
A Practical Method for the Reachability Analysis of Real-Time Systems Modelled as
Timed Automata

Abdeslam En-Nouaary and Rachida Dssouli
ECE Department, Concordia University

Montreal, Canada
{ennouaar,dssouli}@ece.concordia.ca

Abstract—Real-time systems (RTSs) interact with their en-
vironment under time constraints. Such constraints are so
critical because any deviation from the specified deadlines
might have severe consequences on both the human lives and
the environment. To develop reliable RTSs, formal methods
should be used along the development life cycle. Verification is
one of these formal methods, which aims at ensuring that the
system is correct before its deployment. This paper presents a
new verification method for the reachability analysis of real-
time systems modelled as timed automata (TA) [1]. The paper
basically addresses two main issues: are all the transitions of
the system executable? Are all the locations reachable from
the initial location of the system? In order to answer these
questions, our method uses a metric that gives the minimum
delay between any state and all the transitions leaving that
state.

Keywords-Real-Time systems, Formal Methods, Timed Au-
tomata, Verification, Reachability Analysis.

I. I NTRODUCTION

Over the past two decades, many researchers have been
investigating the verification and validation of real-time
systems with different backgrounds. As a result, several
verification methods have been devised to make sure that
the system functions properly before its deployment. These
verification techniques attempt to check if the specification
of the system satisfies some desirable functional and
performance properties. All the verification and validation
techniques rely on the use of formal models to describe the
behaviour of the systems being investigated (see for instance
[2], [3], [4], [5], [6], [7], [8], [9]). In the case of real-time
systems, timed automata model [1] is intensively used by
researchers to develop verification and testing techniques.
Although, existing verification methods and tools (see for
instance [2], [3], [4], [5]) provide successful results for
RTSs, most of them suffer from the state explosion problem
and are a bit complicated to use. This is mainly due to
the fact that most of the proposed techniques are based
on either the region graph [1] or the zone graph [10] as
semantics for timed automata. So, the need for practical
verification and validation methods still exists.

In this paper, we present a new method for the reachability

analysis of RTSs modelled as timed automata. We are
basically addressing two main issues: are all the transitions
of the system executable? Are all the locations reachable
from the initial location of the system? In order to answer
these questions, our method uses a metric that gives the
minimum delay between any state and all the transitions
leaving that state. Our method presents two advantages.
On the one hand, it automatically calculates on the fly the
paths that ensure the reachability of the transitions and
locations. On the other hand, it avoids the costly operation
of constructing the region graph of the timed automata.

The remainder of this paper is organized as follows.
Section 2 presents the timed automata model and its related
concepts. Section 3 introduces our contributions. Section4
concludes the paper and presents future work.

II. BACKGROUND

This section presents the definitions and concepts required
for introducing our method. We basically present the timed
automata model and the related theoretical results illustrated
with simple examples.

Definition 1: Timed Automata (TA)
A TA A is a 5−tuple (Σ, L, l0, C, T), where :

• Σ is a finite set of inputs and output messages. In this
paper, inputs begin with ”?” while outputs start with
”!”.

• L is a finite set of locations. A location represents
the ”status” of the system after the execution of a
transition. The term location is used instead of the
term ”state”’ because the latter is used to define the
operational semantics of the TA.

• l0 ∈ L is the initial location where the execution of the
TA starts.

• C is a finite set of clocks, all initialized to zero inl0.
A clock is a time variable that counts how much time
has elapsed since the clock was (re-)initialized to zero.

• T ⊆ L×Σ×Φ(C)×P(C)×L is the set of transitions,
whereΦ(C) andP(C) denote the set of clock guards
and the power set ofC, respectively.

A transition in a TA, denoted byt : l
m,G,R
−→ l′, consists of

a source locationl (i.e., source(t) = l), an input or output

287

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

messagem, a clock guard (or time constraint)G, which
should hold to execute the transition, a subset of clocksR
to be reset when the transition is fired, and a destination
location l′ (i.e., destination(t) = l′). Each clock inR
(R ⊆ C) is used to record, when not reinitialized to zero,
how much time has elapsed since the execution of the
transition. Such clocks are mainly used to set clock guards
between the transition where they are reset and future
transitions.

