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Abstract—Software system development uses specific de-
velopment techniques and processes to reach desired goals,
whereas different kinds of systems usually need to use different
approaches. Obviously, there are used different techniques,
tools, and formalisms in each development process and the
designed models should be automatically or manually trans-
formed to the next development step. The paper is aimed
at such development processes, which work with formalisms
allowing to design architecture and functionality, analysis
of design, testing and system run with no need to change
this formalism. Nevertheless, there can be useful to combine
more different formalisms and model languages because of
developers are used to use these formalisms or there are already
created models using these formalisms. The paper deals with
UML, Petri Nets, and DEVS application in the systems design
and sketches a method how to use the formalisms for mod-
eling a system architecture and its behavior. Its combination

decreases a number of transformations of models and makes
the architectural description well-arranged.

Keywords-Simulation-Based Design, Object-Oriented Petri
Nets, DEVS, UML.

I. INTRODUCTION

The key activities in the system development are specifi-

cation, testing, validation, and analysis (e.g., of performance,

throughput, etc.). Most of the methodologies use models

for system specification, i.e., for defining the structure and

behavior of developed system. There are different kinds

of models, from models of low-level formal basis to pure

formal models. Each kind has its advantages and disad-

vantages. The most popular modeling language in software

engineering is UML [1]. It serves as a standard for analytics,

designers and programmers. But, own phraseology of UML

does not have enough power allowing to realize some

fundamental relationships and, in particular, rules, that are

branch of every modeled system. For example, how can we

define a condition that at least one item has to be at a stack

when the operation pop is called? The pure UML language

does not offer suitable tools. Although the UML language

can be completed by OCL (Object Constraint Language),

stereotypes, etc., which makes the system description more

precise, it makes the checking of system correctness or valid-

ity by means of testing or formal methods very complicated.

Therefore, the new methodologies and approaches are

investigated and developed for many years. They are com-

monly known as Model-Driven Software Development or

Model-Based Design (MBD) [2], [3], [4]. An important

feature of these methods is the fact that they use exe-

cutable models, e.g., Model Driven Architecture (MDA)

and Executable UML [5], allowing to simulate models,

i.e., to provide simulation testing. The pure formal models

(e.g., Petri Nets, calculus, etc.) allow to use formal or

simulation approaches to complete the testing, verification,

and analysis activities. There is no need of model generation

or transformation due to simulation purposes. We only add

simulated inputs and expected results and can change any

model element for its simulated version [6].

The development methods such as MDA [7] allow for

semi-automatic translation of designed models to implemen-

tation language (i.e., the code generation). Nevertheless, the

result has to be finalized manually, so it entails a possibility

of semantic mistakes or imprecision between models and

transformed code. In comparison with semi-formal models,

formal models bring the clear and understandable modeling

and the possibility to check correctness with no need for

model transformation. The design technique, which is taken

into account in this paper [8] derives benefit from formalisms

of Object Oriented Petri Nets (OOPN) [9], [10] and DEVS

[11]. These formalisms can be directly interpreted and,

consequently, integrated into the target system [12].

The paper is organized as follows. First, we briefly intro-

duce used formalisms of OOPN, DEVS, and UML and the

design technique. The next chapter deals with architectural

description using different formalisms and the fourth section

deals with description of behavior.

II. MODELING FORMALISMS

A. UML

The UML modeling uses a notion view. A view of a

system is a projection of the system on one of its relevant

aspects. Such a projection focuses on certain aspects and

ignores others. Therefore it is useful to have different views

of a system. UML uses multiple notations (tools) for exhibit-

ing different views of the system. We can distinguish four

main views: The structural view describes layout between

objects and classes, their associations and their possible

communication channels. The behavioral view describes,
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how the system components interact, and characterizes the

response to external system operations. The data view

describes the state of the system units (objects) as well

as their relationships. The interface view focuses on the

encapsulation of system parts, and the possible usage from

outside.

