ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A Practical Method for the Reachability Analysis of Real-Time Systems Modelled as
Timed Automata

Abdeslam En-Nouaary and Rachida Dssouli
ECE Department, Concordia University
Montreal, Canada
{ennouaar,dssouli@ece.concordia.ca

Abstract—Real-time systems (RTSs) interact with their en- analysis of RTSs modelled as timed automata. We are
vironment under time constraints. Such constraints are so pasically addressing two main issues: are all the tramsitio
critical because any deviation from the specified deadlines of the system executable? Are all the locations reachable

might have severe consequences on both the human lives and o . 5
the environment. To develop reliable RTSs, formal methods from the initial location of the system? In order to answer

should be used along the development life cycle. Verificatiois ~ these questions, our method uses a metric that gives the
one of these formal methods, which aims at ensuring that the minimum delay between any state and all the transitions
system is correct before its deployment. This paper presesta |eaving that state. Our method presents two advantages.
new verification method for the reachability analysis of red On the one hand, it automatically calculates on the fly the
time systems modelled as timed automata (TA) [1]. The paper . .

basically addresses two main issues: are all the transiti@nof path§ that ensure the reacha_lblllty_of the transitions a_md
the system executable? Are all the locations reachable from locations. On the other hand, it avoids the costly operation
the initial location of the system? In order to answer these of constructing the region graph of the timed automata.
questions, our method uses a metric that gives the minimum

delay between any state and all the transitions leaving that The remainder of this paper is organized as follows.
state. Section 2 presents the timed automata model and its related

concepts. Section 3 introduces our contributions. Seetion

Keywords-Real-Time systems, Formal Methods, Timed Au- concjudes the paper and presents future work.
tomata, Verification, Reachability Analysis.

Il. BACKGROUND
I. INTRODUCTION This section presents the definitions and concepts required

Over the past two decades, many researchers have belqy introducing our method. We basically present the timed
investigating the verification and validation of real-time @utomata model and the related theoretical results ittestr
systems with different backgrounds. As a result, severaVith simple examples.
verification methods have been devised to make sure that Definition 1: Timed Automata (TA)
the system functions properly before its deployment. Thesé TA A is a5—tuple (2, L, lo, €, T'), where :
verification techniques attempt to check if the specificatio * > iS a finite set of inputs and output messages. In this
of the system satisfies some desirable functional and Paper, inputs begin with "?” while outputs start with
performance properties. All the verification and validatio L
techniques rely on the use of formal models to describe the ¢ L is a finite set of locations. A location represents
behaviour of the systems being investigated (see for instan the "status” of the system after the execution of a
121, [31, [41, [5], [6], [7], [8], [9]). In the case of real-the transition. The term location is used instead of the
systems, timed automata model [1] is intensively used by term ’state” because the latter is used to define the
researchers to develop verification and testing techniques ~ OPerational semantics of the TA.
Although, existing verification methods and tools (see for ¢ lo € L is the initial location where the execution of the
instance [2], [3], [4], [5]) provide successful results for TA. startg._ o
RTSs, most of them suffer from the state explosion problem ¢ C'is a finite set of clocks, all initialized to zero ip.
and are a bit complicated to use. This is mainly due to A clock is a time variable that counts how much time
the fact that most of the proposed techniques are based has elapsed since the clock was (re-)initialized to zero.
on either the region graph [1] or the zone graph [10] as ¢ 1 S Lx X x®(C)xP(C)x Lis the set of transitions,
semantics for timed automata. So, the need for practical ~Where®(C) and’P(C) denote the set of clock guards
verification and validation methods still exists. and the power set of’, respectively.

A transition in a TA, denoted by : [mGR ', consists of
In this paper, we present a new method for the reachabilita source location (i.e., source(t) = [), an input or output

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 287

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

110 1 Error.a=4,{xy]

messagen, a clock guard (or time constrainty, which
should hold to execute the transition, a subset of clagks
to be reset when the transition is fired, and a destinatiol
location I (i.e., destination(t) = l'). Each clock inR

(R C C) is used to record, when not reinitialized to zero,
how much time has elapsed since the execution of thi
transition. Such clocks are mainly used to set clock guard
between the transition where they are reset and futur
transitions.

