval 
- 1200 sec; ramp-down time - 300sec; number of items in the 
database - 100 000; think time - 0.01 (this value ensures that 
the emulated browsers wait between 0.07 sec and 0.007 sec 
before making a new request to the server). The emulated 
browsers and the benchmark application server were run on 
the same physical machine. 

The second benchmark is the oo7, firstly presented by 
Carey et al. [14]. This benchmark is often used to assess the 
performance of object-oriented persistence mechanisms. It 
strives to present a broad set of operations, allowing the 
building of a comprehensive performance profile. The oo7 
benchmark was designed to boast properties common to 
different CAD/CAM/CASE applications, although in its 
details it does not model any specific application. A run of 
the benchmark executes a series of traversals, updates, and 
query operations over the underlying object model, and the 
performance metric used is the time that these operations 
take to execute. 

The results obtained with our proposed approach to 
implement a cache policy shall be presented next. We omit a 
more thorough analysis of the correct behaviour and 
precision of the predictions of the stochastic behaviour 
analysis module, because this has already been performed in 
[8]. There, it is demonstrated that the module is capable of 
predicting with high precision the types of data being 
accessed by the target application in the contexts through 
which it passes during its execution. The term context can be 
defined to correspond to a procedure, service, or any other 
abstraction deemed appropriate to describe the scope within 
which the current operation is taking place. Moreover, the 
module is capable of predicting not only the type of data 
(domain classes) that is most likely to be accessed in a given 
situation, but also the effectively accessed object fields. For 
the discussion presented here, only access probabilities at the 
level of domain class shall be considered. 

As has been explained in Section II.B, whenever a 
domain object instance is loaded into cache, it is always 
added to the softly-referenced collection. Additionally, the 
cache policy manager uses the stochastic access prediction 
module to determine what is the global (at the level of the 
whole application) access probability of the type of object 
being loaded. If the access probability exceeds a certain 
threshold, then the object instance is also added to the 
strongly-referenced collection, ensuring that it cannot be 
garbage collected. This policy shall be referred to as the 
DAP (data access pattern) policy for the reminder of this 
article. 

Due to the fact that it is through the strongly-referenced 
collection that the cache policy effectively controls which 
objects are kept in memory longer than their actual use by 
the application, all cache hit and miss ratio results presented 
next are computed based on the contents of the strongly-
referenced collection only. 

For evaluating the effects of employing the DAP policy, 
the resulting cache hit ratios are compared with those 
obtained by the use of three alternative cache policies.  

The first of the alternative policies decides whether to 
insert a given domain object in the strongly referenced 
collection as a function of a randomly generated number. 
The random generator employs a uniform distribution. 

The second policy adds objects to the strongly referenced 
collection whenever they are first loaded by the application 
into the cache – the first objects to be loaded into the cache 
are the first to be made strongly reachable (this policy shall 
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be henceforth referred to as “first load, first strongly 
referenced” – FLFSR). 

The third alternative corresponds to an LRU (least-
recently used) policy. Its implementation is based on a 
synchronized and thread-safe version of the LRUMap 
structure of the Apache Commons Collections library. 
Because of the significantly different behaviour of an LRU 
policy, its comparison against the DAP policy shall be 
performed separately.  

Furthermore, regardless of which policy is used, the 
strongly-referenced collection has an enforced maximum 
capacity. As such, for the Random and FLFSR policies, 
objects are inserted only if this capacity has not been 
reached. Generally, the dynamic nature of the DAP and LRU 
policies allows them to change the contents of the cache 
without exceeding the above threshold. 

The results obtained from the execution of the oo7 
benchmark for the DAP, Random, and FLFSR policies are 
shown in Fig. 1. The x-axis of the chart indicates the 
percentage of objects allowed to be strongly referenced in 
the cache, as a function of the total number of domain 
objects loaded into the cache during an execution of the 
benchmark. It has to be pointed out that due to the fact that 
both benchmarks access all of their domain objects during 
their operation, all of the existing persistent domain data 
ends up being accessed and cached during a single 
benchmark execution. The y-axis indicates the overall cache 
hit ratio achieved by a certain cache policy when the cache 
size is restricted to the value on the x-axis. Each of the dots 
presented in the graphs corresponds to the weighted average 
resulting from the measurements extracted from ten 
independent executions of a benchmark, for a given strongly-
referenced cache size restriction. 