A sequence of consecutive transitions that starts at a
location l and ends at a locationl′ is called a path froml
to l′; we write path(l, l′) = t1.t2...tn, where ti ∈ T for
1 ≤ i ≤ n, and source(t1) = l, destination(tn) = l′

and source(ti) = destination(ti−1) for 2 ≤ i ≤ n.
Since paths in TA are made of transitions with clock
guards that could be conflicting (i.e., they cannot be
satisfied by the same values of clocks) one can easily see
that a path might not be executable. Hence, finding an
executable path from one location to another requires, as
explained later on in this paper, a systematic approach
and a deeper investigation as to how messages and clock
values should be chosen to fire the transitions of the system.

We assume that the transitions in a TA are instantaneous
(i.e., they don’t take time to execute). Also, the clock
guards of the transitions are supposed to be conjunctions
of atomic formulas of the form(b1 op1 x op2 b2), where
x ∈ C, (op1, op2) ∈ {<,≤, =}, and b1 and b2 are
natural numbers. Multiple clocks are used in the TA to
express time constraints between more than two transitions.
Each clock,x ∈ C, in a TA takes real number values
and has a bounded domain[0, Bx] ∪ {∞}, as stated
by Springintveld et. al. [11], whereBx is the largest
integer constant appearing in the time constraints over
clock x in the automaton. This means that each clock
x is relevant only under the integer constantBx, and
all the values ofx greater thanBx are represented by
∞; Hence, we write :∀ε > 0, Bx +ε =∞ and∞+ε =∞.

For a clockx and a clock guardG of a transition in a TA,
we define the projection ofG overx, writtenProj(G, x), by
the condition(b1 op1 x op2 b2) in G, obtained by removing
the conditions over all the clocks exceptx; if clock x is not
involved in G thenProj(G, x) = true.

Example 1:Figure 1 shows a TA for a specification of
a simple telephone system. The system waits for the user
to hang up, get the dial tone and dial two digitsDigit1
andDigit2; then the system issues the outputConnect, to
indicate that the connection has been established and the user
can start talking. At the end, the user lifts the phone to allow
the system to go back to its initial location. The behaviour
of the system is subject to several time constraints. On the
one hand, the user should type the first digit1 to 3 time-

Figure 1. An Example of TA.

units after getting the tone and the second digit no more
than2 time-units after the first digit; the dialling operation
(from getting the tone until dialing the last digit) should not
exceed5 time-units. On the other hand, the system must
respond with the signalTone within 1 time-unit after the
user hangs up, and withConnect within 1 time-unit after
the last digit has been typed. Whenever the time constraint
of an input is not respected, the system times out, issues an
error message and goes back to its initial location.

The TA model introduced thus far is an abstract model
because it does not explain the execution of the system
it describes. The executions, also called the operational
semantics or the region graph of the TA, can be informally
stated as follows. The TA starts at its initial location
with all clocks initialized to zero. Then, the values of
the clocks increase at the same speed and measure the
amount of time elapsed since the last (re-)initialization.

At any time, the TA can execute a transitionl
m,G,R
−→ l′

if the input/output messagem takes place, its current
location is l, and the values of its clocks satisfy the
clock guard G. After this transition, all the clocks in
R are reset and the TA changes its location tol′. To
formalize the operational semantics of the TA, we need to
define the concepts of clock valuations and states for the TA.

Definition 2: Clock valuations
Let A = (Σ, L, l0, C, T) be an−clocks TA (i.e., an TA with
n clocks),R≥0 be the set of non-negative real numbers.