4
15 1 Conne

omnectd<x<=1,{x}

t11 2 Drop.true,jx.y}

4 :MDigit2.0<x<2 <y<3ix]

—b

12:Manef<x<=1,{x.y} 13 7 Digit], 1<x<3 0y <5.4x]

A sequence of consecutive transitions that starts at . ST
location! and ends at a locatiofi is called a path froni
to I’; we write path(l,l') = t.ts...t,, wheret; € T for
1 < i < n, and source(ty) = I, destination(t,) = U
and source(t;) = destination(t;—1) for 2 < i < n.)) o
Since paths in TA are made of transitions with clock Units after getting the tone and the second digit no more
guards that could be conflicting (i.e., they cannot pethan 2 t|m_e-un|ts after the. flr-St.dIgIt; the dla!hr_wg operation
satisfied by the same values of clocks) one can easily sddrom gettl_ng the_tone until dialing the last digit) shouldtn
that a path might not be executable. Hence, finding arfXceeds time-units. On the other hand, the system must
executable path from one location to another requires, a&spond with the signal’one within 1 time-unit after the
explained later on in this paper, a systematic approacHSer hangs_ up, and wit'onnect within 1 tlme?unlt after _
and a deeper investigation as to how messages and clothe Iagt dlgllt has been typed. Whenever Fhe time gonstralnt
values should be chosen to fire the transitions of the systen?f @ input is not respected, the system times out, issues an

error message and goes back to its initial location.

We assume that the transitions in a TA are instantaneous 1€ TA model introduced thus far is an abstract model
(i.e., they don't take time to execute). Also, the clock because it does not explain the execution of the system
guards of the transitions are supposed to be conjunctioris describes. The executions, also called the operational
of atomic formulas of the forn{b, op; z ops bs), where semantics or the region graph of the TA, can be informally
z € C, (op1,0p2) € {<,<,=}, and b, and b, are stated as follows. The TA starts at its initial location
natural numbers. Multiple clocks are used in the TA toWith all clocks initialized to zero. Then, the values of

express time constraints between more than two transitionde clocks increase at the same speed and measure the
Each clock. z € C. in a TA takes real number values @mount of time elapsed since the last (re-)initialization.
and has a bounded domaiid, B,] U {oc}, as stated At any time, the TA can execute a transition =" 1

by Springintveld et. al. [11], whereB, is the largest Iif the inputioutput messagen takes place, its current
integer constant appearing in the time constraints ovelocation is [, and the values of its clocks satisfy the
clock z in the automaton. This means that each clockclock guardG. After this transition, all the clocks in

x is relevant only under the integer constaBt, and R are reset and the TA changes its locationi/to To

all the values ofz greater thanB, are represented by formalize the operational semantics of the TA, we need to

0o; Hence, we write ¥e > 0, B, +¢ = co andoo+ € = 0. define the concepts of clock valuations and states for the TA.

Figure 1. An Example of TA.

For a clockz and a clock guardy of a transition in a TA, Definition 2: Clock valuations . _
we define the projection aF overz, written Proj(G,z), by ~ LetA = (X, L,lo, C,T) be an—clocks TA (i.e., an TA with
the condition(b; op; = op» bs) in G, obtained by removing 7 clocks),R=° be the set of non-negative real numbers.

the conditions over all the clocks exceptif clock = is not « A clock valuation of A (or over() is a functionv :
involved in G then Proj (G, z) = true. C — [R2%U{c0}]", which assigns a positive value
Example 1:Figure 1 shows a TA for a specification of to each clockx € C. A clock valuation is simply
a simple telephone system. The system waits for the user the binding of clocks to their actual values. In this
to hang up, get the dial tone and dial two digitkgit; paper, a clock valuation is represented by a vector
and Digits; then the system issues the outgiinnect, to (Vi) s Vagy oy Uz,)y Wherewv(z;) = v,, is the value of
indicate that the connection has been established anddine us clock z;,1 < i < n. The set of all clock valuations of
can start talking. At the end, the user lifts the phone tonallo A is referred to byl (C).

