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Abstract—The evolvability of organizations as a whole is de-
termined by the evolvability of different enterprise architecture
layers. This paper presents a longitudinal case study, performed
within an infrastructure monitoring company, on how Normalized
Systems Theory enables this evolvability, at least, at the level of its
information systems. By describing the different versions of the
case organization’s information system throughout time, we are
able to analyze the characteristics of the system which facilitate
this goal. In particular, the increasingly fine-grained structure
of the system allows for multiple dimensions of variability. This
analysis is then generalized and described in terms of modular
systems. Based on this generalization, several implications for
other enterprise layers are presented.
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I. INTRODUCTION

In today’s ever-changing and competitive markets, enter-
prises need to be able to respond ever so quickly to changing
market demands. One could argue that this evolvability is one
of the main requirements for an enterprise to be competitive in
the current global economy. Certain scholars have argued that
in order to create a sustainable competitive advantage, changes
need to be applied at a constant rate [1]. This, however, means
an organization is in a constant state of flux, and a fixed
baseline on which new changes can be etched is ever absent.
This considerably complicates the implementation of changes
and the agility of organizations.

An additional challenge to organizational evolvability is
that evolvability is required at multiple enterprise layers. For
example, to attain a truly evolvable enterprise, its organiza-
tional structure, business processes and information systems
need to be able to easily implement changes. As all these layers
are intertwined, a single change in one of these layers will
insurmountably result in multiple changes in one or more of
the other layers. As a result, it is clear one should always study
organizational evolvability as the accumulation of evolvability
within all these inseparable layers. Likewise, enterprises should
always strive for organizational evolvability within all layers.

Most enterprise architecture approaches propose a generic
way of working towards evolvability. For example, Ross et al.
[2] propose that, after a team and vision are established, an
AS-IS architecture is developed. Next, a TO-BE architecture

should be defined which enables the established vision. The
transition between AS-IS and TO-BE architectures then needs
to be planned and executed. Most frameworks do not provide
a more concrete way of working [3].

At the lower organizational levels however, more detailed
progress has been made in enabling evolvability. This is es-
pecially true for the lowest level, i.e., the information systems
that support the other enterprise layers in the execution of their
tasks. In this regard, Normalized Systems (NS) theory was
introduced as an approach to build evolvable artifacts, such as
information systems [4]. Although this approach is proven to
be theoretically sound [5] and practically viable [6], [7], few
cases have been published.

In this paper, we will therefore document a case to illustrate
how Normalized information systems support organizational
evolvability by allowing rapid and extensive changes to the
software. The specific case is chosen because it concerns a
software application that evolved extensively throughout time
and allows to clearly illustrate why NS theory requires a fine-
grained modular structure. NS theory has also proven to be
relevant to design artifacts in other organizational layers as
well [3], [8], [9]. Therefore, we will generalize the findings
and reflect on the potential implications for modular structures
in later sections of the paper.

The paper is structured as follows: first we introduce the
Normalized Systems theory in Section II. Next, we describe
the case study and the evolution of the discussed application in
detail in Section III. The case reflections, generalizations and
implications are discussed in the Discussion in Section IV,
followed by a Conclusion in Section V.

II. NORMALIZED SYSTEMS

The case that is discussed in this paper is based on the body
of thought of Normalized Systems (NS) theory. Therefore, we
will briefly introduce this theory in this section. For a more
comprehensive description, we refer to previous publications,
such as [4], [5], [10], [11].

The NS theory is theoretically founded on the concept of
stability from systems theory. According to systems theory,
stability is an essential property of systems. For a system to
be stable, a bounded input should result in a bounded output,
even if an unlimited time period T → ∞ is considered. For
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information systems, this means that a bounded set of changes
(selected from the so-called anticipated changes within NS
theory) should result in a bounded impact to the system,
even for T → ∞ (i.e., an unlimited systems evolution
is considered). In other words, stability reasoning expresses
how the impact of changes to an information system should
not depend on the size of the system, but only on size and
property of the changes that need to be performed. If this is not
the case, a so-called combinatorial effect occurs. It has been
formally proven that any violation of any of the following
theorems will result in combinatorial effects that negatively
impact evolvability [5]:
• Separation of Concerns, which states that each con-

cern (i.e., each change driver) needs to be encapsulated
in an element, separated from other concerns;

• Action Version Transparency, which declares an action
entity should be updateable without impacting the
action entities it is called by;

• Data Version Transparency, which indicates a data
entity should be updateable without impacting the
action entities it is called by;

• Separation of States, which states all actions in a
workflow should be separated by state (and called in
a stateful way).

