
A Maintenance Approach of a BJI Index Configuration

Saïd Taktak
University of Sfax, FSEGS Faculty, P.O.Box 1088

Miracl Laboratory
Sfax, Tunisia

Said.taktak@gmail.com

Jamel Feki
University of Sfax, FSEGS Faculty, P.O.Box 1088

Miracl Laboratory
Sfax, Tunisia

Jamel.Feki@fsegs.rnu.tn

Abstract— In data warehousing domain, OLAP (On Line
Analytical Processing) queries are complex since they use
several tables with huge cardinalities. Several optimization
techniques have been studied in the literature as materialized
views and bitmap join indexes (BJI). BIJ indexes are useful to
pre-calculate star joins in order to reduce the execution cost.
Current approaches for the selection of BJI define a
configuration that optimizes a beforehand definite workload of
queries. However, this workload can evolve in time and is
likely to make obsolete the configuration of index created. In
order to take into account the evolution of a workload of
queries, we propose, in this article, a maintenance approach
for the recommendation of a new configuration of indexes. Our
approach starts with an evaluation of the current configuration
of indexes and then adapts it to the new workload of queries
with an aim of guaranteeing the stability of performances.
Queries of the new workload are directly extracted from log
files. Furthermore, to validate our approach, we carried out a
series of experimentations on a data warehouse created with
the DWEB benchmark.

Keywords-data warehouse; bitmap join indexes; tuning.

I. INTRODUCTION
Due to the exponential increase in the volume of data,

enterprises focus on the decisional information and, therefore
move from a simple processing of data to a logical analysis
of data. The data warehouse formalized in the early 90s by
Inmon is the appropriate solution [1]. In fact, it
is particularly designed to respond to complex decisional
queries.

At the conceptual level, the data warehouse is usually
modeled by a star schema that highlights the topic analyzed
as a central fact (i.e., the fact table) which is composed of
numerical attributes and connected to dimensions (i.e.,
dimension tables) representing the axes of analyses. The
large volume of data manipulated by analytical queries (i.e.,
decisional) and the high number of tables to be joined raise
the problem of performance [2]. In order to optimize these
queries, taking intensive execution time, the data warehouse
administrator (or designer) has to successfully achieve the
physical design step [3]. This is why, he or she should select
a set of optimization techniques that they consider pertinent
to respond to the decision makers needs (i.e., expressed as a
workload of queries defined beforehand). Several
optimization techniques have been studied for relational data
warehouses, some of which are inherited from traditional

databases. A Database management system (DBMS) offers
techniques such as:

 Materialized views [4] improve the execution time
of queries by pre-computing the most expensive
operations such as joins and aggregations.
Consequently, the execution of some queries OLAP
requires only the access to one materialized view
instead of its original data tables.

 Fragmentation [5] allows dividing the data of a DW
into multiple partitions that can be accessed
separately. It can be either vertical or horizontal (by
projection or selection algebraic operators).

 Parallel query processing [6]. The query is divided
into components that can be treated simultaneously.
The results are combined and delivered to the
customer as a single component.

 Advanced indexes [7], etc.
These optimization techniques can be used in an isolated

manner (i.e., selected independently) or in a combined
way (by exploiting the dependencies between them). The
second way provides good results, because each technique
can compensate the shortcomings of others.

In the data warehouse context, the indexing technique is
an important issue due to the large volume of manipulated
data and to the complexity of processed queries. The bitmap
join indexes (BJI) pre-compute the joins between the fact
and its dimension tables. A BJI index is defined on the fact
table by using the values of one or several attributes
belonging to dimension tables. This increases the number of
possible indexes [8]. Several research studies have proposed
optimal solutions to help the data warehouse administrator to
select a BJI configuration that minimizes the execution cost
of a given workload of queries.