the system to go back to its initial location. The behaviour « For any clock valuatiorv € V(C) and any non-
of the system is subject to several time constraints. On the negative real numbet, v + d is a clock valuation that
one hand, the user should type the first digito 3 time- assigns the value(z) + d to each clocke € C. v+ d

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 288

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

is the clock valuation reached from by letting time two categories of transitions if/: The explicit transitions
elapse byd time units. on input and output messages, and the implicit transitions
« For any clock valuationn € V(C) and any subset of on time delays. The explicit transitions are obtained from
clocks R C C, [R := 0Jv is a clock valuation that the transitions of the TA and they describe the interactions
assigns the valué to each clockz € R andwv(z) to of the system with its environment. The explicit transitgon
any other clock (i.e.y € C andy ¢ R. [R := Qv do not contain time constraints because the clock valusition
is the clock valuation obtained from by resetting the of their source states do satisfy their clock guards. On the

clocks in R when a transitiod ™23 I’ is executed. other hand, the delay transitions describe the progression

« A clock valuationv € V/(C) satisfies the clock guard time but they do not appear in the transitions of the TA.
G of a transition] ™% ', denoted by |= G, if and The operational semantics of tlm_ed automata helps us define
only if G holds unden. the concepts of traces for real-time systems as follows. A
trace for a real-time system is a sequence of input and
output messages as well as time delays that starts at the

flr]forlinallyhs_pﬁalflmg, a clf[)ckkvaluattmn |st§1n |r1tr]erpre|tatlofinitial state of the system and ends at one of its reachable
of clocks, which allows us o know at any time the value Ol g0 - ¢ basically reflects an execution of the system on

each clock used in the TA. In other words, a clock valuamonsome input and output messages when the clock guards

can be usgd to determine h.O.W much time has e.Ia.p.se-d SINGF the corresponding transitions are satisfied by the values
the execution of each transition that has last reinitidliae

R . - of the clocks upon the occurrence of the messages. For
clock. The combination of a clock valuation and a location P 9

X L instance, the tracéml.%.?mg.3.!m3 means that when the
gg{ggioﬁoﬁ‘:{e of the TA. The formal definition of SUChsystem starts its execution it immediately accepts thetinpu

messagen, Waitsé time-unit before accepting the input
mg, and then waits3 time-units before responding with an

Definition 3: States of the TA output messagens.

Let A= (X,L,ly,C,T) be a TA.

» A state of A is a pair(l,v) consisting of a location
I € L and a clock valuationw € V(C). Intuitively, a
state ofA is a configuration that indicates the current This section introduces our method for the reachability
location of A and the current value of each clock usedanalysis of real-time systems modelled as timed automata.
in A. The two main issues dealt with in this paper are: the

« The initial state of4 is the pair(ly, vo), wherevy(z) = reachability of the locations from the initial location of
0 for each clockz € C. Intuitively, the initial state the system and the executability of the transitions of the
of A is the configuration ofd in the beginning of its system. The objective of the former issue is to check if every
execution (i.e., the location & and all clocks are set location of the system is reachable from its initial locatio
to 0 as stated in Definition 1). However, the objective of the latter issue is to check if gver

« The set of states afl is denoted byS(A). transition of the system is executable. To address these