• A clock valuation ofA (or over C) is a functionv :
C → [R≥0 ∪ {∞}]n, which assigns a positive value
to each clockx ∈ C. A clock valuation is simply
the binding of clocks to their actual values. In this
paper, a clock valuation is represented by a vector
(vx1

, vx2
, .., vxn

), wherev(xi) = vxi
is the value of

clock xi, 1 ≤ i ≤ n. The set of all clock valuations of
A is referred to byV (C).

• For any clock valuationv ∈ V (C) and any non-
negative real numberd, v + d is a clock valuation that
assigns the valuev(x) + d to each clockx ∈ C. v + d

288

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

is the clock valuation reached fromv by letting time
elapse byd time units.

• For any clock valuationv ∈ V (C) and any subset of
clocks R ⊆ C, [R := 0]v is a clock valuation that
assigns the value0 to each clockx ∈ R and v(x) to
any other clock (i.e.,y ∈ C and y /∈ R. [R := 0]v
is the clock valuation obtained fromv by resetting the

clocks inR when a transitionl
m,G,R
−→ l′ is executed.

• A clock valuationv ∈ V (C) satisfies the clock guard

G of a transitionl
m,G,R
−→ l′, denoted byv |= G, if and

only if G holds underv.

Informally speaking, a clock valuation is an interpretation
of clocks, which allows us to know at any time the value of
each clock used in the TA. In other words, a clock valuation
can be used to determine how much time has elapsed since
the execution of each transition that has last reinitialized a
clock. The combination of a clock valuation and a location
defines a state of the TA. The formal definition of such
states follows.

Definition 3: States of the TA
Let A = (Σ, L, l0, C, T) be a TA.

• A state of A is a pair (l, v) consisting of a location
l ∈ L and a clock valuationv ∈ V (C). Intuitively, a
state ofA is a configuration that indicates the current
location ofA and the current value of each clock used
in A.

• The initial state ofA is the pair(l0, v0), wherev0(x) =
0 for each clockx ∈ C. Intuitively, the initial state
of A is the configuration ofA in the beginning of its
execution (i.e., the location isl0 and all clocks are set
to 0 as stated in Definition 1).

• The set of states ofA is denoted byS(A).

Example 2:To illustrate the concepts of clock valuations
and states, let us consider again the TA of Figure 1. The
number of clocks in this TA is2, namely clocksx and
y. So, a clock valuation, here, consists of assigning a
non-negative real number or∞ to each of the clocksx
and y. Examples of such clock valuations arev0 = (0, 0),
v1 = (1

4
, 1

4
) and v2 = (1

2
, 3

2
). The set of the states of this

TA is the set of all the pairs obtained by combining the
locations and the clock valuations of the TA. Examples of
such states ares0 = (l0, v0), s1 = (l1, v1) ands2 = (l3, v2),
where l0, l1, and l3 are the locations of the TA, andv0,
v1, andv2 are the clock valuations explained in this example.

Formally, the operational semantics of a TA is described
by a state machineM = (S, s0, A, T), whereS is the set of
states of the TA,s0 is the initial state,A is the set of actions,
andT is the set of transitions. The actions ofM are made
up of the input and output messages of the TA as well as the
time delays (i.e.,A = Σ∪[R≥0 ∪ {∞}]n). Hence, there are

two categories of transitions inM : The explicit transitions
on input and output messages, and the implicit transitions
on time delays. The explicit transitions are obtained from
the transitions of the TA and they describe the interactions
of the system with its environment. The explicit transitions
do not contain time constraints because the clock valuations
of their source states do satisfy their clock guards. On the
other hand, the delay transitions describe the progressionof
time but they do not appear in the transitions of the TA.
The operational semantics of timed automata helps us define
the concepts of traces for real-time systems as follows. A
trace for a real-time system is a sequence of input and
output messages as well as time delays that starts at the
initial state of the system and ends at one of its reachable
state. It basically reflects an execution of the system on
some input and output messages when the clock guards
of the corresponding transitions are satisfied by the values
of the clocks upon the occurrence of the messages. For
instance, the trace?m1.

