
1

Feature Modeling of Software as a Service Domain

to Support Application Architecture Design

Karahan Öztürk

Department of Computer Engineering,

Middle East Technical University

Ankara, Turkey

e-mail: karahanozturk@gmail.com

Bedir Tekinerdogan

Department of Computer Engineering

Bilkent University

Ankara, Turkey

e-mail: bedir@cs.bilkent.edu.tr

Abstract—Cloud computing is an emerging computing paradigm

that has gained broad interest in the industry. SaaS architectures

vary widely according to the application category and number of

tenants. To define a proper SaaS architecture it is important to

have a proper understanding of the domain. Based on our

extensive domain analysis approaches, we provide a feature model

for SaaS that depicts the design space and represents the common

and variant parts of SaaS architectures. The feature model

enhances the understanding of SaaS systems, and supports the

architect in designing the SaaS application architectures.

Keywords- modeling, service, architecture, design, SaaS

I. INTRODUCTION

Cloud computing is an emerging computing paradigm that

has gained broad interest [6][19]. Unlike traditional enterprise

applications that rely on the infrastructure and services

provided and controlled within an enterprise, cloud computing

is based on services that are hosted on providers over the

Internet. The services that are hosted by cloud computing

approach can be broadly divided into three categories:

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service

(PaaS) and Software-as-a-Service and Software-as-a-Service

(SaaS). In this paper we will focus on the Software as a Service

context [18]. SaaS is a web-based, on-demand distribution

model where the software is hosted and updated on a central

site and does not reside on client computers [1][3]. With SaaS,

software applications are rented from a provider as opposed to

purchased for enterprise installation and deployment. Similar

to the general benefits of cloud computing the SaaS approach

yields benefits such as reduced cost, faster-time-to-market and

enhanced scalability.

An appropriate SaaS architecture design will play a

fundamental role in supporting the cloud computing goals

[13][4]. Based on the literature we can derive the basic

components required for SaaS. However, while designing

particular applications one may derive various different

application design alternatives [1] for the same SaaS

architecture specification. Each design alternative may meet

different functional and nonfunctional requirements. It is

important to know the possible design so that a viable

realization can be selected.

To enhance the understanding of SaaS systems and support

the architect in designing SaaS architectures we propose

defining a feature model for SaaS architectures. A feature

model is the result of a domain analysis process whereby the

common and variant properties of a domain or product are

elicited and modeled [15]. In addition, the feature model

identifies the constraints on the legal combinations of features

and as such, a feature model defines the feasible models in the

domain. The feature model has been derived after an extensive

literature study to SaaS architectures. This included basically a

systematic literature study on cloud computing in general and

software as a service architectures in particular. It should be

noted that we could not put all the references in this paper due

to space limitations. Based on a commonality and variability

analysis of the selected papers the common and variant

features of SaaS were derived.

The remainder of the paper is organized as follows. Section

II presents SaaS architecture for which a feature model will be

defined. Section III presents the family feature model for SaaS.

Section IV presents an example illustrating the derivation of

application architecture based on application feature model.

Finally section V concludes the paper.

II. SOFTWARE AS A SERVICE ARCHITECTURE

SaaS has been widely discussed in the literature and various

definitions have been provided. In general when describing

SaaS, no specific application architecture is prescribed but

rather the general components and structure is defined. Based

on the literature we have defined the reference architecture for

SaaS as given in Figure 1 [3][13][18][6]. Besides of the

theoretical papers we have also looked at documentation of

reference architectures as defined by SaaS vendors such as

Intel [18], Sun [19] and Oracle [10].

internet

 KEY
Node Internet

Connection
Layer

SaaS Provider

Data Access Layer

Application and Business

Service Layer

Distribution Layer

Data Storage Layer S
u

p
p

o
rt

in
g

 S
e

rv
ic

e
 L

a
y
e

r

Presentation Layer

SaaS Client

User Layer

*

Figure 1. SaaS Reference Architecture

142

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

2

In principle, SaaS has a multi-tier architecture with multiple

thin clients. In Figure 1 the multiplicity of the client nodes is

shown through the asterisk symbol (*). In SaaS systems the

thin clients rent and access the software functionality from

providers on the internet. As such the cloud client includes

only one layer User Layer which usually includes a web

browser and/or the functionality to access the web services of

the providers. This includes, for example, data integration and

presentation. The SaaS providers usually include the layers of

Distribution Layer, Presentation Layer, Business Service

Layer, Application Service Layer, Data Access Layer, Data

Storage Layer and Supporting Service Layer.