Example 2:To illustrate the concepts of clock valuations ISSUES, we propose a metric that determines the minimum
and states, let us consider again the TA of Figure 1. Thé&€lay between each state and each of its outgoing trarsition
number of clocks in this TA i, namely clocksz and e also present an algorithm to implement the metric in
y. So, a clock valuation, here, consists of assigning 6pr_dgr to decide the reachability issues auto_n_1aﬂcal|y. The
non-negative real number ak to each of the clocksy ~ MiNIMuUM delay between a state and a transition represents

andy. Examples of such clock valuations arg = (0,0), the minimum waiting time required at the state in order to

v = (4,1) andw, = (4,2). The set of the states of this execute the transition. It basically reflects the point ofei
TA is the set of all the pairs obtained by combining the rght after the execution of the transition was impossibk (

locations and the clock valuations of the TA. Examples of2S S00n as the transition becomes executable). Formadly, th
such states are, = (lo, vo), s1 = (l1,v1) andss = (I3, v2), m|n|mumgilay between a state= (I,v) and a transition

. m,G, . .

wherely, 11, andl3 are the locations of the TA, and, t =1 =" U, written delaymin(s,t), is calculated as

v1, andvy are the clock valuations explained in this example.follows:
delaymin(s,t) = Mazgzec{0,delaymi(v(z), ¢(z))},
Formally, the operational semantics of a TA is describedvhere:
by a state maching/ = (5, so, A, T), whereS is the set of o ¢(x) = Proj(G,) is the projection of the transition’s

IIl. OUR METHOD FOR THEREACHABILITY ANALYSIS
OF TIMED AUTOMATA

states of the TAg is the initial state A is the set of actions, guard over the clock, as explained in Section II,
andT is the set of transitions. The actions &f are made « v(z) is the value of the clock at states, and

up of the input and output messages of the TA as well as the « delay,in(v(z), ¢(x)) is the minimum waiting time at
time delays (i.e.A = SU[R=Z° U {c}]™). Hence, there are states for clock x to satisfy its time constraing(z):

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 289

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

to execute the path. This can be done by using the metric
m1 — v(z) + e if $(x) is delaymin() introduced so far. More precisely, to get an

(m1 < & < ma) executablepath(ly,), we have to start at the initial state

delagmin(v(z), 3(x)) = { m1 — v(@) if () is (lp,vp) and calculate the minimum time delay to execute
min) (@ =m1) or (m1 < 2 < my) each transition leaving, and decide which one should be
0if ¢(x) is true - added to the path. Then, we compute the resulting states

and repeat the process on the new states until we rieach
e is a small positive real value chosen by the designer.
It is a parameter, which helps him/her specify how Similarly, to address the executability of a transition we
far from the lower bound of the open clock guard the haye to find an executable path from the initial location ® th
transition should be executed. source location of the transition, and use the minimum time
delay in order to calculate at least one time point that makes
Example 3:Let us consider again the telephone system othe transition executable from the last reached state fram t
Figure 1 and suppose that the designer choege$on = 1. path. In order to ensure an executable path figrto the
For the states, = (Io, (0,0)) ands; = (I2, (%, 1)), and the source location of the transition, we follow the same preces

11
transitionst; and¢s;, we have: described previously when dealing with the reachability of
o delaymin(so,t1) = Maz{0, delaymin (0, true), delaymin the Iocatigns of the TA. Regarding the t!me point that_makes
(0, true)} = Maz{0,0,0} = 0. the transition executable, we calculate it using the mimmu

o delaymin(si,t3) = Ma:v{O,delaymm(%,l
3), delaymin (3,0 <y < 5)} = Maz{0, ,0} . R
. _ ~ ,mG,R
Now, we explain how we address the reachability is-SPeaking, letl = (%, L,lo,C,T)beaTAand =1 — "1
sues aforementioned. To deal with the reachability oﬁ)_e a transition ofA. ¢ is said to be executable if and only
the locations of the system, we proceed as follows. Let

< 7 < time delay between the last reached state in the path for
_1 the transition, and the transition being checked. Formally

A=(%,L,1y,C,T) be a TA and be a location ofA (i.e., « source(t) is reachable from the initial locatioly and
l € L). | is said to be reachable from the initial location the resulting state is = (source(t),v), and

of the TA if and only if there exists an executable path, « (v+ delaymin(s,t)) satisfies the clock guard of(i.e.,
path(lo,l), from Iy to I in A. There are at least three (v + delaymin(s, 1)) E G).

