
Soft Constraints in Feature Models

Jorge Barreiros

Instituto Superior de Engenharia de Coimbra, Coimbra

Universidade Nova de Lisboa, Lisboa,Portugal

jmsousa@isec.pt

Ana Moreira

CITI/Departamento de Informática

Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, Lisboa, Portugal

amm@di.fct.unl.pt

Abstract—Feature Models represent admissible configura-

tions of products in Software Product Lines. Constraints are

used to represent domain specific knowledge, such as

requiring or excluding a feature in the presence of another.

Configurations failing to conform to these constraints are

deemed invalid. However, in many cases useful domain

information cannot be expressed comfortably with such

forceful, hard constraints. Therefore, we propose the use of

softer constraints of less forcing nature. We categorize

possible semantics for such constraints, analyze their impact

on the feature expression and describe some specific analysis

procedures that are unique to the use of soft constraints.

Keywords-Feature Models; Software Product Lines; Soft

Constraints; Feature Consistency; Feature Interaction,

Semantic Validation

I. INTRODUCTION

In opposition to traditional single system development,
Software Product Line (SPL) development is concerned
with the creation of families of software products. In SPLs,
product variants belonging to the same family are created
by specifying a feature configuration, which is then
realized by the composition of corresponding artifacts
from a common pool of assets (such as requirements
documents, design models, code, etc.) [1].

Feature models are frequently used in SPL
development for identifying valid product configurations,
that is, configurations corresponding to a variant that can
be created by an application engineer using the SPL [2].
Feature models identify valid configurations by using a
feature tree annotated with additional domain constraints.
These can be represented graphically (e.g., linking
dependent features with a dependency arrow) or textually,
by means of arbitrary cross-tree expressions (Boolean
expressions depending on the configuration variables).
Feature models can be represented using logic expressions
according to well known transformations described in [3,
4]. A feature model expression is obtained by conjoining
the feature tree expression with the domain constraints.

An example of a feature model can be found in Fig. 1,
where Sound, Keyboard and Screen are mandatory
subfeatures of the root feature node Phone, while
MP3Player and Camera are optional subfeatures.
Polyphonic and Monophonic are mandatory and
alternative subfeatures of the Sound feature, and
Monochromatic and Polychromatic are alternative

subfeatures of the Screen feature. One domain constraint is
represented: the requires arrow describes that selection of
the Camera feature implies the selection of the Color
feature.

Links such as the one connecting Camera and Color in
Fig. 1 describe hard constraints. Any configuration that
does not respect this constraint is invalid. It can be the
case, however, that domain information is not comfortably
representable using such strict constructs. For example, a
situation can be considered where the overwhelming
majority of configurations do indeed respect a certain
restriction, but a few exceptions may exist. In this case,
restrictions on admissible configurations cannot be as
strict. A simple example will be the case of a default
selection for a group of alternative selections: if the parent
feature of such group is selected, then the preferred
alternative configurations may be suggested.

 We propose the use of soft constraints, of less forcing
nature, in these situations. The concept of soft constraint
has been described earlier in the context of probabilistic
feature models

[5]. Probabilistic feature models extend

standard feature models by the addition of “soft”
constraints that are associated with a degree of probability.
These are often obtained as the result of a feature mining
processes. We consider the use of a similar concept in in
standard, deterministic feature models. This allows richer
semantics to be represented in feature models, with
advantages such as enhanced analysis and improved
configuration support. An example of such a constraint in
Fig. 1 would be “Sound suggests Polyphonic”, expressing
domain knowledge that indicates the more common sound
configuration option. Naturally, soft constraints do not
need to be restricted to parent-child features as described:
other relations such as “Monophonic suggests
Monochromatic” can be represented. This type of
constraints can be useful for efficiently capturing useful
domain information that might be lost otherwise, as it is
usually absent in standard feature models. It can be used to
good effect for multiple purposes, depending on the
specific semantics that are adopted as described later, such
as allowing interactive configuration tools to suggest
configuration choices to the user.

136

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Keyboard Screen

Phone

Camera

Monochromatic Color

Sound

Polyphonic Monophonic

MP3 Player

requires
Figure 1. Mobile phone feature model.

Using soft constraints also allows some semantic

consistency analysis that would otherwise be impossible,
e.g., if a suggested dependency can never be realized in a
feature model, then probably something is not right.
Conflicting suggestions can also be found (e.g., multiple
suggestions that cannot be satisfied simultaneously),
highlighting that a trade-off analysis may be in order to
compatibilize the inconsistent soft constraints.