However, the task of the administrator is more
complicated than that. In fact it is not sufficient to establish
the appropriate optimization technique, but it is more
important to adjust the use of this technique in response to
the occurring evolution on the data warehouse to avoid the
performance degradation. This evolution may affect three
things: (1) the schema and the content of the data warehouse
tables, (2) the size of the memory space allocated to the
optimization techniques selected, and (3) the workload of
queries on which the selection of optimization technique has
been established. In this paper, we propose an approach for
the maintenance of a current BJI configuration (e.g., in use)
in order to face the evolution of a workload of queries. This

221

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

evolution may concern many aspects as the frequency of
access of the queries, the addition of new queries or even the
deletion of existing ones, etc.

This article is organized into six sections: Section 2
recalls the definition of the BJI and illustrates it through an
example. Section 3 presents a formalization of the selection
problem of BJI and explores the existing approaches of
indexing and their lacks. Section 4 is devoted to the
presentation of our maintenance approach. Section 5
describes a set of experiments we have done. Section 6
concludes this article and enumerates some perspectives.

II. BINARY JOIN INDEX
A binary join index BJI ("bitmap join index") allows pre-

joining the fact table with its dimension tables in a data
warehouse. A BJI has the same number of tuples as its fact
table and as many columns as the number of distinct values
of the dimension attribute on which the BJI index is built [9].
The bit at row i and column j of the BJI index is set to 1 if
the ith tuple of the fact table can be joined with the tuple of
the dimension table that has the value of the indexed attribute
(i.e., in column j). Otherwise, this bit is set to zero.

Fig. 1 represents the Product_Type BJI built on the fact
table Sales using the Type attribute of the dimension table
Product.

Figure 1. Bitmap join index (BJI).

In these tables, each tuple is identified with a unique

identifier denoted RID (Row IDentifier) generated by the
DBMS. The index of Fig. 1 can be constructed by the
following SQL statement:

CREATE BITMAP INDEX Product_Type
ON Sales (Product.Type)
FROM Sales S, Product P
WHERE S.PID = P.PID

The first tuple of the Sales table is joined with a tuple of
the Product table corresponding to a Type product T1.
Therefore, the bitmap corresponding to type T1 of the first
row of this index is set to 1 and then the remaining bits are
set to zero.

Note that a BJI is particularly useful for star joins; like
conventional binary indexes, it is very beneficial for
Count(*) queries where the response to these requests
requires only access to the binary index. No access to data

tables is necessary; we just need to count the number of 1 in
the bitmap array that results of the requested operations. For
instance, to determine the number of sales for products of
Type T2, we count the number of 1 in column T2 of the BJI.
For more complex queries (i.e., using several indexed
attributes, the logical operators (e.g., AND, OR) are useful.

III. INDEX SELECTION PROBLEM
Index selection is a crucial step in the physical design of

the data warehouse. It consists in building an index
configuration to optimize the execution cost of a workload
(of queries). This optimization can be realized respecting
certain constraints, such as the storage space allocated to the
index configuration or the cost of maintenance.

Generally, the algorithms proposed for index selection
include three steps:

(1) Identification of candidate attributes for indexing.
(2) Pruning.
(3) Construction of an index configuration.
During the first step, a set of candidate attributes can be

built manually by the administrator according to his
expertise, or automatically by using a queries parser. The
step of pruning is necessary to reduce the number of
candidate attributes for indexing; it is done by referring to
certain criteria, for example, by eliminating high cardinality
attributes or those belonging to small tables [10].

The third step builds progressively a final configuration
of BIJ respecting the constraints of execution and the storage
cost. It is often done by selection algorithms (Glouton
algorithms) or directed by data mining techniques [11] [12],
or even genetic algorithms [13]. The quality of the generated
index configuration is measured by its cost which is -
calculated using the optimizer of the DBMS or by a
mathematical cost model. All these approaches of BJI
selection are applied in a static context (i.e., a workload
defined beforehand); however, this workload may evolve in
time and might yield obsolete its associated index
configuration. To the best of our knowledge, the work in [14]
is the only attempt that has tackled the problem of BJI
dynamic selection after a workload evolution. It represents
an extension to the approach of selecting BJI [15] which is
based on data mining technique for the detection of frequent
itemset. In fact, the proposed approach is to increment the
frequent itemset by referring to a knowledge base that stores
information (frequent itemset) of anterior executions. New
frequent itemsets are analyzed to generate new candidate
indexes; declined (now infrequent) itemsets correspond to
indexes to be dropped.