The application of the NS theorems in practice has shown
to result in very fine-grained modular elements which may, at
first, be regarded as complex. Although it quickly becomes
clear to developers how every element is constructed very
similarly, it is very unlikely to attain these strictly defined
elements without the use of higher-level primitives or patterns.
Therefore NS theory proposes a set of five elements (action,
data, workflow, connector and trigger) that serve as patterns.
Based on these elements, NS software is generated in a
relatively straightforward way through the use of the NS
expansion mechanism. For this purpose, dedicated software
(called NS expanders) was built by the Normalized Systems
eXpanders factory (NSX).

III. CASE STUDY

The case we discuss in this paper is that of an organi-
zation which provides hardware and software for infrastruc-
ture monitoring (e.g., power supplies, air conditioning, fire
detection systems and diesel generators). The infrastructure
is monitored and managed from a central site called the
Network Operating Center (NOC). In this center, status in-
formation from different facility equipment of geographically
dispersed sites is gathered. The status information is sent by
controllers which are embedded in the infrastructure. Different
types of these controllers are developed and marketed by
the organization. For example, the Telecom Site Controller
(TSC) is developed specifically for telecom infrastructure, and
the Monitoring Control Unit (MCU) is developed specifically
for DC power supplies which contain AC/DC converters and
batteries to handle power failures. The organization argued
that the software to perform and manage the infrastructure
monitoring could not be purchased as a commercial off-the-
shelf package, because of the extensive customizations needed
for the proprietary controllers and protocols. Consequently,
a custom application was developed. We will describe the
evolution of this application as a longitudinal case study by
means of four phases the system has gone through.

A. Phase 1: SMS v1

Functionality and technology: The original version of
the Site Management System (which we refer to as SMS v1)
was deployed at the organization itself for a client from the
railroad sector, as well as on-site for different clients from,
a.o., the fiber glass sector. Initially, SMS v1 only supported
the proprietary TSC controllers developed by the organization
itself. Later on, MCU controllers were added, but only for
certain clients. After initial deployment, more sites were added,
and the application provided monitoring of around 280 sites.

SMS v1 was developed using Visual Basic and MS Access
technology. The lack of a client-server architecture in the
technology stack forced the organization to adopt suboptimal
solutions for using the system in a distributed way: the MS Ac-
cess database was remotely accessed through a network drive,
and remote usage of the Visual Basic application was done by
using a Virtual Network Computing (VNC) connection.

Structure: An explicit and deliberate structure of the
application did not exist. Rather, the application was regarded
as one single monolithic module, which relied on a database
module. As a result, no code reuse was present: application
code was duplicated in an unstructured way for every deploy-
ment instance.

Evolvability: The coarse-grained structure of the applica-
tion resulted in certain quality deficiencies. The evolvability of
SMS v1 was hard to determine: changes made to a certain code
base were not always introduced in other code bases, which
resulted in distinct (inconsistent) code bases. As a result, any
change could have a different impact on a specific SMS v1
code base.

The arduousness of changing the code base was aggravated
by the amount of configuration parameters which were hard-
coded. For example, it was assumed that all TSCs in a network
were configured in the same way (e.g., the alarms from the air
conditioning system are registered on input 1). This resulted in
a lack of flexibility during deployment. Moreover, the growth,
increased usage, and multi-user access of the application
resulted in performance issues. The used technology was not
designed for scalability, and was focused on single-user access.

B. Phase 2: SMS v2

Functionality and technology: As the initial version
of SMS provided adequate functionality, the need for a new
version was largely motivated by non-functional requirements.
As reported above, the scalability and flexibility of the original
application was unsatisfactory. In 2005, an external software
development company was approached. Based on the existing
functionality, a new application was developed from scratch
and deployed in 2006. We will refer to this application as Site
Management System version 2 (SMS v2).