UML currently has as many as eleven different notations,

which constitute different views of UML designs. In the

following, we briefly discuss several notations and their

usage to describe certain aspects. Use case diagrams display

the relationship among actors and use cases. A use case is a

set of scenarios describing an interaction between a user and

a system. The two main components of a use case diagram

are use cases and actors. Use case diagrams deal with an

interface and behavioral view at the border of the system. Se-

quence diagrams can be used to demonstrate the interaction

of objects in a use case. They generally show the sequence

of events that occur. Sequence diagrams therefore clearly

define behavioral aspects but are based on structural and

interface views. They do not describe an internal behavioral

of objects. Class diagrams are widely used to describe the

types of objects in a system and their relationships. Class

diagrams model class structure and contents using design

elements such as classes, packages and objects. They are

the central notion for structural aspects. State Diagrams are

used to describe the behavior of a system. State diagrams

describe all of the possible states of an object as events

occur. Each diagram usually represents objects of a single

class and tracks the different states of its objects through the

system. Activity Diagrams are defined as a special case of a

state diagrams. They could be useful for describing internal

processing of operations or use cases. Activity diagram

models a dynamic flow controlled by internal stimuli.

B. OOPN

An OOPN is a set of classes specified by high-level Petri

nets. An object-oriented Petri net is a triple (Σ, c0, oid0)
where Σ is a system of classes, c0 an initial class, and

oid0 the name of an initial object from c0. A class is

mainly specified by an object net and a set of method

nets. Object nets describe possible autonomous activities of

objects, while method nets describe reactions of objects to

messages sent to them from the outside.

Object nets consist of places and transitions. Every place

has its initial marking. Every transition has conditions (i.e.,

inscribed testing arcs), preconditions (i.e., inscribed input

arcs), a guard, an action, and postconditions (i.e., inscribed

output arcs). Method nets are similar to object nets but,

in addition, each of them has a set of parameter places

and a return place. Method nets can access places of the

appropriate object nets in order to allow running methods

to modify states of objects, which they are running in.

Synchronous ports are special (virtual) transitions, which

cannot fire alone but only dynamically fused to some other

transitions, which activate them from their guards via mes-

sage sending. Every synchronous port embodies a set of

conditions, preconditions, and postconditions over places of

the appropriate object net, and further a guard, and a set of

parameters. Parameters of an activated port s can be bound

to constants or unified with variables defined on the level

of the transition or port that activated the port s. Negative

predicates are special variants of synchronous ports. Its

semantics is inverted—the calling transition is fireable if the

negative predicate is not fireable.

The OOPN dynamics is based on high-level Petri net dy-

namics, but the semantics of a transition is little bit modified.

A transition is fireable for some binding of variables, which

are present in the arc expressions of its input arcs and in

its guard expression, if there are enough tokens in the input

places with respect to the values of input arc expressions

and if the guard expression for the given binding evaluates

to true. A state of the running OOPN model has the form of

a marking of a system of net instances. Each net marking

consists of places and transitions marking.

C. DEVS

DEVS is a formalism, which can represent any system

whose input/output behavior can be described as sequence

of events. DEVS is specified as a structure

M = (X,S, Y, δint, δext, λ, ta)

where X is the set of input event values, S is the set of

state values, Y is the set of output event values, δint is the

internal transition function, δext is the external transition

function, λ is the output function, and ta is the time advance

function. At any time, the system is in some state s ∈ S.

If no external event occurs, the system is staying in state

s for ta(s) time. If elapsed time e reaches ta(s), then the

value of λ(s) is propagated to the output and the system

state changes to δint(s). If an external event x ∈ X occurs

on the input in time e ≤ ta(s), then the system changes its

state to δext(s, e, x).

This way we can describe atomic models. Atomic models

can be coupled together to form a coupled model. The later

model can itself be employed as a component of larger

model. This way the DEVS formalism brings a hierarchical

component architecture.

D. DEVS and OOPN Wrapping

The DEVS formalism, especially its composite model

concept, is suitable as a component platform for multi-

paradigm modeling and simulation where atomic models are

specified by other formalisms. On the other hand, OOPN

is a powerful language allowing a high-level description of

model dynamics. The OOPN formalism can be wrapped in

the DEVS formalism. In such a case, the OOPN models are

atomic components of a hierarchical DEVS model.
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Let MPN = (M,Π) be a DEVS component M , which

wraps an OOPN model Π, c0 is an initial class of the model

Π, and oid0 is an initial object of the class c0. Then we

define a set of places of the object net oid0 as P (oid0),
a set of input places Pinp ⊆ P (oid0), and a set of output

places Pout ⊆ P (oid0), where Pinp ∩ Pout = ∅.