The contributions of this work are the categorization of
soft constraint semantics, the formalization of the impact
(if any) of these constraints on the logic representation of
the feature model and the description of automated
analysis procedures made possible by the use of soft
constraints.

In Section II, we present motivating examples for our
work. In Section III, we discuss benefits of the use of soft
constraints and propose a categorization of the different
types of soft constraints. In Section I, we suggest a
formalization and analysis techniques for detecting
unsatisfiable and conflicting soft constraints. In Section V
we present related work and we conclude in Section VI.

II. MOTIVATION

Consider the example in Fig. 2, adapted from [5],
where a feature model is used to describe configuration
variability for an automobile vehicle. In this case, hard
domain restrictions are used to enforce the selection of
manual transmission in sports vehicles and to make sure

that emission control techniques are always used in
products destined for markets with stricter environmental
legislations. While observance of such constraints is
always found in valid products, soft constraints are used to
represent relevant relations between features that, while
not as critical or universally applicable as the hard
constraints, are also important. In this case, it is well
known that the USA market tends to favor vehicles with
automatic transmission over those with manual
transmission, while the converse is true for the European
market. Using soft constraints, such information can be
readily represented in the feature diagram, bringing in
additional semantics that can be used to good effect.

Another example of the use of soft constraints can be
found in Fig. 3. In this case, the feature model is used to
represent dynamic variability of the runtime behavior of a
real-time system. The system should adapt its behavior to
conform to variations in its environment. The state of the
operation environment is assessed by appropriate sensors
and the corresponding features are (de)selected
accordingly, with corresponding impact on the runtime
behavior as dictated by the constraints. A base control task
is to be active at all times, while fan control is only
suggested if the temperature is medium, but mandatory if it
reaches a high level. A filtering task is suggested if electric
noise is detected.

The need to use soft constraints to describe the
variability in this scenario is supported by the fact that the
suggested (non mandatory) features may not always be
selected because of limited resources (e.g., available CPU
load). This means that a feature such as Fan Control may
in fact remain unselected in the presence of its suggestor
(i.e., the Noisy feature), which cannot be comfortably
expressed using only hard constraints.

These examples suggest that soft constraints can be
used to good effect in feature models, by allowing the
inclusion of important domain information of non-forcing
nature.

Car

Transmission

Manual

Automatic

USA Europe

MarketEmission Control

Africa

requiresrequires

suggests

suggests

Profile

Utility

Sport

requires

Figure 2. Feature model for car configuration

137

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Engine Control

Moderate

Environment

Noisy

suggests

High

Temperature

Runtime

Base Control

Fan Control Filtering

requires

suggests

Figure 3. Engine control system

III. SOFT CONSTRAINTS

In this section, we discuss the benefits gained by using soft

constraints in feature models and present a categorization of

alternative semantics.

A. Benefits

Benefits of soft constraints in feature models include:

• Improved configuration support: Interactive
configuration and completion techniques can assist
the configuration of feature models by assessing the
liveliness of features after each configuration step.
Starting from an empty configuration where all
features are considered to be unspecified (neither
selected or deselected), after a feature is selected or
deselected by the user, the liveliness of all features is
re-evaluated with respect to the partial configuration
already defined. Features that are found to be dead
(always unselected) in that partial configuration can
be safely deselected automatically. Conversely,
features that are common to all configurations that
include the partial configuration so far specified can
be automatically selected. For example, if the
developer specifies feature C in Fig.4 to be selected,
then features D and E can be automatically
deselected by the configuration tool, as no valid
configuration including feature C will contain either
(i.e., both are dead in all configurations where C is
selected). Similarly, A and root are common to all
such configurations, so they can be selected
automatically, leaving only feature B unspecified.
Interactive configuration and completion tools can
use soft constraint information to make
configuration suggestions to the user. For example,
if “A suggests B”, the configuration tool can propose
the selection of B by default whenever A is selected
and B is unspecified. In the case of normative soft
constraints, increased restrictions on admissible
configurations also help to narrow down the correct
configurations. Also, if a valid configuration fails to
conform to a large percentage of soft constraints, it
can be flagged to the developer as suspicious.

root

A
B

C D

excludes

E

requires

Figure 4. Iterative configuration example

• Improved semantic-oriented consistency checks:
Standard consistency analysis of feature models is
concerned with ensuring that valid configurations do
exist. If soft constraints are present, it is possible to
make sure that configurations are available that
verify the suggested dependencies. If that is not the
case, this may be a sign that an analysis or modeling
error has occurred. For example, if it was actually
impossible to configure a car for the European
market with manual transmission despite such
association being suggested (e.g., because of the
unintended side effect of some hard constraints), this
would be highly suspicious and should be reported
to the developer for additional consideration. This
could be the case if hard domain restrictions would
make it impossible to select a configuration where
both such features are selected.