Because the lack of a client-server architecture was expe-
rienced as an obstacle for a scalable, flexible and multi-user
application, a radical change of the application architecture
was adopted. Instead of using the proprietary Microsoft tech-
nologies of SMS v1, a standard and web-based architecture
was adopted. More specifically, the Java 2 Enterprise Edition
(J2EE) platform was used, with Enterprise JavaBeans version
2.1 (EJB2) and Cocoon framework as characterizing compo-
nents.
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Structure: SMS v2 was developed following industry best
practices, which imposed a certain structure: different concerns
need to be implemented in different constructs (e.g., java
classes). For example, EJB2 prescribes that for each bean, local
and home interfaces need to be defined, and that RMI-access
to the bean must be provided by an agent class. Similarly,
a certain structure was imposed by the Cocoon framework,
which was employed for the web tier of the application.
The actual business logic (e.g., checking the status of a TSC
controller) was also implemented by separate classes. This
prevents the inclusion of business logic in framework-specific
classes: the controller class contains the actual description of
the controller, such as the IP address and port, protocol, or
phone number for dial-up access. Consequently, the parameters
for each controller were clearly separated from other concerns,
and could be configured separately, providing the required
flexibility.

This way of working leveraged existing knowledge in the
software engineering field, which is distributed in several ways.
First, design patterns describe generally accepted solutions on
how code should be structured in certain situations. For exam-
ple, the Strategy pattern from the Gang of Four pattern catalog
describes a structure to implement a “family of algorithms”,
and make them interchangeable [12, p. 315]. This structure was
applied in the SMS v2 application, and enabled the loading of
the correct implementation class of a specific controller (e.g.,
TSC or MCU). Second, the usage of frameworks enforces
certain industry best practices. For example, the Model-View-
Controller design pattern [13] can be implemented in any
object-oriented language by the programmer. Frameworks such
as Cocoon enforce programmers to adhere to this pattern,
thus eliminating a certain design freedom. Similarly, the usage
of EJB2 also encourages a programmer to separate certain
concerns. For example, by using object-relational mapping, a
separation between logic and persistence is enforced.

These examples illustrate how applying existing software
engineering knowledge enabled non-functional requirements
such as flexibility and scalability by prescribing a finer-grained
structure of software constructs. However, the application
exhibited an even finer-grained structure than prescribed by
the design patterns and frameworks. For example, a specific
class was created to trigger certain tasks at certain intervals
(e.g., checking if an alarm was generated). Separating this
functionality is not prescribed by design patterns or frame-
works: by considering it as business logic, it could be included
in the implementation classes. Nevertheless, separating this
rather generic functionality in its own constructs allowed the
reuse its code in different contexts. As a result, the structure
of software primitives for various entities started to exhibit a
similar structure.

Evolvability: While developing SMS v2, NS theory was
not yet formulated and the expanders were not yet developed.
As a result, the recurring code structure (which contained
many constructs) needed to be recreated manually. While still
requiring some effort, this was relatively easy as each particular
controller was rather similar.

Using a recurring structure resulted in other advantages
as well. Due to experience with similar code structures used
for other controllers (or even, similar code structures in other
applications), the performance of the application under dif-
ferent loads (e.g., number of status messages sent) could be

accurately estimated. As a result, scaling the application across
different sites could be managed.

C. Phase 3: PEMM v1
Functionality and technology: Around 2007, SMS

needed to support new functional requirements. First, the range
of supported controllers was to be extended. For example,
support was added for OLE for Process Control (OPC) servers.
An OPC server groups communication from multiple con-
trollers, which allows easier hardware setup. Second, specific
functionality for certain controller types was to be supported.
For example, a TSC controller provides configuration manage-
ment for physical site access control. By sending configuration
messages, access codes for specific sites with keypad access
can be set. Third, various output options were to be provided.
In case of certain alerts, an SMS could be sent to the operator,
in addition to the regular monitor-based output. Because of the
size of the new functional requirements, the application was
renamed in Power Environmental Monitoring and Management
(PEMM). We will refer to it as PEMM v1.

The technology stack of PEMM v1 was similar to the tech-
nology stack of SMS v2: a J2EE architecture with EJB2 and
Cocoon framework. The versions of the different components
were updated to more up-to-date versions.