Distribution Layer defines the functionality for load

balancing and routing. Presentation Layer represents the

formatted data to the users and adapts the user interactions.

The Application and Business Service Layer represents

services such as identity management, application integration

services, and communication services. Data Access Layer

represents the functionality for accessing the database through

a database management system. Data Storage Layer includes

the databases. Finally, the Supporting Service Layer includes

functionality that supports the horizontal layers and may

include functionality such as monitoring, billing, additional

security services, and fault management. Each of these layers

can be further decomposed into sub-layers.

Although Figure 1 describes the common layers for SaaS

reference architecture, it deliberately does not commit on

specific application architecture. For example, the number of

clients, the allocation of the layers to different nodes, and the

allocation of the data storage to nodes is not defined in the

reference architecture. Yet, while designing SaaS for a

particular context we need to commit on several issues and

make explicit design decisions that define the application

architecture. Naturally, every application context has its own

requirements and likewise these requirements will shape the

SaaS application architecture in different ways. That is, based

on the SaaS reference architecture we might derive multiple

application architectures.

III. FEATURE MODEL OF SAAS

To support the architect in designing an appropriate SaaS

application architecture a proper understanding of the SaaS

domain is necessary. In this section we define the SaaS feature

model that represents the overall SaaS domain. Figure 2 shows

the conceptual model representing the relation between feature

model and SaaS architecture.

SaaS

Family Feature Model

SaaS

Reference Architecture

SaaS

Application Feature

Model

SaaS

Application Architecture

instance

of
instance

of

supports

supports

Figure 2. Conceptual model representing relation between feature model

and SaaS architecture

We distinguish between family feature model and

application feature model. The family feature model represents

the features of the overall SaaS domain, whereas the

application feature model represents the features for a

particular SaaS project. The application feature model is

derived from the family feature model. The features in the

feature model typically refer to the architectural elements in

the SaaS architecture. As discussed in the previous section we

also distinguish between SaaS reference architecture and SaaS

application architecture. For designing the SaaS application

architecture first the required features need to be selected from

the family feature model resulting in the application feature

model. The application feature model will be used to support

the design of the SaaS application architecture. In the

following we will elaborate on the family feature model.

A. Top-Level Feature Model
The top level feature diagram of SaaS that we have derived

is shown in Figure 3. The key part represents the different

types of features including optional, mandatory, alternative,

and or features [15]. Note that the features in Figure 3 denote

the layers in the SaaS reference architecture as defined in

Figure 1. All the layers except the Support Layer have been

denoted as mandatory features. The Support Layer is defined

as optional since it might not always be provided in all SaaS

applications. Each of these layers (features) can be further

decomposed into sub-layers.

KEY
feature

optional

feature
mandatory

feature

alternative

features

User

Layer

SaaS

Distribution

Layer

Presentation

Layer

Application

Layer

Data Storage

Layer

Data Access

Layer

Support

Layer

or sub-

features

Figure 3. Top-Level Feature Model

B. User Layer
User layer is the displaying layer that renders the output to

the end user and interacts with the user to gather input. This

layer is the only part that the user can see. In principle the user

layer might include a Web Browser or Rich Internet

Application (RIA), or both of these (or features). RIA is

especially used on mobile platforms.

Web

Browser

User Layer

RIA

Figure 4. Feature Diagram for User Layer

C. Distribution Layer
Figure 5 shows the features for the distribution layer

feature. This layer is the intermediate layer between the

143

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

3

internet and the SaaS application. The main concerns of the

layer are scalability, availability and security. The mandatory

features of this layer are load balancers and firewalls [11].

A firewall inspects the traffic and allows/denies packets. In

addition to this, firewalls provide more features like intrusion

detecting, virtual private network (VPN) and even virus

checking. The distribution layer can have a single firewall or a

firewall farm. A firewall farm is a group of connected firewalls

that can control and balance the network traffic.