The limited number of algorithms interested in the
problem of dynamic index selection led us to propose a new
approach. Our approach helps the administrator to maintain
the existing index configuration during the evolution of
queries executed on the data warehouse.

IV. MAINTENANCE APPROACH BY RECONFIGURING BJI
INDEXES

In this section, we present our approach of BJI
maintenance which reduces the execution’s cost of a new

Dimension Table:
Product

RID PID Label Type

1 124 L1 T1
2 137 L2 T1
3 154 L3 T2
4 166 L4 T3
5 181 L5 T2
6 209 L6 T1

Fact Table:
Sales

RID PID …. Amount

1 124 1213
2 137 23232
3 166 23244
4 154 4544
5 154 4544
6 166 444534
7 166 33550
8 181 6777
9 209 6555

10 209 4544

Binary Join Index

RID T1 T2 T3

1 1 0 0
2 1 0 0
3 0 0 1
4 0 1 0
5 0 1 0
6 0 0 1
7 0 0 1
8 0 0 1
9 1 0 0

10 1 0 0

222

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

workload. Our approach is placed in a general framework,
which allows illustrating the interest of BJI maintenance.
Since the BJI’s selection is based on a fixed set of queries,
any change in this set may affect the existing
BJI’s configuration. Fig. 2 outlines the general architecture
of our approach. Unlike the proposed approaches of BJI
selection, it is not only based on the optimization process on
a workload, but it also takes into consideration the existing
BJI.

The objective of our approach is to assist the
administrator to maintain an initial configuration of BJI
during the evolution of the initial workload Q to a new one
Q', by proposing a new index configuration which ensures
the reduction of Q' cost. The problem can be formalized as
follows:

 A data warehouse composed of d dimension tables D
= {D1, D2 ..., Dd} and a fact table F.

 A set of n BJI Icurrent ={BJI1, BJI2…, BJIn} created
referring to the initial workload Q.

 fui represents the frequency use of BJIi for a given
period P sufficiently significant, so that it covers a
maximum of treatments.

 Q is a workload of m queries Q = {q1, q2 ..., qm},
extracted from the DBMS log file.

 fqi frequency execution of query qi.

Figure 2. Maintenance approach architecture.

We detail in the following sections, the four steps illustrated
in Fig. 2.

A. Classification of existing indexes
The current configuration of BJI was created specifically

to optimize an initial workload Q of queries. The evolution
of the workload Q to Q' can degrade the global performance
of Q'. In fact, the new queries are not necessarily optimized
compared to the current BJI configuration. In addition, some
indexes may become unexploited if they are built to optimize
queries actually infrequently executed.

To optimize the new workload Q', we proceed to analyze
the utility of the current BJI indexes (Icurrent) based on the
actual frequency of use (fu) of each index during a period of
time and, secondly, on the average frequency fm of all Icurrent
indexes used during the same period. This average frequency
is calculated by formula (1):

This frequency will allow us to classify the Icurrent set in

three subsets:
 Ihigh: represents the subset of indexes heavily used,

that means, those whose frequency of use is higher
than 3*fm/2. The BJI belonging to this group are
considered important and will be retained to be
present in the new configuration BIJ optimizing Q'.

 Imedium: represents the subset of indexes used
moderately, those whose frequency of use is
between fm/2 and 3*fm/2. The relevance of these
indexes will be reviewed during the index’s
selection step to decide whether to keep or reject.

 Ilow: represents the subset of indexes slightly used,
i.e., those whose frequency of use fu is less than fm/2.
These indexes are rarely or completely unused
when running queries from the initial workload. In
addition, they occupy a memory space and require a
maintenance cost without a justified usefulness. So
it is better to remove these indexes and then recover
their storage space.