• Controlled generalization of feature models: A
generalization of a feature model is a transformation
that increases the number of admissible
configurations, making sure that previously valid
configurations remain valid. In some cases, soft
constraints can be used as a mechanism for
controlled generalization of feature models. For
example, if it was found, after creating the feature
model in Fig. 2, that it should actually be possible,
under certain circumstances, to produce vehicles
without emission control for the USA market, the
hard restriction that forbids such products from
being created could be transformed into an
equivalent soft constraint. This would have the
benefit of preserving important domain information
while accommodating the need to allow for spurious
“rogue” configurations.

B. Semantics and Categorization

Soft constraints can be interpreted according to different
semantics, from unassuming configuration suggestions (e.g.,
describing a predominant configuration as in [5]) to stricter
impositions that must be enforced if possible (i.e., a feature
must be selected if possible). According to the adopted
interpretation, different types of analysis and interpretations
may be possible. Therefore, we must consider the possible
semantics. These can be broadly categorized in two different
categories:

138

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

• Annotational: A soft constraint with an annotational
semantics does not impose any additional restriction
when added to a feature model. Its main purpose is
to embed domain information in the feature model to
assist the configuration automation and semantic
consistency checking. The validity of any specific
product configuration is never influenced by the
presence of an annotational soft constraint.

• Normative: A normative soft constraint must be
considered when assessing the validity of a product
configuration. These constraints represent
configuration information that may potentially
condition the validity of some configurations. A
normative soft constraint must be satisfied if
possible, but can be ignored otherwise. The concept
of “possible satisfaction” is, generally, always
dependent on the characteristics of the feature model
and is also potentially dependent on domain-specific
information (external to what is represented on the
feature model: see below). A normative soft
constraint may change the validity of a configuration
(with respect to the unconstrained feature model),
but it may never cause a feature model to become
inconsistent. Normative constraints can be
interpreted informally as meaning “requires-if-
possible”, “may-require”, “require-if-does-not-
make-configuration-invalid” or some other similar
formulation.

Applying normative constraints entails the need to assess
the “possibility” of selecting a specific feature. The
topology of the feature model and cross-tree-constraints
is always a decisive factor in making that assessment
(i.e., it cannot be reasonably considered “possible” to
select a feature when doing so would generate an invalid
configuration). However, it may be the case that the
feature model information is not sufficient to assess the
possibility of selecting a feature: in this case, external
factors, not represented in the feature model would come

into play. This suggests the following characterization of
normative constraints:

• Internal: The feature model holds all the
information required to assess selection possibility.

• External: The information in the feature model
alone is not sufficient for assessing possibility of
selection. External factors come into play.

In the example of Fig. 2, if the soft constraints are

interpreted under annotational semantics, then any
configuration that upholds the hard constraints is considered
valid, regardless of complying or not with the soft
constraints. On the other hand, if an (internal) normative
semantic is considered, the following interpretation holds: “If
the USA feature is selected, then the Automatic feature must
be selected, unless doing so would generate an invalid
configuration”. That is, a normative soft constraint should be
interpreted as a hard constraint, unless doing so would turn
an otherwise valid configuration into invalid. In Fig. 3, a
potential example of external normative soft constraints is
represented: in this case, the Fan Control feature should
always be selected if the Moderate heat feature is selected,
unless that is not possible, according to domain information
that is not necessarily integrated in the feature model. For
example, knowing that the implementations of the Base
Control, Fan Control and Filtering features compete for a
limited resource (CPU load), assessing of the possibility of
including the Fan Control feature must be conducted with
respect to external information. It is out of the scope of this
work to discuss how such external information would be
obtained or retrieved – as examples, an oracle could be used
to provide the required information or a domain specific
ontology could be queried.

 Table I presents a summary of the characterization of
hard and soft constraints.

TABLE I. SOFT AND HARD CONSTRAINTS CHARACTERIZATION

Nature Subtype Description
Affects FM

consistency?

Affects config

validity?
Semantics

A requires B Yes Yes A =>B

A excludes B Yes Yes A => ¬B

A may-require B No Yes

A may-exclude B No Yes

A encourages B No No

A discourages B No No

Hard

Equivalent hard restriction should

be upheld unless doing so would

make the configuration invalid.

May be further catgorized as

"external" or "internal"

Measure of belief concerning the

correlation between the

configuration of both features.