Load balancers divide the amount of workload across two

or more computers to optimize resource utilization and

increase response time. Load balancers are also capable of

detecting the failure of servers and firewalls and repartitioning

the traffic. Load balancers have the mandatory features of Type

and Strategy, and an optional feature Load Balancer.Firewall.

There are two types of load balancers, hardware based and

software based. Load balancing strategies decide how to

distribute requests to target devices. Passive load balancing

strategies use already defined strategies regardless the run time

conditions of the environment. Some of the most used passive

strategies are Round Robin, Failover, Random and Weighted

Random. Dynamic load balancing strategies are aware of

information of the targets and likewise route the requests based

on traffic patterns. Some of the most used passive strategies are

Fastest Response Time, Least Busy, Transfer Throughput, IP

Sticky and Cookie Sticky.

The optional Load Balancer.Firewall can be used as

firewall by providing both packet filtering and stateful

inspection. Using load balancer as a firewall can be an

effective solution for security according to network traffic and

cost requirements. This feature excludes the “Distribution

Layer.Firewall” feature.

Load

Balancer

Distribution

Layer

Type
Loadbalancer

Firewall
Strategy

Firewall

Hardware

Based

Software

Based
Passive Dynamic

Single Farm

Round

Robin
FallOver Random Weighted

Random

Fastest

Response Time

Least

Busy

Transfer

Throughput

IP

Sticky

Cookie

Sticky

Figure 5. Feature Diagram for Distribution Layer

D. Presentation Layer
Figure 6 presents the presentation layer feature. The

presentation layer consists of components that serve to present

data to the end user. This layer provides processes that adapt

the display and interaction for the client access. It

communicates with application layer and is used to present

data to the user.

Web

Browser

Presentation

Layer

Web Proxy

Server

Figure 6. Feature Diagram for Presentation Layer

The presentation layer feature includes two subfeatures, the

mandatory Web Server and optional Web Proxy Server

features. A web server handles HTTP requests from clients.

The response to this request is usually an HTML page over

HTTP. Web servers deal with static content and delegate the

dynamic content requests to other applications or redirect the

requests. Web Proxy Server can be used to increase the

performance of the web servers and presentation layer, caching

web contents and reducing load is performed by web proxy

servers. Web proxy servers can also be used for reformatting

the presentation for special purposes as well for mobile

platforms.

E. Application Layer
Figure 7 shows the feature diagram for Application Layer,

which is the core layer of the SaaS architecture. Business logic

and main functionalities, Identity Management, orchestration,

service management, metadata management, communication,

and integration are provided by this layer.

Especially in the enterprise area, SaaS platforms are usually

built on SOA technologies and web services. Application

Server, Integration, Metadata Management, Identity

Management and Communication are mandatory features for

the application layer. In case of using SOA, some other

features – ESB, Orchestration, Business Rules Engine, are used

in this layer. In the following subsections we describe these

features in more detail.

Communication

Application

Layer

IntegrationESB Orchestration
Business Rule

Engine

Metadata

Management

Identity

Management

Application

Server

Figure 7. Feature Diagram for Application Layer

 Application Server

An application server is a server program that handles all

application operations between users and an organization's

backend business applications or databases. The application

server’s mission is to take care of the business logic in a multi-

tier architecture. The business logic includes usually the

functions that the software performs on the data. Application

servers are assigned for specific tasks, defined by business

needs. Its basic job is to retrieve, handle, process and present

144

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

4

data to the user interface, and process any input data whether

queries or updates, including any validation and verification

and security checks that need to be performed.

Asymmetric

Clustering

Symmetric

Application

Server

Business

Service

Figure 8. Feature Diagram for Application Server

SaaS applications have to have continuous uptime. Users

around the world can access the application anytime.

Application failure means customer and monetary loss. The

application should be prevented from single point of failure. In

addition to availability issues, there are performance and

scalability capabilities to overcome for SaaS applications. By

combining more than one computer and make it as a unified

virtual resource can solve these problems. This technique is

called server clustering. There are two techniques for server

clustering: asymmetric and symmetric. In asymmetric clusters,

a standby server exists to take control in case of another server

gets of failure. In symmetric clusters, every server in the

cluster do actual job. The first technique provides more

available and fault tolerant system but the latter is more cost-

effective.