Table I shows an Icurrent set of 8 indexes to optimize a
given initial workload Q. The total usage of all indexes is 80
and the average of their frequency of use fm is 10 (= 80/8).

TABLE I. EXAMPLE OF A SET OF BJI WITH THEIR FREQUENCY OF USE

Indexes frequency of use

BJI1 20

BJI2 8

BJI3 1

BJI4 6

BJI5 9

BJI6 27

BJI7 2

BJI8 7

Total 80

According to our proposed classification, this set of

indexes will be split into three subsets:

Nouvelle
charge Q’ de

requêtes

Classification des index
Icourant

Configuration
d’IJB courante

Icourant

Evaluation du coût et
classification des requêtes

Q’OpQ’NopIFort IMoyenIFaible

Génération des index
candidats

Index
générés

Définition d’une configuration
Partielle

Nouvelle
configuration
recommandée

Méta-données

Schéma,Statistique

Entrepôt de
données

)1(1

n
fu

fm
n

i i

223

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 2
)(

)'(
1

1

 m

i i

m

i ii

fq

qCostfq
QCostAvg

)3(sup iifitness

 Ihigh = {BJI1, BJI6 }
 Imedium = {BJI2, BJI4, BJI5, BJI8 }
 Ilow = {BJI3, BJI7 }

We find out that both indexes BJI3 and BJI7 are too little
used by the initial workload and, therefore, can be dropped.
The drop of indexes with a low-frequency usage optimizes
the storage constraint, but it does not improve the global
execution’s performance.

In parallel, we study the new workload to examine
whether it is optimized in respect to the current configuration
otherwise we must change this configuration by adding new
indexes. This requires the evaluation of the new workload
(Q’) execution costs and the identification of its non
optimized queries in order to consider them when defining
the new configuration. The next section details how we
examine this workload.

B. Costs evaluation and queries classification
First, this step consists in evaluating the m queries of the

workload Q'. In order to get closer to reality, the study of the
evolution of this workload considers the queries actually
executed on the data warehouse; we extract these queries
from the log file. We note Cost(qi) the execution cost of
query qi, and Iqi all old indexes used by the query optimizer
for qi. Based on these two factors of classification, we
subdivide Q' into two subsets of queries:

 Q'unop : represents non optimized queries from Q';
i.e., those who do not use any index during their
execution or those who have a cost of performance
higher than the average execution cost CostAvg (Q')
of the new charge Q' with:

Q’unop = {qi’ Q' / Cost (qi') > CostAvg(Q') or
Iqi’=Ø}. Queries of this set will be analyzed in the
step called candidate index generation in order to
define a new index configuration.

 Optimized queries (Q'op) is the set of remaining
queries (Q'op=Q' - Q'unop). They don’t interfere in
the definition of a new index configuration.

C. Generating candidate indexes
It is to generate indexes that improve execution

performance of the new workload Q', by focusing on all the
non-optimized queries (Q'unop). We realize this task
throughout the following three steps:
(1) Identification of indexable attributes for Q'unop.
(2) Construction of a BJI configuration per query.
(3) Pruning of indexable attributes.

At the end of these three steps, which we detail below,
we obtain a set of candidate indexes that will be evaluated
(cf. Section D).

1) Identification of indexable attributes
Non optimized queries are handled by a syntactic analyzer

to extract all attributes that may be carried for indexes.
These attributes are those present in the WHERE,

GROUP BY and ORDER BY clauses of queries. For
example, the indexable attributes issued from the following
query are: City, Month and Type.
SELECT AVG (amount)
FROM Sales S, Customer C, Product P, Time T
WHERE S.CID = C.CID AND S.PID = P.PID
AND S.TID = T.TID AND T.Month = ’MARCH’
AND C.City IN ('SFAX', 'SOUSSE')
AND P.TYPE = 'TOY';

2) Construction of a BJI configuration per query
Referring to the attributes extracted in the previous step,

we construct a matrix query-attribute where it lines
represent queries of Q' and columns represent candidate
attributes for indexing. The existence of an indexed attribute
in a query is represented by the integer 1 and its absence by
zero.