Soft

Normative

Annotational

139

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

IV. SOFT CONSTRAINT ANALYSIS

In this section, we present some formalization and
analysis techniques specific for feature models with soft
constraints. Although we propose a specific terminology for
each different type of soft constraints in Table I, in the
remaining text we use a link labeled “suggests” to indicate
either “mayRequire” or “encourages” when the distinction is
not important. For economy of space, exclusion-oriented
constraints are not specifically discussed, but most results
apply with minimal, usually obvious, adaptations.

A. Feature Expression for Normative Soft Constraints

Internal normative soft constraints may change the
assessment of the validity of configurations with respect to
the unconstrained feature model. This results in a change of
the model expression when a new soft constraint is
introduced in an existing feature model. The effect of
inserting an internal normative soft constraint (A suggests B)
results in a new feature model expression defined by:

,...)),()((,...),(,...),(BAFBABAFBAFS ¬¬∨⇒∧= (1)

where F is the feature model expression without the soft
constraint and FS is the resulting feature model expression.

An advantage of using internal normative soft constraints
is that standard feature model techniques apply normally,
e.g., satisfiability-based techniques are commonly applied to
the analysis of feature model expressions [6], for tasks such
as finding dead features This can be also done in a feature
model annotated with soft constraints by considering the
relevant FS.

Equation (1) can be applied iteratively with respect to all
soft constraints to obtain the feature expression
corresponding to a feature model with multiple soft
constraints. However, as described in Section IV.C,
conflicting constraints may warrant additional care.

B. Unsatisfiable Constraints

Soft constraints can be used to include meaningful
domain information in the feature model. One of the benefits
this provides is the possibility of verifying if the feature
model admits the existence of solutions that satisfy these soft
constraints. That is, verifying if the feature model is
semantically consistent with well known domain properties
represented by soft constraints. If that is not the case, it is
almost certainly an indication that an analysis error has been
made and the feature diagram should be evaluated. This is
not the same problem as the standard consistency assessment
of a feature model as in that case we are only concerned with
ensuring that at least one valid configuration exists. Consider
the example in Fig. 5; in this case, because B and C are
alternative features, it is not possible to find any
configuration that conforms to the soft constraint suggestion.
If the soft constraint represents a well known domain
property, then it can be reasonably assumed that an analysis
error has been made and that a re-evaluation of the feature
model or the soft constraint might be advisable.

A

B C

D
suggests

Figure 5. Unsatisfiable soft constraint

Car

Transmission

Manual

Automatic USA Europe

Market

suggests

suggests

Profile

Utility

Sport

sugge
sts

Figure 6. Conflicting soft constraints example

Unsatisfiable soft constraints can be identified by

assessing the unsatisfiability of:

,...)),(,..),((BAFBAFS ⇔¬ (2)

Where F and FS are defined as in (1). Unsatisfiability of

(2) is indicative of an unsatisfiable soft constraint.
Unsatisfiable constraint analysis can be performed not only
with respect to normative constraints but also annotational
ones. This is one of the advantages of including annotational
soft constraints in feature models. Although these do not
actually change the feature expression in any way, the same
equations can be used for the purpose of constraint
satisfiability analysis.

C. Conflicting Soft Constraints

Consider that, in the example of Fig. 2, after constructing
the feature model, the developer finds that, although unusual,
in some cases it may be necessary to allow configurations
with the Sport profile and Automatic transmission. One way
to handle this situation is to reduce the strength of the hard
domain constraint that imposes Manual transmission for
Sport vehicles by transforming it into a corresponding soft
constraint. A partial representation of the resulting feature
model is found in Fig.6.

It can be observed that simultaneous selection of the USA
and Sport features will entail conflicting suggestions of
transmission configuration. In such a situation, we describe
the corresponding constraints to be conflicting. It is worth
noting that this model is not inherently wrong as would be
the case if hard constraints were involved.

The following procedure can be used to determine if soft
constraints (A→B) and (C→D) will conflict when added to
in a consistent feature model with expression F(A,B,…):

140

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

1. Verify the satisfiability of CABAF ∧∧,...),(. If

it is not satisfiable, then no conflict exists.
2. If that is not the case, verify the satisfiability of

)()(,...),(DCBABAF ⇒∧⇒∧ . If it is not

satisfiable, then a conflict exists.