Sets X , Y from DEVS formalism are to be specified

as structured sets. It allows to use multiple variables for

specification of state and we can use input (VX ) and output

ports (VY ) for input and output events specification. Then we

can define a mapping of OOPN places into DEVS ports as

bijections mapinp : Pinp → VX and mapout : Pout → VY .

Informally, if an OOPN model is defined as a DEVS

component, then an object net of initial class defines input

and output places, this class is instantiated immediately the

component is created, and the defined places serve as input

or output ports of the component.

E. Design Techniques

As in every design techniques the most problem at its

usage is by estimation to abstraction level. Primarily there

have to be found essential objects of a modeled system

and their relationships. There we can successfully employ

resources of UML such us Use Case, Sequence, Class dia-

grams. As UML, the development processes based on OOPN

use the concept of view. The basic view is the data view,

the structure encapsulating data and basic behavior on them.

The data view can have different roles in the system, whereas

each role is described by another view, which encapsulates

the original view. Therefore, views create a hierarchical

structure where the higher view encapsulates the view on

the lower level. The communication and synchronization

between views are provided by means of synchronous ports

and negative predicates (more details will be demonstrated

in the chapter IV-B).

III. SPECIFICATION OF SYSTEM ARCHITECTURE

The system design should be structured into units,

whereas each unit is responsible to serve relatively inde-

pendent activities. The unit can be an object, a package,

a component, etc. These units communicate each other

by means of specified interfaces. The interface is usually

formed by the protocol offered by the object, by the class of

component, etc. The units communicate by message passing

whereas this communication is usually synchronous.

A. UML-based Specification

Let us have the units U1 and U2, the unit U1 has an

interface which is specified by the class CU1

1
. If the object

from unit U2 wants to use the unit U1, it sends a message

M1 to an object OC1

1
, which is derived from the class

CU1

1
. It means that there has to be instances of classes,

which constitute the unit interface. If there is a special

request to interface (just one class instance, asynchronous

communication, etc.), it should be handled in a special

way. The system architecture is obviously specified by class

diagrams and package diagrams in UML language. The

example of this situation is shown in the Figure 1.

Figure 1. The architectural design using UML.

B. OOPN and DEVS-based Specification

Now, let us have the similar situation, but we use the

formalisms DEVS and OOPN for specification of the system

architecture. This approach considers the unit as a com-

ponent based on the DEVS formalism. It means that the

interface is established by ports, components are connected

via their input and output ports. Let us have the unit U1

having one input port PU1

I1 and the unit U2 having one output

port PU2

O1
. If the component U2 wants to communicate with

the component U1, it puts the data into the port PU2

O1
. The

data are then transferred to the port PU1

I1 and the component

can react. This communication is asynchronous (the sender

does not wait for the answer). This situation is shown in the

Figure 2a), which depicts the connection between two units

U1 and U2 and the Figure 2b), which depicts implementation

in the initial object of the unit U2. There is the place PO1

representing the output port PU2

O1
. After the data is put in this

port, the next operation of the component U2 represented by

the transition t2 can execute.

U1U2

PO1 PI1

InitU2 is_a PN

x y

PO1datat1

t2

InitU2 is_a PN

PO1

x

(o, d)

(o, d)

t1

t2

o

o

sync

a)

b) c)

data

data

Figure 2. The architectural design using DEVS and OOPN.

Of course, the different requests to interface (e.g., syn-

chronous communication) should be handled, but it can be

modeled by a simple way as it is shown in the Figure 2c).

The specific identification (object, symbol, etc.) is joined
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to transferred data and the next operation represented by

the transition t2 will be executable after the respond is

accepted, i.e., the data joined with the identification is put

in the input port x (place x).

Test PNAgent

sonars

bumpers

position

rotateTo

move

sonars

bumpers

position

rotateTo

move

reqreq

Figure 3. The architectural design using DEVS and OOPN: real example.