Fig. 3 is an example of matrix built on a workload of six
queries and six indexable attributes noted A, B, C, D, E, F.

Figure 3. Matrix Query-Attribute.

3) Pruning
The input of this step is the configuration of candidate

indexes from the previous step. This index configuration is
beneficial for the whole set of queries because each index
has been defined to optimize queries separately. However,
this configuration can be very large: it may include some
attributes which are not suitable for indexing (high
cardinality or belonging to small tables) [16], therefore their
removal is recommended to reduce the cost of storage space
for indexes. This removal operation is the Pruning process; it
is based on a Fitness parameter introduced by [17] in the
context of frequent patterns. We were inspired by this work
to define a simplified formula applicable to each individual
attribute. This Fitness parameter takes into consideration
both the frequency of occurrence of attributes in queries and
the table size.

where supi represents the frequency of occurrence of
attribute i in all queries and αi = |Di|/|F|.
Attributes having a Fitness parameter less than the threshold
minsup are not indexed; minsup in [0, 1] is defined as a
parameter by the administrator.

The generated number of indexes is less than or equal to
the number of the workload queries, firstly because some
queries share the same indexes, secondly, it is unnecessary to
generate indexes that already exist (belonging to an entire
index of the current configuration Icurent). This step generates

A B C D E F

Q1 0 1 0 1 0 0

Q2 0 1 1 0 0 0

Q3 1 0 1 0 1 0

Q4 0 0 1 1 0 0
Q5 0 0 1 0 1 1
Q6 0 0 1 0 0 0

224

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

a set of candidate indexes created referring to Q’unop. This set
will serve together with the moderated used indexes (Imedium)
to recommend a fairly new configuration.

D. Definition of a configuration to recommend
The union of the candidate indexes generated from the

previous step with those belonging to the set of indexes
moderately used (Imedium) forms the set of all indexes to be
selected for the final configuration (Fig. 2). During this
stage, the indexes that do not ensure an important gain of
cost are considered to be useless and therefore eliminated.
We use a Glouton algorithm as in [17] to select the best
indexes among the n candidate indexes. The selection of an
index configuration is an iterative approach by selecting, at
each iteration, the index that most reduces the cost of
queries execution as the storage space constraint is
respected. Finally, the union of the set of selected candidate
indexes with the heavily used ones forms the final index
configuration proposed to the data warehouse administrator
(Fig. 2).

V. EXPERIMENTAL EVALUATION
In order to test our approach, we made an experimental

study on a data warehouse, we have generated under Oracle
11g, with the benchmark DWEB1 (Data Warehouse
Engineering Benchmark) [18]. This data warehouse is
composed of a fact table with 2.043.271 rows, and four
dimension tables with 4000, 100, 10000 and 1000 rows. We
used DWEB1 to generate a workload of 50 star join queries.
Several types of query were considered: Count queries,
queries using aggregate functions (Sum, Avg), queries with
dimensional attributes in the SELECT clause, etc. We
modified the cardinality of the attributes of the dimensions
and certain clauses of query’s restriction (WHERE clause
attributes) to adapt them for indexing. Our approach of
maintenance of BJI configuration is implemented in Visual
Studio 2005 and a Core 2 Duo machine with 3 GB of RAM.
We conducted a series of experiments that take place in three
phases:

 Construction of an index configuration that
optimizes our initial workload of 50 queries.

 Modification of this workload by following an
increasing trend rate and computing the new cost
before maintenance.

 Application of our approach of BJI configuration
maintenance and calculation of the execution cost
of the workload, after maintenance.

 Application of a second approach of maintenance
(naïve) on the same workloads and comparison with
the results of our proposed approach.

The execution of the initial 50 queries gave a total cost of
input-output (I/O) equal to 173 918 without any index. After
building an index configuration, the cost has been reduced to
138 231 thanks to the generation of 10 indexes (4 mono-
attributes and 8 multi-attributes).