As the results of the oo7 benchmark show, the DAP 
cache policy achieves better hit rate than both the Random 
and FLFSR cache policies, for the whole range of cache 
sizes. In particular, with only 3.6% of the total volume of 
domain data, the DAP policy achieves a hit rate of 
approximately 53%, whereas the Random and FLFSR 

policies require caching 76% and 84%, respectively, of the 
total volume of existing data to achieve a similar hit rate.  

An interesting observation regarding the results from the 
DAP policy is that the data considered as important 
according to the stochastic analysis module (and thus 
suitable to be placed in the strongly referenced collection in 
the cache) corresponds to 3.6% of the total volume of 
existing domain data. This explains two peculiarities of the 
results observed for this policy. The first of these is the high 
cache hit ratio achieved for the relatively low volume of 
cached data (3.6%). It confirms the belief that the most 
frequently used data for a given application corresponds to a 
relatively small set of data. The second is the lack of 
measurements in the range of 3.7% to 99% along the x-axis. 
According to the behaviour prediction module, besides the 
3.6% of data considered very important for the operation of 
the application, there is no other domain data that is even 
closely as likely to be needed by the application. 
Consequently, the cache policy cannot place any additional 
information in the strongly referenced part of the cache. 

The results for the DAP (uninterrupted curves) and LRU 
(dotted curves) policies are shown in Fig. 2. The x-axis of 
the chart corresponds to a logic time scale, where a single 
unit corresponds to the realization of 10,000 lookup 
operations in the cache. The y-axis indicates the accumulated 
cache hit ratio up to a given point in the logical time scale. 
We chose a logic time scale instead of a real time scale 
because even though the benchmark is deterministic and 
performs all operations in the same order, differences in the 
execution time from one benchmark run to another would 
cause the different sampled curves to compress or expand 
with regards to one another, resulting into a rather deformed 
diagram. With a logical time scale, all curves are in synch 
with one another. 

Fig. 2 presents five sample curves plotted for the DAP 
and LRU policies. Each of these is associated with a 
different cache size, corresponding to 0.6%, 1.2%, 1.8%, 
2.4%, and 3% of the total volume of domain data. This 
relatively low percentage of domain data is due to the fact 
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Figure 1. DAP, Random, and FLFSR policies - oo7 
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Figure 2. DAP and LRU policies - oo7 
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that only a very small part of the domain data is highly likely 
to be accessed in run-time. This domain data accounts for a 
maximum of 3% of all existing domain data. The results 
show that the LRU cache policy presents a better cache hit 
ratio for the great majority of cases,. The differences in 
average hit ratios between the two policies vary from 1.13% 
for 1.2% cache size up to 5.03% for 3% cache size, all in 
favour of the LRU policy. The weighted average of all 
measurements is 2.55% cache hit ratio difference in favour 
of the LRU policy. Regarding the effect on overall 
benchmark performance, there were no observable 
differences between the DAP and LRU policies. 

The results achieved from the execution of the TPC-W 
benchmark are discussed next. The hit ratio measurements 
for the DAP, Random and FLFSR cache policies can be seen 
in Fig. 3. The remarks to be made about these results are 
similar to the ones for the oo7 case, namely, the DAP cache 
policy presents cache hit ratios that are significantly better 
than the ones provided by the Random or FLFSR policies for 
any configuration.  

Analysing the results of the DAP policy, we observe a 
practically linear growth in the hit ratio, starting from a hit 
ratio of 4.44% for cache size of 1.47% up to a hit ratio of 
97.58% when the cache size corresponds to 30.42% of the 
domain data. The lack of measurements in the range of 30% 
to 100% of the cache size result from the same reasons 
presented for the oo7 benchmark – the domain data 
evaluated as important for the operation of the application 
corresponds to 30% of all of the existing domain objects; the 
remaining 70% of domain data are practically irrelevant, as 
they correspond to the remaining 2.42% of cache hit rate. 