When conflicting soft constraints are to be applied to a
feature model, the order by which (1) is iterated to obtain the
feature expression, as described in Section IV.A, is relevant
to the outcome. Assuming all conflicting suggestions are of
equal force, this is not desired and the following process
should be used instead:

1. Identify all groups of conflicting soft constraints.
2. Iterate over all groups of conflicting soft constraints

and compute:

,...)),()((,...),(,...),(1,, iiiiinnS BAFBABAFBAF ¬¬∨⇒∧= ∨
−

 with ,...),(,..),(0, BAFBAFs =

This will create a feature expression where all conflicting

suggestions are integrated. No preference is given to any
suggestion over other, that is, in the example of Fig. 6,
configurations with {Sport, Manual, USA} are just as
admissible as {Sport, Automatic, USA}, If an interactive
configuration tool was being used, {USA, Sport} were
selected and both Automatic and Manual were unspecified,
both of these features could be presented as configuration
suggestions. Nevertheless, in some situations it may be
desirable to perform a trade-off analysis and prioritize the
relative importance of soft constraints. This would be the
case if, for example, the Sport feature was a dominating
factor on the choice of transmission. In this case, rather than
following the process outlined above, (1) should be used
instead, in order of the desired priority. That is, first consider
the effect of the Sport feature on the feature model and only
then compute the effect of the USA feature (on the previously
computed feature model). This would allow for
disambiguation of the suggestions represented by the soft
constraints.

V. RELATED WORK

In [5], probabilistic feature models are described that use

soft constraints as descriptions of features that have high

probabilities of being concurrently selected in the same

configuration. Probabilistic feature models and

corresponding samples spaces are suited to represent feature

models obtained through feature mining processes. The

fundamental purpose of probabilistic soft constraints in that

context is to represent the results of the mining process.

According to the classification in Section III.B, probabilistic

soft constraints are inherently annotational, and as such do

not affect the validity of any specific configuration, as is the

case of the normalizing soft constraints we describe and

analyze. We envision the use of soft constraints more as a

fundamental construct of feature models, rather than being

an auxiliary artifact.

“Encourages” and “discourages” constraints have been

proposed for feature models in [7]. However, no precise

semantics have been provided, precluding automated

analysis and reasoning as described in our work.

In [8], fuzzy logic is applied to related feature

configurations to costumer profiles. Fuzzy logic is a

powerful tool for handling uncertainty. Nevertheless,

normative semantics may be difficult to include in such an

approach.

VI. CONCLUSIONS

We presented an exploratory analysis of the use of soft

constraints in feature models. Possible semantics were

specified and specific analysis techniques described. We

found that soft constraints are useful in a diversity of

contexts and offer the possibility of bringing additional

important domain information to the feature model.

Future work includes application of soft constraints to

well known industrial and academic case studies. Our

prototype tool will be integrated with configuration tools

providing enhanced configuration support.

VII. ACKNOWLEDGMENTS

This work has been partially supported by the

Portuguese Government through the PROTEC program

grant SFRH/PROTEC/49834/2009 and by the Portuguese

research centre CITI through the grant PEst-

OE/EEI/UI0527/2011.

REFERENCES

[1] P. Clements and L. Northorp, Software Product
Lines:Practices and Patterns: Addison-Wesley, 2001.

[2] K. Czarnecki and U. Eisenecker, Generative Programming:
Methods, Tools, and Applications: Addison-Wesley
Professional, 2000.

[3] D. S. Batory, "Feature Models, Grammars, and Propositional
Formulas," in Software Product Lines, 9th International
Conference, SPLC 2005 Rennes, France, 2005, pp. 7-20.

[4] K. Czarnecki and A. Wasowski, "Feature Diagrams and
Logics: There and Back Again," in 11th International
Software Product Line Conference (SPLC) Kyoto, 2007, pp.
23-34.

[5] K. Czarnecki, S. She, and A. Wasowski, "Sample Spaces and
Feature Models: There and Back Again," in Software Product
Lines, 12th International Conference, SPLC Limerick,
Ireland, 2008, pp. 22-31.

[6] M. Mendonça, A. Wasowski, and K. Czarnecki, "SAT-based
analysis of feature models is easy," in Software Product
Lines, 13th International Conference, SPLC 2009, San
Francisco, California, USA, 2009, pp. 231-240.

[7] H. Wada, J. Suzuki, and K. Oba, "A feature modeling support
for non-functional constraints in service oriented
architecture.," IEEE Computer Society, pp. 187-195, 2007.

[8] S. Robak and A. Pieczynski, "Employment of fuzzy logic in
feature diagrams to model variability in software families.," in
10th IEEE International Conference on Engineering of
Computer-Based Systems (ECBS 2003) Huntsville, AL, USA,
2003, pp. 305-311.

141

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