different ways to find an executable path from the initial

locationl, to another locatiord in the TA: It should also be noted that a locatidris reachable if
« The first method consists of first extracting all the pathsand only if there exist$ € 7' such thatdestination(t) = I
from Iy to I and then choosing the shortest one (i.e.,andt is executable. Likewise, if a locatidris not reachable

the path with the least number of transitions). then all the transitions leaving are non-executable (i.e.,
« The second method consists of, as the first methodior all + € T such thatsource(t) = [the transitiont is

extracting all the paths fromy to [and then choosing non-executable).
randomly one of them.

» The third method consists of extracting on the fly only The algorithm used to check the reachability of the
one path from, to I according to some metrics that |ocations and transitions of the TA is shown below. The
minimize either the number of the transitions in the algorithm takes as input the TA and returns a Boo'ean
path or the time it takes to execute the path. value for each location and each transition that says

The first two methods have the disadvantage of beingvhether or not the location (respectively the transitia) i

costly because they have to extract all the paths figm reachable (respectively executable). The algorithmsstayt

to I. Moreover, the chosen path (either the shortest onealculating the initial state of the TA and initializing all
or the randomly selected one) might not be executabl¢he variables to be used, nameRS (the set of reachable
because of the conflicting clock guards of its transitionsstates) and{ S (the set of the handled states amaoR§).

and hence the resulting path could be useless. The thir@ihen, it goes through all the states RS and handles all
method is less costly than the two others because it dogbe outgoing transitions from each of these states. Indeed,
not rely on the extraction of all the paths froip to i. for each reachable state, the algorithm checks all of the
However, if the minimization adopted is with regard to the outgoing transitions from the location of the state and
number of the transitions in the selected path then we willverifies if they are executable by calculating the minimum
have no guarantee about the executability of the path, allielay between the state and each of the transitions. If the
as for the first and the second methods. Hence, the bestock guard of a transition is satisfied by the clock valuatio
way to choose and ensure an executable path fipito [of the current state plus the minimum delay calculated
is to extract it on the fly by minimizing the time it takes previously then the transition (respectively its destorat

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 290

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

location) is marked as being executable (respectivelfEach reachable state is handled only once and requires the
reachable), and the resulting state is calculated and addguiocessing of only the transitions leaving the location of
to RS if it is not already there. When the algorithm the state. By adding up the number of these iterations we
terminates the handling of all the reachable states (ille., aget an order o®(|L| x |T|).

the states inRS), it goes through all the locations and

transitions to check if they have been marked so far. If a Example 4:Let us consider again the telephone system
location has not been marked then the location is declaregf Figure 1. 1

v pesn N By applying our algorithm, witk = 7,
unreachable. Likewise, if a transition has not been markeg,o get the results shown in Figure 2. The first table
then the transition is declared non-executable. It shoeld b es for each location if it is reachable or not while the
noted that the algorithm does not construct the region grapcéecond table determines for each transition if it is exe-
[1] of the TA but calculates on the fly only one state for ¢\ iaphje or not. When a location (respectively, a transjtion
each transition in the TA. That state is obtained using th&s reachable (respectively executable) the tables show one
metric delaymin(s, t) introduced in the beginning of this ot he traces that make it possible. By examining the
section. Hence, the proposed approach has the advantagg iis in Figure 2, one can easily see that all the locations
of being scalable and rapid compared to existing _methog}gespectively all the transitions) of the system modelled i
that are based on the construction of elthe_r the region gra igure 1 are reachable (respectively executable). For each
[1] or the zone graph [10] of the TA. We implemented the .o5chaple location, the corresponding trace is obtained by
algorithm in Java and promising results are obtained fokytracting an executable path from the initial location to
specifications with different sizes. The presentation & th yhe |ocation. Similarly, for each executable transitioe th
tool and the anglysi; of the experimentation results ate 'efcorresponding trace is obtained by extracting an execaitabl
for a future publication. path from the initial location to the source location of the
transition plus the time delay and the message to execute
the transition. The executability of any path is ensured
based on the metridelay,,:»(), introduced so far. For
instance, the locatiori, is reachable and the transition

Algorithm 1: Our Algorithm for the Reachability Anal-
ysis of a TA.