Figure 4. Evolution of the cost according to workload.

The next step is to study the effect of the initial query

load evolution on overall performances. For this, we
modified the workload several times, according to a variable
rate of the charge evolution and keeping constant the number
of queries to 50. This modification is to delete some queries
and replace them with others of the same type (i.e., same
tables and aggregate functions with different attributes of
selection) to maintain constant the number of queries. The
choice of query to remove is done randomly. The results
(Fig. 4) show important performance degradation while the
rate of the charge evolution increases. This degradation is
due to the fact that newly added queries exploit, little or
never, the initial index configuration (i.e., Icurrent). So, it’s
necessary to maintain this configuration. The curve of the
execution cost before maintenance according to the evolution
of the workload has generally an ascendant trend but we can
see some times, zones of decline (Fig. 4) like for the
evolution rate 24% and 30 %. This can be due to the fact that
some existing indexes (i.e., present in the initial
configuration) are used by the newly inserted queries. These
used indexes are generally mono-attribute. The application of
our maintenance approach, based on the re-calculation of the
initial BJI configuration, allows the reduction of the
execution cost of the new workload compared to its
execution cost before maintenance. According to Fig. 4, the
gap between costs before (upper curve) and after (lower
curve) the maintenance of indexes becomes more and more
important when the rate of the workload evolution increases,
which is very interesting in practice because the evolution
increases as time goes on.

Figure 5. Incremental Approach Vs Destructive.

The experiments done until now approved the interest of

applying our maintenance approach (incremental), by index
reconfiguration, in order to reduce the execution cost of an

120000

125000

130000

135000

140000

145000

150000

155000

160000

165000

0% 4% 10% 14% 20% 24% 30% 34% 40% 44%

e
x
e

cu
ti

o
n

 c
o

st

Evolution rate of the load

before maintenance

after maintenance

120000

125000

130000

135000

140000

145000

150000

155000

160000

165000

0% 4% 10% 14% 20% 24% 30% 34% 40% 44%

e
x

e
c
u

t
io

n
 c

o
st

Evolution rate of the load

destructive approch

incremental Approach

225

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

evolving query workload. We evaluate in this section another
approach of maintenance (naive) whose principle is to
remove all existing indexes and to create a new index
configuration for each new workload. Certainly, this
destructive approach may give good results in terms of cost
of performance because it processes each workload
independently from the existing one. Fig. 5 shows that the
incremental maintenance approach gives results which are
close to those obtained with the destructive approach, even
equal in some cases, with the additional advantage of
preserving the useful indexes and creating a very limited
number of indexes; that constitutes a gain of time (creation
of new indexes) and avoids fragmentation of disk space
allocated to indexes.

In conclusion, our approach of incremental
reconfiguration provides some stability in overall
performance during the evolution of an initial workload.

VI. CONCLUSION
We proposed in this paper an approach to assist the

administrator of the data warehouse to reconfigure BJI
indexes, initially constructed on a workload of analytical
queries, following its evolution. Our approach is incremental.
It is characterized by the evaluation of the new workload
compared according to the existing configuration of BJI in
order to decide whether to recalculate a new configuration or
to keep the old one. In practice, it proceeds to a classification
of existing indexes in three categories: low, medium or highly
used. Moreover, determining a new configuration eliminates
the slightly used BJI and takes into consideration the old
indexes (moderately and highly used) and the new workload
to optimize. For the new query workload, we determine a set
of candidate BJI indexes according to the conventional
principle (extraction of indexable attributes, pruning, and
construction of a BJI configuration per query). In order to
test our approach, we have developed an iterative algorithm.
It determines the cost of a query from its execution plan
developed by the Oracle DBMS optimizer; it is to evaluate
candidate indexes. The union of selected candidate indexes
set and the highly used ones from the configuration to
maintain forms the new index configuration proposed to the
data warehouse administrator. We tested our approach on a
data warehouse built with the benchmark DWEB by varying
queries of the initial workload. The preliminary results are so
encouraging. However, other experiments will be necessary
for large scaling. Also, it would be interesting to study
performance thresholds that trigger the recommendation
process of reconfiguration.