 ESB

When we are talking about SaaS applications and service

oriented architecture, the requirement is providing an

infrastructure for services to communicate, interact, and

transform messages. Enterprise Service Bus (ESB) is a

platform for integrating services and provides enterprise

messaging system. Using an ESB system does not mean

implementing a service oriented architecture but they are

highly related and ESB facilitates SOA.

 Orchestration

Orchestration is a critical mission in SOA environment. A

lot of tasks should be organized to perform a process.

Orchestration provides the management, coordination and

arrangement of the services. BPEL is, for example, an

orchestration language that defines business processes. Some

simple tasks may be performed by ESB but more complex

business processes could be defined by BPEL. To interpret and

execute BPEL a BPEL engine is needed.

 Metadata Management

SaaS has a single instance, multi-tenant architecture.

Sharing the same instance to many customers brings the

problem of customization. In SaaS architecture, customization

is done using metadata. Metadata is not only about

customization (e.g. UI preferences), it is also intended to

provide configuration of business logic to meet customers

need. Updating, storing and fetching metadata is handled

through Metadata services. This feature requires Metadata

Repository feature.

 Business Rule Engine

As mentioned before, SaaS applications can be customized

and configured by metadata. Workflow may differ for each

customer. Business Rules Engine is responsible of metadata

execution. It consists of its own rule language, loads the rules

and then performs the operations.

 Integration

The feature diagram for Integration is shown in Figure 9. In

the context of SaaS, all the control, upgrade, and maintenance

of user applications and data are handled by SaaS provides. An

important challenge in SaaS is the data integration. SaaS

applications usually need to use client data which resides at the

client’s node. On the other hand, each client may use more

than one SaaS application or on-premise application using the

same data. The data may be shared among several applications

and each application may use different part of it or in different

formats. Manipulating the data will usually have an impact on

the other applications. Data accuracy and consistency should

be provided among those applications. Re-entering or

duplicating the data for any application is not a feasible

manner to provide data.

There are three different approaches for providing

consistent data integration including: common integration,

specific integration and certified partner integration. In the

common integration approach services are provided for all

clients. This feature requires “Integration.Services.Web

Services” feature. In the specific integration, services are

customized for each customer. This feature requires

“Integration.Services.Integration Services” feature. Finally, in

the Certified Partner approach the SaaS vendor delegates the

integration to another vendor which is a specialist for SaaS

integration. The SaaS vendor still needs to provide web

services, but it leaves the control to other entities and focuses

itself on the application. This feature also requires

“Integration.Services.Web Services” feature.

The Integration feature describes either Integration Service

or Web Service: In Integration Service approach, the SaaS

vendor provides custom integration services for customers.

Although this is the easiest way for customers, it is hard to

manage adding integration service for different needs for

vendors and increasing number of customers causes scalability

problems. In the Web Service approach, the SaaS vendor

provides a standard approach for customers as web services.

The customers themselves take responsibility for SaaS

integration. Compared to the Integration Service approach,

customers have to do much more and need extensive

experience. On the other hand this is a more scalable solution

for vendors.

145

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

5

Common

Method

Certified

Partner

Integration

Service

Specific Integration
Web

Service

Figure 9. Feature Diagram for Integration

 Identity Management

Figure 10 represents the feature model for Identity

Management, which deals with identifying individuals in a

system and controlling access to the resources in the system by

placing restrictions on the established identities of the

individuals [7]. The Directory Management is responsible for

managing the identities.

Identify Management includes two mandatory features

Identity Model and Directory Management. Identity Model can

be Single Sign-On, Isolated or Federated. Isolated Identity

Management: The most common and simplest identity

management model is the isolated one. Hereby, each service

provider associates an identity for each customer. Despite its

simplicity, this model is less manageable in case of the growth

of number of users who should remember their login and

passwords to their accounts for each service. Single Sign-On is

a centralized identity management model, which allows users

to access different systems using a single user ID and

password.