1

2
.?m2.3.!m3 means that when the

system starts its execution it immediately accepts the input
messagem1, waits 1

2
time-unit before accepting the input

m2, and then waits3 time-units before responding with an
output messagem3.

III. O UR METHOD FOR THEREACHABILITY ANALYSIS

OF TIMED AUTOMATA

This section introduces our method for the reachability
analysis of real-time systems modelled as timed automata.
The two main issues dealt with in this paper are: the
reachability of the locations from the initial location of
the system and the executability of the transitions of the
system. The objective of the former issue is to check if every
location of the system is reachable from its initial location.
However, the objective of the latter issue is to check if every
transition of the system is executable. To address these
issues, we propose a metric that determines the minimum
delay between each state and each of its outgoing transitions.
We also present an algorithm to implement the metric in
order to decide the reachability issues automatically. The
minimum delay between a state and a transition represents
the minimum waiting time required at the state in order to
execute the transition. It basically reflects the point of time
right after the execution of the transition was impossible (i.e.,
as soon as the transition becomes executable). Formally, the
minimum delay between a states = (l, v) and a transition

t = l
m,G,R
−→ l′, written delaymin(s, t), is calculated as

follows:
delaymin(s, t) = Maxx∈C{0, delaymin(v(x), φ(x))},

where:
• φ(x) = Proj(G, x) is the projection of the transition’s

guard over the clockx, as explained in Section II,
• v(x) is the value of the clockx at states, and
• delaymin(v(x), φ(x)) is the minimum waiting time at

states for clock x to satisfy its time constraintφ(x):

289

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

delaymin(v(x), φ(x)) =

m1 − v(x) + ε if φ(x) is
(m1 < x ≤ m2)
m1 − v(x) if φ(x) is
(x = m1) or (m1 ≤ x ≤ m2)
0 if φ(x) is true

ε is a small positive real value chosen by the designer.
It is a parameter, which helps him/her specify how
far from the lower bound of the open clock guard the
transition should be executed.

Example 3:Let us consider again the telephone system of
Figure 1 and suppose that the designer choosesepsilon = 1

4
.

For the statess0 = (l0, (0, 0)) ands1 = (l2, (
1

4
, 1

4
)), and the

transitionst1 and t3, we have:

• delaymin(s0, t1) = Max{0, delaymin(0, true), delaymin

(0, true)} = Max{0, 0, 0} = 0.
• delaymin(s1, t3) = Max{0, delaymin(1

4
, 1 < x <

3), delaymin(1

4
, 0 < y < 5)} = Max{0, 1

2
, 0} = 1

2
.

Now, we explain how we address the reachability is-
sues aforementioned. To deal with the reachability of
the locations of the system, we proceed as follows. Let
A = (Σ, L, l0, C, T) be a TA andl be a location ofA (i.e.,
l ∈ L). l is said to be reachable from the initial location
of the TA if and only if there exists an executable path,
path(l0, l), from l0 to l in A. There are at least three
different ways to find an executable path from the initial
location l0 to another locationl in the TA:

• The first method consists of first extracting all the paths
from l0 to l and then choosing the shortest one (i.e.,
the path with the least number of transitions).

• The second method consists of, as the first method,
extracting all the paths froml0 to l and then choosing
randomly one of them.

• The third method consists of extracting on the fly only
one path froml0 to l according to some metrics that
minimize either the number of the transitions in the
path or the time it takes to execute the path.

The first two methods have the disadvantage of being
costly because they have to extract all the paths froml0
to l. Moreover, the chosen path (either the shortest one
or the randomly selected one) might not be executable
because of the conflicting clock guards of its transitions
and hence the resulting path could be useless. The third
method is less costly than the two others because it does
not rely on the extraction of all the paths froml0 to l.
However, if the minimization adopted is with regard to the
number of the transitions in the selected path then we will
have no guarantee about the executability of the path, all
as for the first and the second methods. Hence, the best
way to choose and ensure an executable path froml0 to l
is to extract it on the fly by minimizing the time it takes

to execute the path. This can be done by using the metric
delaymin() introduced so far. More precisely, to get an
executablepath(l0, l), we have to start at the initial state
(l0, v0) and calculate the minimum time delay to execute
each transition leavingl0 and decide which one should be
added to the path. Then, we compute the resulting states
and repeat the process on the new states until we reachl.