The Figure 3 shows a real example of using DEVS

and OOPN. There are two units (components) representing

one agent (the component PNAgent) and its simulated

environment (the component Test). PNAgent receives

input from the environment (actual data from sensors) and

react by putting commands into its output ports.

IV. SPECIFICATION OF SYSTEM BEHAVIOR

There are a number of techniques in UML to model

dynamic aspects of a system. If these techniques are used,

the designer statically describes a behavior of a system in a

design phase and he cannot make certain of his partial ideas

about the system behavior. Next, there can be a problem

with understanding to models (diagrams), which arise from

graphical whatness of these notions. We could describe this

situation by following words: The nice thing about graphical

description techniques is that everyone understands them,

the bad thing is that everyone understands them in a different

way. Therefore, the given notions lack a formal foundation,

which would make possible understand the model in a only

way and also make possible analysis and verifications of the

system.

For demonstration purposes, we have chosen a part of

the PNtalk system. PNtalk is the tool intended to model

a simulate systems using OOPN. We will model a PNtalk

processor, which is a central part of the PNtalk system and

execute an OOPN model. We will keep an experimental

implementation from 2008 [13] in view. First, we use UML

to model a chosen part. Second, we adapt these models into

OOPN-based models to show how they can be used together.

A. UML-based Modeling

The PNtalk model specifies an OOPN. The OOPN is a

set of classes of objects; objects are instances of classes.

These classes are translated into an internal representation

of the PNtalk processor. An internal representation consists

of objects corresponding to classes defined by a model.

These objects are derived from special classes PNClass

and PNSuperClass, as we can see in the Figure 4.

There we can see that both classes and objects of OOPN

are represented by instances of PNtalk classes PNClass

Figure 4. Class diagram of the PNtalk core.

Figure 5. Sequence diagram of the method invocation.

(or PNSuperClass) and PNObject. Objects whose name

starts with Class represent classes of an OOPN model. An

object named object O represents an instance of OOPN

class C2 during a simulation of OOPN model. An OOPN

class Class PN, derived from class PNSuperClass, is

a special object, which always stays at the top of an

inheritance hierarchy of OOPN classes. The inheritance

of OOPN classes are represented as an association be-

tween appropriate objects, instances of the class PNClass

(respectively PNSuperClass). The object of the OOPN

super class plays the role of superClass. The relationship

between OOPN object and its OOPN class is represented

by an association between appropriate object. The object

of OOPN class plays the role of myClass. Summary, the

Figure 4 shows one object (it is derived from a class

PNObject), two OOPN classes (they are derived from a

class PNClass) and one OOPN class, which is derived from

class PNSuperClass.

We depict functionality by a part of the PNtalk

processor—calling methods of OOPN objects. Because

classes of the OOPN model are translated into internal-

representation objects in implementation environment, there

cannot be applied natural inheritance of given environment

there. On that account there must be implemented own

inheritance hierarchy direction. Let us specify a letter O

as an OOPN object, which is derived from a OOPN class

C. Remember these two elements are objects in the PNtalk

processor internal-representation. Now, if we attempt to call
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an OOPN method M of an object O, the object O devolve

this requirement upon a class C. The class C looks for an

object, which represents a called method M. If this object has

been found, the class C gives it back; if does not, the class C

generates a fault. This have been a simple variant without an

inheritance. As soon as we add an inheritance, the scenario

of an unsuccessful search is changed. The class attempt

devolve a requirement upon a superior class (if exists), which

process this requirement in the same way like there have

been already said. Only if a top class in inheritance hierarchy

does not find a called method, there is generated a fault.

If we take a look at the Figure 5, we can see a sequence

diagram of an object behavior based on external events. A

filled arrow-head stands for an invocated event, the dashed

one stand for a returned result of event processing.

find a method
object (MO)

put on a 
superior class

[no MO]

return MO

a fault

[found MO]

[found MO]

[no MO]

[there is not SC]

[there is SC]

Figure 6. Activity diagram of the method invocation.

Now we focus on an internal behavior of an object rep-

resenting a PNtalk class close to a method invocation. This

is depicted at the Figure 6 subscribing with a description,

which has been already depicted there. The letters SC at the

picture means a shortcut of a super class.