ReachabilityAnalysis(INPUT: TA)
so < (1%, v0) Il (vo(x) = 0 for every clockz in the
TA).
RS < sq. Il RS is the set of reachable states of the
TA.
HS «— (. Il HS is the set of handled states of the TA.
while (RS # HS) do
Pick one statds : (I,v) € RS) not yet processed.
Add s to HS.
foreach (transitiont : [™G N the TA)do
Calculated = delaymin(s,t).
if (v+9) EG) then
Add the statg(l’, [R := 0](v + 9)) to RS if
not yet there.
Mark the locationl’ and the transitiort in
the TA as they are reached.

fo_reach (locationl € L) do
if (I is not marked}Xhen
L ! is not reachable

foreach (transitiont € T') do

if (¢ is not marked}hen
L ¢ is not executable

The complexity of the algorithm i®(|L| x |T|), where
|L| is the number of locations and’| is the number of
transitions.
reachable states whose number is at most equdl|te |T'|.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

fy o g (DM 0Se=20<y<BAel e ovecutable because
the trace7HangUp.1.!T0ne.§.?Digit1.%.7Digit2 makes

it possible for the system to move from its initial state
(lo, (0,0)) to (I, (0, 2)); the corresponding executable path
then iStl.tQ.tg.t4.

Example 5:Let us now change the specification of Figure
1 by changing the clock guards of the transitiong, andts
to((2<z<3)AM0<y<3)),((2<z<3)A0<y<3))
and (z = 3), respectively. Is it really easy to guess the
reachability analysis of the new system? It is not that sathpl
By applying our algorithm, withe = i, we can see that the
transitionsty, 5, t9, t1g andt;; are non-executable, and the
locationsl, andl5 are non-reachable. Let us say why. The
minimum executable path to reach the locafig(the source
location of the transition,) is t1.t2.t3 and the corresponding
trace is ?HangUp.l.!Tone.%.?Dz‘gz‘tl. Hence, the state
that should be considered to execute the transitipns
sa = (I3,(0,9)), which givesdelaym i, (ss,ts) = 2. BuUt,
by adding$ to (0,3) (i.e., the clock valuation of,) we
obtain the clock valuatiori?, 1) that does not satisfy the
clock guard((2 < z < 3) A (0 < y < 3)) (i.e., the clock
guard ofty). Hence, the transitiort; is non-executable
and sincety is the unique transition betweely and I
then the locationl, is not reachable. Consequently, all
the transitions leavind, are non-executable, namely the
transitionts. Sincets is the unique transition betweépand

Indeed, the algorithm goes through all thels then the locatior; is not reachable and all the transitions

leavingls become non-executable, namely t1o andt;;.