Similarly, to address the executability of a transition we
have to find an executable path from the initial location to the
source location of the transition, and use the minimum time
delay in order to calculate at least one time point that makes
the transition executable from the last reached state from the
path. In order to ensure an executable path froml0 to the
source location of the transition, we follow the same process
described previously when dealing with the reachability of
the locations of the TA. Regarding the time point that makes
the transition executable, we calculate it using the minimum
time delay between the last reached state in the path for
the transition, and the transition being checked. Formally

speaking, letA = (Σ, L, l0, C, T) be a TA andt = l
m,G,R
−→ l′

be a transition ofA. t is said to be executable if and only
if:

• source(t) is reachable from the initial locationl0 and
the resulting state iss = (source(t), v), and

• (v + delaymin(s, t)) satisfies the clock guard oft (i.e.,
(v + delaymin(s, t)) |= G).

It should also be noted that a locationl is reachable if
and only if there existst ∈ T such thatdestination(t) = l
andt is executable. Likewise, if a locationl is not reachable
then all the transitions leavingl are non-executable (i.e.,
for all t ∈ T such thatsource(t) = l the transitiont is
non-executable).

The algorithm used to check the reachability of the
locations and transitions of the TA is shown below. The
algorithm takes as input the TA and returns a Boolean
value for each location and each transition that says
whether or not the location (respectively the transition) is
reachable (respectively executable). The algorithm starts by
calculating the initial state of the TA and initializing all
the variables to be used, namelyRS (the set of reachable
states) andHS (the set of the handled states amongRS).
Then, it goes through all the states inRS and handles all
the outgoing transitions from each of these states. Indeed,
for each reachable state, the algorithm checks all of the
outgoing transitions from the location of the state and
verifies if they are executable by calculating the minimum
delay between the state and each of the transitions. If the
clock guard of a transition is satisfied by the clock valuation
of the current state plus the minimum delay calculated
previously then the transition (respectively its destination

290

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

location) is marked as being executable (respectively
reachable), and the resulting state is calculated and added
to RS if it is not already there. When the algorithm
terminates the handling of all the reachable states (i.e., all
the states inRS), it goes through all the locations and
transitions to check if they have been marked so far. If a
location has not been marked then the location is declared
unreachable. Likewise, if a transition has not been marked
then the transition is declared non-executable. It should be
noted that the algorithm does not construct the region graph
[1] of the TA but calculates on the fly only one state for
each transition in the TA. That state is obtained using the
metric delaymin(s, t) introduced in the beginning of this
section. Hence, the proposed approach has the advantage
of being scalable and rapid compared to existing methods
that are based on the construction of either the region graph
[1] or the zone graph [10] of the TA. We implemented the
algorithm in Java and promising results are obtained for
specifications with different sizes. The presentation of the
tool and the analysis of the experimentation results are left
for a future publication.

Algorithm 1 : Our Algorithm for the Reachability Anal-
ysis of a TA.
ReachabilityAnalysis(INPUT: TA)
s0 ← (l0A, v0) // (v0(x) = 0 for every clockx in the
TA).
RS ← s0. // RS is the set of reachable states of the
TA.
HS ← ∅. // HS is the set of handled states of the TA.
while (RS 6= HS) do

Pick one state(s : (l, v) ∈ RS) not yet processed.
Add s to HS.
foreach (transition t : l

m,G,R
−→ l′ in the TA)do

Calculateδ = delaymin(s, t).
if ((v + δ) |= G) then

Add the state(l′, [R := 0](v + δ)) to RS if
not yet there.
Mark the locationl′ and the transitiont in
the TA as they are reached.

foreach (location l ∈ L) do
if (l is not marked)then

l is not reachable

foreach (transition t ∈ T) do
if (t is not marked)then

t is not executable

The complexity of the algorithm isΘ(|L| × |T |), where
|L| is the number of locations and|T | is the number of
transitions. Indeed, the algorithm goes through all the
reachable states whose number is at most equal to|L|× |T |.