REFERENCES
[1] W. H. Inmon and R. D. Hackathorn, “Using the Data

Warehouse”, - USA : Wiley-QED Publishing, 1994.
[2] T. Stöhr, H. Märtens and E. Rahm, “Multidimensional

database allocation for parallel”, Proceedings of the

International Conference on Very Large Databases, 2000,
pp. 273–284.

[3] S. Chaudhuri and V. Narasayya, “Selftuning database systems
: A decade of progress”, Proceedings of the 33rd International
Conference on Very Large Databases, 2007, pp. 3–14.

[4] M.Hung, M. Huang, D. Yang, and N. Hsueh, “Efficient
approaches for materialized views selection in a data
warehouse”, Inf. Sci., vol. 177, pp. 1333–1348, March 2007.

[5] S. Agrawal, V. Narasayya and B. Yang, “Integrating vertical
and horizontal partitioning into automated physical database
design”, Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2004, pp. 359–370.

[6] T. Stöhr, H. Märtens and E. Rahm, “Multidimensional
database allocation for parallel”, Proceedings of the
International Conference on Very Large Databases, 2000,
pp. 273–284.

[7] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D, “Ullman.
Index Selection for OLAP”, In Proceedings of the Thirteenth
International Conference on Data Engineering (ICDE '97).
IEEE Computer Society, Washington, DC, USA, 1997,
pp. 208–219.

[8] P. O'Neil and G. Graefe, “Multi-table joins through
bitmapped join indices”, SIGMOD Rec., vol. 24, pp. 8–11,
September 1995.

[9] P. O'Neil and D. Quass, “Improved Query Performance with
Variant Indexes”, in ACM SIGMOD International
Conference on Management of Data (SIGMOD 1997). -
Tucson , USA : 1997. - pp. 38–49.

[10] K. Boukhalfa, L. Bellatreche and Z. Benameur, “Index de
jointure binaires : Stratégies de sélection et étude de
performances ”, 6ème Journées Francophones sur les Entrepots
de Données et Analyse en Ligne (EDA10). - Jerba-Tunisie :
2010. - pp. 175–190.

[11] K. Aouiche and J. Darmont, “Data mining-based materialized
view and index selection in data warehouses”, J. Intell. Inf.
Syst., vol. 33, pp. 65–93, August 2009.

[12] L. Bellatreche, R. Missaoui, H. Necir, and H. Drias, “A data
mining approach for selectingbitmap join indices”, Journal of
Computing Science and Engineering 2, n° 1 (2008): 206–223.

[13] J. Kratica, I. Ljubic et D. Tosic, “A Genetic Algorithm for the
Index Selection Problem”, (EvoWorkshops'03) The 2003
International Conference on Applications of Evolutionary
Computing, 2003, pp. 281–291.

[14] S. Azefack, K. Aouiche and J. Darmont, “Dynamic index
selection in data warehouses”, 4th International Conference
on Innovations in Information Technology (Innovations 07),
2007.

[15] K. Aouiche, J. Darmont, O. Boussaid, and F. Bentayeb,
“Automatic Selection of Bitmap Join Indexes in Data
Warehouses”, 7th International Conference on Data
Warehousing and Knowledge Discovery (DAWAK 05), 2005.

[16] W. Dylan Bitmap Index – when to use it? [Online]//
http://dylanwan.wordpress.com/2008/02/01/bitmap-index-
when-to-use-it/. - 2008.

[17] A. H. Necir, L. Bellatreche and R. Missaoui, “DynaClose :
Une approche de fouille de données pour la sélection des
index de jointure binaires dans les entrepôts de
données”, 3ème Journées Francophones sur les Entrepôts de
Données et Analyse en Ligne (EDA’07), 2007.

[18] J. Darmont, F. Bentayeb and O. Boussaid, “Benchmarking
data warehouses”, International Journal of Business
Intelligence and Data Mining, Vol. 2, 2007.

226

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