Single Sign-On identity management model [5] can be PKI-

Based, SAML-Based, Token-Based, Credential

Synchronization, or Secure Credential Caching. SAML stands

for Security Assertion Markup Language and defines the XML

based security standard to enable portable identities and the

assertion of these identities. The Token-Based approach can be

either based on Kerberos or Cookie. The Secure Credential

Caching can be on the Server Side or Client Side.

Identity

Model

Identity

Management

Single

Sign-On
Isolated Federated

Directory

Management

Name

space

Directory

Service

PKI

Based

Token

Based

Secure

Credential

Caching

Credential

Synchronization

Kerberos

Based

PKI

Based

SAML

Based

Kerberos Cookie
Server

Side

Client

Side

SAML
SAML

Figure 10. Feature Diagram for Identity Management

The Federated Identity Model is very close to Single Sign-

On, but defined identity management across different

organizations [6]. There are three most used approaches,

Kerberos-based Federation, PKI-based Federation or SAML-

based Federation. Directory Management feature includes two

mandatory features, Namespace and Directory Service.

Namespace maps the names of network resources to their

corresponding network addresses. Directory Service represents

the provided services for storing, organizing and providing

access to the information in a directory (e.g. LDAP).

 Communication

Figure 11 shows the feature model for the Communication

feature. SaaS vendor needs to provide a communication

infrastructure both for inbound and outbound communication.

Notification, acknowledging customers, sending feedbacks,

demanding approvals are useful for satisfying users. The most

common approach for communication is e-mailing. To transfer

mails between computers a Mail Transfer Agent (MTA) can be

used which requires Simple Mail Transfer Protocol (SMTP)

protocol. Besides of mailing other protocols such as Short

Message Peer-to-Peer Protocol (SMPP) and Simple Network

Paging Protocol (SNPP) can be used.

SMTP

Protocol

SNPP

Communication

MTA

SMPP

Figure 11. Feature Diagram for Communication

F. Data Access Layer
Figure 12 shows the feature diagram for Data Access Layer.

This layer provides the database management system (DBMS)

consisting of software which manages data (database manager

or database engine), structured artifact (database) and metadata

(schema, tables, constraints etc.).

One of the important, if not the most important, SaaS

feature is multi-tenancy [2][12]. Multi tenancy is a design

concept where a single instance of software is served to

multiple consumers (tenants). This approach is cost saving,

scalable, easy to administrate, because the vendor has to

handle, update or upgrade and run only single instance. Multi-

tenancy is not only about data, this design can be applied in all

layers but the most important part of the multi tenancy is multi

tenant data architecture. Based on the latter different kind of

multi-tenancy can be identified. Multi-tenancy with Separate

Databases means that each tenant has its own data set which is

logically isolated from other tenants. The simplest way to data

isolation is storing tenant data in separate database servers.

This approach is best for scalability, high performance and

security but requires high cost for maintenance and

availability. In the Shared Database, Separate Schemas

approach, a single database server is used for all tenants. This

approach is more cost effective but the main disadvantage is

146

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

6

restore is difficult to achieve. Finally, the Shared Database,

Shared Schema approach involves using one database and one

schema for each tenants' data. The tables have additional

columns, tenant identifier column, to distinguish the tenants.

This approach has the lowest hardware and backup costs.

DBMS

Separate

DB

Data Access

Layer

Multi-

Tenancy

Shared DB

Separate

Schema

Shared DB

Shared

Schema

Figure 12. Feature Diagram for Data Access Layer

G. Data Storage Layer
Figure 13 shows the feature diagram for Data Storage Layer.

The layer includes the feature for Metadata storage,

Application Database and Directory Service. Metadata files

can be stored either in a database or in a file based repository.

Application Database includes the sub-features of Storage Area

Network (SAN), Clustering and Caching [2]. SAN is a

dedicated storage network that is used to make storage devices

accessible to servers so that the devices appear as locally

attached to the operating system. SAN is based on fiber

channel and moves the data between heterogeneous servers.

Clustering is interconnecting a group of computers to work

together acting like a single database to create a fault-tolerant,

high-performance, scalable solution that's a low-cost

alternative to high-end servers. By caching, disk access and

computation are reduced while the response time is decreased.