Each reachable state is handled only once and requires the
processing of only the transitions leaving the location of
the state. By adding up the number of these iterations we
get an order ofΘ(|L| × |T |).

Example 4:Let us consider again the telephone system
of Figure 1. By applying our algorithm, withε = 1

4
,

we get the results shown in Figure 2. The first table
gives for each location if it is reachable or not while the
second table determines for each transition if it is exe-
cutable or not. When a location (respectively, a transition)
is reachable (respectively executable) the tables show one
of the traces that make it possible. By examining the
results in Figure 2, one can easily see that all the locations
(respectively all the transitions) of the system modelled in
Figure 1 are reachable (respectively executable). For each
reachable location, the corresponding trace is obtained by
extracting an executable path from the initial location to
the location. Similarly, for each executable transition the
corresponding trace is obtained by extracting an executable
path from the initial location to the source location of the
transition plus the time delay and the message to execute
the transition. The executability of any path is ensured
based on the metricdelaymin(), introduced so far. For
instance, the locationl4 is reachable and the transition

t4 : l3
?Digit3 ,0<x<2∧0<y<5,{x}

−→ l4 is executable because
the trace?HangUp.1.!Tone.5

4
.?Digit1.

1

4
.?Digit2 makes

it possible for the system to move from its initial state
(l0, (0, 0)) to (l4, (0, 3

2
)); the corresponding executable path

then ist1.t2.t3.t4.

Example 5:Let us now change the specification of Figure
1 by changing the clock guards of the transitionst3 t4 andt8
to ((2 < x < 3)∧(0 < y < 3)), ((2 < x < 3)∧(0 < y < 3))
and (x = 3), respectively. Is it really easy to guess the
reachability analysis of the new system? It is not that simple!
By applying our algorithm, withε = 1

4
, we can see that the

transitionst4, t5, t9, t10 andt11 are non-executable, and the
locationsl4 and l5 are non-reachable. Let us say why. The
minimum executable path to reach the locationl3 (the source
location of the transitiont4) is t1.t2.t3 and the corresponding
trace is ?HangUp.1.!Tone.9

4
.?Digit1. Hence, the state

that should be considered to execute the transitiont4 is
s4 = (l3, (0, 9

4
)), which givesdelaymin(s4, t4) = 9

4
. But,

by adding 9

4
to (0, 9

4
) (i.e., the clock valuation ofs4) we

obtain the clock valuation(9

4
, 18

4
) that does not satisfy the

clock guard((2 < x < 3) ∧ (0 < y < 3)) (i.e., the clock
guard of t4). Hence, the transitiont4 is non-executable
and sincet4 is the unique transition betweenl3 and l4
then the locationl4 is not reachable. Consequently, all
the transitions leavingl4 are non-executable, namely the
transitiont5. Sincet5 is the unique transition betweenl4 and
l5 then the locationl5 is not reachable and all the transitions
leaving l5 become non-executable, namelyt9, t10 andt11.