B. OOPN-based Modeling

We have dealt with UML modeling of our chosen part

of a system so far. Now we pay attention to OOPN-based

modeling. We create the OOPN model according to previous

diagrams and designed methodology [8].

Figure 7. Class diagram of the PNtalk core in the SBD methodology.

The model consists of three classes (see the Figure 7)—

PNBasicClass representing a data view, PNClass rep-

resenting a view of the OOPN class, and PNSuperClass

representing the first class in the OOPN inheritance hierar-

chy. The first class has a bit different behavior, hence it is

modeled as a special case. The views modeled by classes

PNClass and PNSuperClass represent roles what the

basic subject can play in the system. We can see, that the

inheritance in design is replaced by object composition, each

new view creates a new composition of objects.

superClass

supClass: cc cnoSupClass

c = nil
nil

c ~= nil

methods

findMethod: m named: n

(n, m)

(n, m)

noMethodNamed: n

Figure 8. OOPN model representing the class PNBasicClass.

The Figure 8 shows an object net of the class

PNBasicClass representing a view of data. There are

modeled two places, which store information about the super

class (the place superClass) and defined methods (the

place methods). The super class is always represented

by some of defined view—in this examples it can be

view derived from the class PNClass or PNSuperClass.

There are defined a pair of synchronous port and negative

predicate for each place. Synchronous ports (supClass:

and findMethod:named:) allows for finding and getting

appropriate data, i.e., the super class or method with given

name. If such a method exists (is stored in the place

methods), the object representing such a method is bound

to the variable m and the calling transition is able to work

with it (see the Figure 9). Similarly, if the super class is not

equal to nil and the synchronous port is called, the super

class is bound to the variable c. The negative predicates

(noSupClass and noMethodNamed:) are true if there

is no super class or no method with given name. Of course,

there should be methods for setting the super class and for

adding methods, but they are not shown due to simplicity.

class

n

n

return

m

evokeMethod: n

t1

t2

cls findMethod: m named: n

cls noMethodNamed: n.

cls supClass: supCls

cls

n

m := supCls evokeMethod: n

m

Figure 9. Method evokeMethod: of the view (class) PNClass.

The Figure 9 shows the method evokeMethod:

of the view PNClass, which encapsulates the class

PNBasicClass (the encapsulated object is stored in the

place class). The method has one parameter (a name of

the method, which is to evoked). This method process a
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requirement to a method invocation of OOPN object (and

its relevant OOPN class).

If any OOPN method is invocated, the method

evokeMethod: of the relevant view PNClass is called.

The method is processed as follows. The transitions t1

and t2 are tested. The system of pairs of synchronous

port and negative predicate ensures that just one of these

transition can be fired. If the encapsulated object of the class

PNBasicClass contains a method matching given name

n, the synchronous port findMethod:named:, together

with the transition t1, is fired and the found method (the

object representing the method, respectively) is bound to the

variable m and returned as a result of the method.

If there is no such a method, the negative predi-

cate noMethodNamed: called from the transition t2

is true. After firing this transition, the synchronous port

supClass:, placed as a second condition in the guard,

binds the super class to the variable cls. Then the method

evokeMethod: is called on the super class and its result

is returned.

class

n

n

return

nil

evokeMethod: n

t1 cls

Figure 10. Method evokeMethod: of the view (class) PNSuperClass.

If the view on the super class is derived from the class

PNSuperClass, the search of a method object is unsuccessful

and its method evokeMethod: give back an object nil (see

the Figure 10). There should be only one view derived

from this class representing the first class PN in the OOPN

inheritance hierarchy.

V. CONCLUSION

The paper dealt with formalisms of OOPN, DEVS, and

UML used in the system design. In comparison with UML,

using formalisms of DEVS and OOPN for the architectural

specification decreases a number of communication points

and makes the architectural specification well-arranged.

Moreover, selected models in UML can be transformed

to DEVS component described by OOPN formalisms in a

simple way. The presented approach is a part of the devel-

opment methodology, which allows to use formal models in

all phases of system development including as basic design,

analysis and also programming means with a vision to allow

to combine simulated and real components and to deploy

models as the target system with no code generation. In the

future, we plan to formalize outlined approach and to present

complex case study.
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