Directory Service stores data in a directory to let the

directory service to lookup for identity management. This data

is read more often than it is written and can be redundant if it

helps performance. Directory schemas are defined as object

classes, attributes, name bindings and namespaces.

SAN

Application

Database

Caching

Data Storage

Layer

Directory

Service

Clustering

Metadata

Repository

DBFile

SNPM PMP

Figure 13. Feature Diagram for Data Storage Layer

H. Supporting Service Layer
Supporting Service Layer is a cross-cutting layer that

provides services for all layers. The feature model is shown in

Figure 14. As known, SaaS applications have quality attributes

such as scalability, performance, availability and security. To

keep the applications running efficiently and healthy, the SaaS

system needs to have monitoring system to measure metrics.

The monitoring infrastructure can detect failures, bottlenecks,

and threats and alert the administrators or trigger automatic

operations. Furthermore, SaaS systems may be built on service

oriented architecture and may need metering process for

service level agreements and billing. A few examples for the

metrics are CPU usage, CPU load, network traffic, memory

usage, disk usage, attack rate, number of failures, mean time to

respond etc.

Monitoring

Support

Layer

Metering

Figure 14. Feature Diagram for Support Layer

IV. EXAMPLE

Figure 15 shows an alternative application architecture

design that is derived from the reference architecture shown in

Figure 1. To derive this architecture based on the family

feature model as discussed in the previous sections, the

application feature model is defined. Typically in the

application feature model multi-tenancy is selected using a

single database management system with a shared database

and shared schemas for the tenants.

Data Server

Data Access Layer

Data Storage

Distribution Server

Distribution Layer

1

internet

SaaS Client

*

User Layer

Application Server

Application and Business

Service Layer

Figure 15. SaaS Application Architecture derived based on corresponding

application feature model

V. RELATED WORK

Despite its relatively young history, different surveys have

already been provided in the literature on cloud computing and

many papers have been published on SaaS. An example survey

paper is provided by Goyal and Dadizadeh [8]. However, to

the best of our knowledge no systematic domain analysis

approach has been carried out to derive a feature model for

SaaS.

La and Kim [14] propose a systematic process for

developing SaaS systems highlighting the importance of reuse.

The authors first define the criteria for designing the process

model and then provide the meta-model and commonality and

variability model. The metamodel defines the key elements of

SaaS. The variability model is primarily represented as a table.

The work focuses more on the general approach. The

metamodel could be complementary to the reference

147

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

7

architecture in this paper and as presented by SaaS providers.

Although the goal seems similar, our approach appears to be

more specific and targeting the definition of a proper modeling

of the domain using feature modeling.

Godse and Mulik [9] define an approach for selecting SaaS

products from multiple vendors. Since the selection of the

feasible SaaS product involves the analysis involves analysis

of various decision parameters the problem is stated as a multi-

criteria decision-making (MCDM) problem. The authors adopt

the Analytic Hierarchy Process (AHP) technique for

prioritizing the product features and for scoring of the

products. The criteria that are considered in the AHP decision

process are Functionality, Architecture, Usability, Vendor

Reputation, and Cost. Our work is also focused on selecting

the right SaaS product but it considers the design of the SaaS

architecture based on feature modeling. The selection process

defines the selection of features and not products. However, in

our approach we did not outline the motivation for selecting

particular features. For this we might add additional criteria to

guide the architect also in selecting the features. We consider

this as part of our future work.

Nitu [16] indicates that despite the fact that SaaS

application is usually developed with highly standardized

software functionalities to serve as many clients as possible,

there is still a continuous need of different clients to configure

SaaS for their unique business needs. Because of this

observation, SaaS vendors need take a well designed strategy

to enable self serve configuration and customization by their

customers without changing the SaaS application source code

for any individual customer. The author explores the

configuration and customization issues and challenges to SaaS

vendors, and distinguishes between configuration and

customization. Further a competency model and a

methodology framework is proposed to help SaaS vendors to

plan and evaluate their capabilities and strategies for service

configuration and customization. The work of Nitu considers

the configuration of the system after the system architecture

has been developed. We consider our work complementary to

this work. The approach that we have presented focuses on

early customization of the architecture to meet the individual

client requirements. The approach as presented by Nitu could

be used in collaboration with our approach, i.e. by first

customizing the architecture based on the potential clients and

then providing configurability and customization support for

the very unique business needs.