Considering the results for the uninformed caching 
policies, we are faced with a phenomenon not present in the 
oo7 benchmark results. This phenomenon consists in the 
existence of “plateaus” in the hit rate values achieved for a 
given range of cache sizes. For the Random policy, instances 
of this are the 30% hit rate in the range of 18% to 30% cache 
size and the 65% hit rate for 45% to 60% cache size. For the 
FLFSR policy, similar remarks are applicable to the 0% hit 

rate in the range of [0%, 15%] cache size and the 99% hit 
rate for the range of [59%, 100%] of cache size. These 
plateau phenomena may be explained by the caching of 
domain data that is practically irrelevant, from the point of 
view of the application needs. This leads to an increase in the 
volume of cached data without any significant increase in hit 
rate, which is what the plateaus effectively correspond to. 

The final set of results, comparing the DAP and the LRU 
policies, are shown in Fig. 4. In this case, the x-axis 
corresponds to a real time scale where the unit corresponds 
to 20 seconds, whilst the y-axis indicates the accumulated 
cache hit ratio observed up to a given point in the benchmark 
execution. There are three curves for each of the two 
policies, corresponding to cache sizes of 9%, 12%, and 15%. 
For the TPC-W benchmark, the LRU policy displays an even 
more accentuated advantage over the DAP policy, with 
regards to the hit ratio they achieve. In terms of differences 
between average hit ratios, the LRU policy leads with 9.2% 
for the 9% cache size, 13.8% for the 12% size, and 9.8% for 
the 15% size. This leads to an overall average hit ratio 
advantage of 10.9% in favour of the LRU policy. Yet, even 
though the average values give a clear advantage to the LRU 
policy, the observed behaviour for the LRU hit ratio is rather 
irregular, at least when compared to that of the DAP policy, 
whose results are very close to flat horizontal lines. 

The most-significant difference between the two 
approaches in the case of the TPC-W benchmark (unlike 
what was seen for the oo7 benchmark) is the performance 
variations observed between the versions running with the 
DAP and the LRU policy. These variations are due only to 
the performance of the policy itself, rather than, for example, 
to the contents of the cache, because the contents of the real 
cache, which dictates the overall benchmark performance, is 
the same for both versions. Only the contents of the strongly-
referenced collections are distinct and it is against those that 
the hit ratios are measured.  

A comparison of the benchmark’s performance when 
using the DAP and the LRU policies is shown in Fig. 5. The 
x-axis indicates the number of emulated browsers (EBs) 
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Figure 4. Using DAP and LRU policies with TPC-W 
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employed for a given benchmark run and the y-axis shows 
the relative throughput gain achieved for a given number of 
EBs. The values shown correspond to the speedup relative to 
executing the benchmark version with LRU cache policy 
with 1 EB. These results show that both versions perform 
approximately the same amount of work for 2 EBs, which is 
approximately 100% more than the LRU version with 1 EB. 
However, as the number of EB increases, the results show a 
growing discrepancy in the benchmark performance between 
the LRU and the DAP policy versions. For four EBs, the 
LRU benchmark version performs approximately 210% 
more work than the baseline, whereas the DAP version 
manages over 310%. This difference is even more 
accentuated for 10 EBs, where the performance of the 
benchmark with the LRU policy has remained practically the 
same as the one from the 4 EBs configuration, whilst the 
DAP version has grown up to over 560%. 

The most reasonable explanation for this phenomenon is 
that the synchronization present in the LRU policy 
implementation causes a bottleneck in multithreaded 
scenarios, leading to the poor performance gains observed in 
the results. Assuming this is the case, then the DAP policy 
would be the preferred alternative for situations where 
multithreading is common, while the LRU would be more 
appropriate for single threaded configurations. 

IV. CONCLUSIONS 

This paper presented a new approach for guiding the 
cache policy of a high-level software cache. This new 
approach employs a stochastic analysis based on Bayesian 
Updating Inference, which is responsible for predicting the 
behaviour of the target application, regarding its domain data 
needs. Based on the generated predictions, the cache policy 
is capable of deciding which domain objects are to be 
cached, leading to high cache hit rates with relatively low 
volumes of cached domain data.  

The effectiveness of this approach was tested with two 
very different benchmarks – the TPC-W and the oo7 – by 

comparing it against three different cache policies. The 
results illustrate the usefulness of employing dynamic 
adaptive approaches for guiding high-level software caches, 
by taking into consideration the behaviour of the target 
application. 
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Figure 5. DAP and LRU throughput comparison, TPC-W 
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