291

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Loc. Reach. Corresponding Trace
(Y/N)

l0 Y ε (the empty sequence)

l1 Y ?HangUp

l2 Y ?HangUp.1.!Tone

l3 Y ?HangUp.1.!Tone. 5
4
.?Digit1

l4 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2

l5 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2.1

.!Connect

Trans. Exec. Corresponding Trace
(Y/N)

t1 Y ?HangUp

t2 Y ?HangUp.1.!Tone

t3 Y ?HangUp.1.!Tone. 5
4
.?Digit1

t4 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2

t5 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2.1

.!Connect

t6 Y ?HangUp.1.!Tone.3.!Error

t7 Y ?HangUp.1.!Tone.5.!Error

t8 Y ?HangUp.1.!Tone. 5
4
.?Digit1.2.!Error

t9 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2.1

.!Connect. 1
4
.?Talk

t10 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2.1

.!Connect.4.!Error

t11 Y ?HangUp.1.!Tone. 5
4
.?Digit1. 1

4
.?Digit2.1

.!Connect.?Drop

Figure 2. The Reachability Results for the TA in Figure 1.

IV. CONCLUSION

We presented in this paper a new verification method for
the reachability analysis of real-time systems modelled as
timed automata. Our method addresses the reachability of
the locations and transitions of the system by calculating a
trace that allows the system to go from its initial state to
the location or transition being investigated. To this end,
the method uses a metric that gives the minimum delay
between any state and all the transitions leaving that state.
Our method has at least two advantages. On the one hand,
it automatically calculates on the fly the paths that ensure
the reachability of the transitions and locations. On the
other hand, it avoids the costly operation of constructing
the region graph of the TA, which makes the method more
scalable than the others. To help us quantify precisely the
gain of the method with respect to existing methods, we
implemented the method to conduct more experimentation
on TA specifications with different sizes. The tool and the
analysis of the experimentation results will be discussed in
a future paper.

We are currently working on two extensions of the

proposed method. On the one hand, we would like to
make it incremental to adjust to successive evolutions of
the specification either when designing the system the first
time or later when maintaining the system. On the other
hand, we are investigating the possibility of adopting the
incremental method to the area of testing real-time systems
modelled as TA.

REFERENCES

[1] R. Alur and D. Dill. A Theory of Timed Automata.Theo-
retical Computer Science, 126:183–235, 1994.

[2] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The
tool Kronos. In R. Alur, T.A. Henzinger, and E.D. Sontag,
editors,Hybrid Systems III, volume 1066 ofLecture Notes in
Computer Science, pages –. Springer-Verlag, 1995.

[3] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. UPPAAL - a tool suite for automatic verification of
real-time systems. In4th. DIMACS Workshop on Verification
and Control of Hybrid Systems, New Brunswick, New Jersey,
October 1995.

[4] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.
Symbolic model checking for real-time systems.Information
and Computation, 111:193–244, 1994.

[5] K.G. Larsen, P. Pettersson, and W. Yi. Model-checking
for real-time systems. InProceedings of Fundamentals of
Computation Theory, pages –, Dresden, Germany, August
1995.

[6] Osmane Koné, Patrice Laurencot, and Richard Castanet.
On the Fly Test Generation for Real-Time Protocols. In
International Conference on Computer Communications and
Networks, Lafayette, Louisiana, USA, pages 378–387, 1998.

[7] Brian Nielsen and Arne Skou. Automated Test Generation
from Timed Automata. In5th International Symposium on
Formal Techniques in Real-Time and Fault Tolerant Systems
FTRTFT’98, Lyngby, Denmark, pages 59–77, September
1998.

[8] A. En-Nouaary, R. Dssouli, and F. Khendek. Timed Wp-
Method: Testing Real-Time Systems.IEEE Transactions on
Software Engineering, 28(11):1023–1038, November 2002.

[9] A. En-Nouaary. A Scalable Method for Testing Real-Time
Systems. Software Quality Journal, Springer, 16(1):3–22,
March 2008.

[10] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and
H. Wong-Toi. Minimization of Timed Transition Systems.
pages 340–354, 1992.

[11] J. Springintveld and F. Vaandrager. Minimizable Timed
Automata. In B. Jonsson and J. Parrow, editors,Proceedings
of the 4th International School and Symposium on Formal
Techniques in Real Time and Fault Tolerant Systems,Uppsala,
Sweden, volume 1135 ofLecture Notes in Computer Science.
Springer-Verlag, 1996.

292

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