VI. CONCLUSION

Cloud computing and SaaS is a broad domain that is not

easy to understand for novice designers. In this paper we have

applied domain analysis techniques to derive a family feature

model that represents both the common and variant features of

SaaS architecture. Based on the family feature model a

particular application feature model can be derived and the

SaaS application architecture can be designed accordingly. As

such, the family feature model helps both to enhance the

understandability of SaaS and the generation of particular

applications.

The feature model that we have derived is based on our

selection of papers. We do not claim that this is the only

correct or eventual feature model. Enhancing the domain

analysis study might refine the feature model that we have

presented. Yet, the work should also be considered from an

architecture design perspective. An important lesson from this

paper is that feature modeling helps to support the architectural

design of SaaS systems. In our future work we will develop the

required tool support to represent the family feature model,

define the link with architecture design decisions and generate

application architecture.

VII. REFERENCES

[1] S. A. Brandt, E. L. Miller, D. D. E. Long, L. Xue. Efficient Metadata

Management in Large Distributed Storage Systems, 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems and

Technologies(MSST’03), pp. 290–298, 2003.

[2] F. Chong and G. Carraro. Building Distributed applications: Multi-
Tenant Data Architecture. MSDN architecture center, 2006.

[3] F. Chong and G. Carraro. Architecture Strategies for Catching the Long

Tail, Microsoft, MSDN architecture center, 2006.

[4] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.

Merson, R. Nord, J. Stafford. Documenting Software Architectures:

Views and Beyond. Second Edition. Addison-Wesley, 2010.

[5] J. de Clercq, Single Sign-On Architectures, Proceedings of the

International Conference on Infrastructure Security, p.40-58, October 01-

03, 2002.

[6] Cloud Computing. Wikipedia - [Online].

http://en.wikipedia.org/wiki/Cloud_computing

[7] FIDIS, "Structured Overview on Prototypes and Concepts of Identity
Management Systems", Future of Identity in the Information Society

(No. 507512)

[8] A. Goyal, S. Dadizadeh. A Survey on Cloud Computing, University of
British Columbia, Technical Report, 2009.

[9] M. Godse, S. Mulik. An Approach for Selecting Software-as-a-Service

(SaaS) Product, in Proc.of. 2009 IEEE International Conference on
Cloud Computing, 2009.

[10] S. Joshi. Architecture for SaaS applications - using the Oracle SaaS

Platform, Oracle White Paper, 2009.

[11] C. Kopparapu, "Load Balancing Servers, Firewalls, and Caches", Wiley,

2002.

[12] T. Kwok, T. Nguyen. A Software as a Service with Multi-tenancy

Support for an Electronic Contract Management Application. In IEEE

International Conference on Services Computing, 2008.

[13] P.A. Laplante, Jia Zhang, Jeffrey Voas, "What's in a Name -

Distinguishing between SaaS and SOA", IT Professional, Volume 10,

Issue 3 (May 2008), Pages: 46-50, Year of Publication: 2008,

[14] H. Jung La and Soo Dong Kim, A Systematic Process for Developing

High Quality SaaS Cloud Services, in Proc. Proc. of the 1st International

Conference on Cloud Computing, Springer LNCS, Volume 5931/2009,
278-289, 2009.

[15] K. Lee , K. Chul Kang , J. Lee, Concepts and Guidelines of Feature

Modeling for Product Line Software Engineering, Proceedings of the 7th
International Conference on Software Reuse: Methods, Techniques, and

Tools, p.62-77, April 15-19, 2002

[16] H. Liao. Design of SaaS-Based Software Architecture, International
Conference on New Trends in Information and Service Science, 2009.

[17] Nitu. ISEC '09: Proceeding of the 2nd annual conference on India

software engineering conference, , pp. 19-26, February 2009.

[18] C. Spence, J. Devoys, S.Chahal. Architecting Software as a Service for

the Enterprise IT@Intel White Paper, 2009.

[19] Sun Cloud Computing Primer,
http://www.scribd.com/doc/54858960/Cloud-Computing-Primer,

accessed 2011.

148

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