291

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Loc. | Reach. | Corresponding Trace proposed method. On the one hand, we would like to
(Y/N) make it incremental to adjust to successive evolutions of
lo Y ¢ (the empty sequence) the specification either when designing the system the first
ly Y ?HangUp time or later when maintaining the system. On the other
lo Y ?HangUp.1.1Tone hand, we are investigating the possibility of adopting the
ls Y ?HangUp.1.!Tone.2.? Digit, incremental method to the area of testing real-time systems
N Y ?HangUp.l.!Tone.%.?Digitl.%.?Digitg modelled as TA.
ls Y ?HangUp.l.!Tone.%.?Digitl.%.?Digitg.l
1Connect
REFERENCES
_ [1] R. Alur and D. Dill. A Theory of Timed AutomataTheo-
Trans. | Exec. | Corresponding Trace retical Computer Sciencel26:183—235, 1994.
(Y/N)
t Y ?HangUp [2] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The
7 Y T HanaUn L1 Tone tool Kronos. In R. Alur, T.A. Henzinger, and E.D. Sontag,
2 - gup. - = — editors,Hybrid Systems IJlvolume 1066 ofecture Notes in
t3 Y ?HangUp.1.'Tone.3.7Digit, Computer Sciengepages —. Springer-Verlag, 1995.
tq Y ?HangUp.l.!Tone.%.?Digitl.%.?Digitg
ts Y ?HangUp.1.Tone.2.? Digit1. 1.7 Digits.1 [3] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pe_t@ers_sodn, an
IConmect W. Yi. UPPAAL - a tool suite for automatic verification of
. Y 7 ' ' real-time systems. ldth. DIMACS Workshop on Verification
6 ?HangUp.1.'Tone.3.\Error and Control of Hybrid Systemslew Brunswick, New Jersey,
tr Y ?HangUp.1.'Tone.5.! Error October 1995.
ts Y ?HangUp.l.!Tone.%.?Digitl.Z.!E'rror) . o)
1 Y 2 HanaUn 1\ Tone.2 .72 Didit1. L .72 Diaits. 1 [4] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.
? 'Cang I; 1 77?”;“ R R Symbolic model checking for real-time systenhsformation
onnect. gD At and Computation111:193-244, 1994.
tio Y ?HangUp.l.!Tone.i.?Digitl.%.?Digitg.l
AConnect.4.\Error [6] K.G. Larsen, P. Pettersson, and W. Yi. Model-checking
t11 Y ?HangUp.1.\Tone.2.? Digit1.%.? Digita.1 for real-time systems. IfProceedings of Fundamentals of
Ic ” Computation Theorypages —, Dresden, Germany, August
1Connect.? Drop 1995
Figure 2. The Reachability Results for the TA in Figure 1.

[6] Osmane Koné, Patrice Laurencot, and Richard Castanet.
On the Fly Test Generation for Real-Time Protocols. In
International Conference on Computer Communications and

IV. CONCLUSION Networks, Lafayette, Louisiana, USpages 378-387, 1998.

We presented in this paper a new verification method for 7
the reachability analysis of real-time systems modelled as
timed automata. Our method addresses the reachability of
the locations and transitions of the system by calculating a
trace that allows the system to go from its initial state to
the location or transition being investigated. To this end, 5] A, En-Nouaary, R. Dssouli, and F. Khendek. Timed Wp-
the method uses a metric that gives the minimum delay = Method: Testing Real-Time SystemEEE Transactions on
between any state and all the transitions leaving that.state Software Engineering28(11):1023-1038, November 2002.
Our method has at least two advantages. On the one handg]]
it automatica_\l_ly calculates on _the fly the paths that ensurel! gygg;r’:?uggf%, a'rAe S(ijlli?:/e J'\élsrt;'gﬁ ?{;r;zztgg(gzﬂ'zgme
the reachability of the transitions and locations. On the piarch 2008.
other hand, it avoids the costly operation of constructing
the region graph of the TA, which makes the method mord10]
scalable than the others. To help us quantify precisely the
gain of the method with respect to existing methods, we
implemented the method to conduct more experimentatiOﬁl]
on TA specifications with different sizes. The tool and the
analysis of the experimentation results will be discussed i
a future paper.

Brian Nielsen and Arne Skou. Automated Test Generation
from Timed Automata. Irbth International Symposium on
Formal Techniques in Real-Time and Fault Tolerant Systems
FTRTFT'98, Lyngby, Denmarkpages 59-77, September
1998.

R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and
H. Wong-Toi. Minimization of Timed Transition Systems.
pages 340-354, 1992.

J. Springintveld and F. Vaandrager. Minimizable Timed
Automata. In B. Jonsson and J. Parrow, editBreceedings

of the 4th International School and Symposium on Formal
Techniques in Real Time and Fault Tolerant Systésppsala,
Sweden, volume 1135 dfecture Notes in Computer Science

. . Springer-Verlag, 1996.
We are currently working on two extensions of the pring g

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 292