Structure: The consistent and systematic separation of
different concerns in several projects had resulted in a recurring
software structure. For example, gathering and persisting data
for certain entities required several constructs for creating
a Create-Read-Update-Delete-Search (CRUDS) interface (i.e.,
jsp and html pages), java classes for the application server,
and relation database table specifications. As a result, the
required constructs in use could be reused for every new
instance. In order to facilitate this reuse, a set of pattern
expanders was created, which create the software constructs
based on a configuration file. For example, the constructs
for the data entities are created by the data element pattern
expander. Parameters for the data entity are specified in a
XML configuration file, also called a descriptor file. For a
data element, for following parameters need to be defined:
• Basic name of the data element instance.
• Context information (i.e., package and component

name)
• Data field information (i.e., names and data types for

the various attributes of the entity)
• Relationships with other elements

For the PEMM v1 application, such descriptor files were
created for, e.g., controllers, alarms, sites, etc.

After such pattern expansion, the application can be com-
piled and deployed, similar to a regular application. Pattern
expansion allows developers to quickly create a software
structure which separates many concerns. Developing such
structure from scratch would imply a disproportionate effort
when compared to the effort required for programming the
actual business logic. As a result, separating many concerns
is often omitted, which results in code of poorer quality. Such
pattern expansion is only feasible when every data element has
an identical structure.

Evolvability: Because of identical structures within the
code base, applying changes to the code becomes predictable,
or even deterministic. We discuss four main groups of changes.
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First, functional changes could be added to existing el-
ements by marginal expansion. For example, adding a data
attribute for a controller could be specified in an additional
data descriptor. A marginal expansion recognizes the element
for which the additional descriptor is specified, and adds
the necessary code in the existing code base. As a result,
certain functional changes can be made without overwriting
customizations, and are coined anticipated changes [10, p. 95]:

• an additional data field;
• an additional data entity;
• an additional action entity;
• an additional version of a task.

In PEMM v1, an example of a marginal expansion was the
addition of a comment field to an alarm data element. Adding
the comment field through marginal expansion not only adds
a field in the database table, but also adds that field in the java
bean, in all CRUDS screens, etc.

Second, new functionality can be added to the application
by generating new elements. These can be integrated in the
existing code base by providing relations to the existing
elements in the descriptor files. In PEMM v1, the following
functionality was added by expanding new elements into the
existing application:

• FAQs: a FAQ element allows customers to input
knowledge concerning specific alarms. These FAQs
are made available to operators who need to monitor
and manage the alarms.

• Asset management: in order to keep track of various
assets, an asset element was added to allow a techni-
cian to add the serial number of used or newly added
assets to a certain site.

• Service log: a service log element records the history
of all service interventions made on a particular site.

Third, functionality which cannot be implemented by ex-
panding new elements or by applying anticipated changes,
needs to be realized through customizations. Non-standard
functionality, such as user interface screens, reporting or au-
thentications needs to be programmed separately. Implementa-
tion classes for actions (e.g., checking a controller) are typical
examples of such customizations, which are added to the code
base as separate files. Another example for PEMM v1 is the
reporting functionality, which is an implementation class for an
action element which generates a file to import alarm data in
reporting tools. Separate files which are necessary in the code
base (such as the implementation classes) can be easily located
by programmers, since they always occur at the same location
within the element structure. However, customizations can also
be made by overwriting code in the generated files. Such
customizations are harder to track, as white-box inspection or
separate documentation is required to know where they are
located. In PEMM v1, the following customizations in the
expanded code needed to be made:

• Authorization: in an NS application, a base compo-
nent is added to configure user authorizations. In the
PEMM application, custom business rules were added
based on these configurations. For example, certain
users could acknowledge collections of alarms, instead

of acknowledging each alarm separately. In multi-
tenant deployments of PEMM, this ability needed to
be restricted to alarms from certain sites.

• User Interface: examples of user interface screens
which were added to the PEMM application as cus-
tomization are: (1) trending charts, which show certain
measurements over time; (2) Alarm overview screens:
color-coded tables which provide a high-level view
of active alarms; (3) Map view: a map which shows
sites with active alarms. This map view is linked to
the alarm overview screens.

D. Phase 4: PEMM v2
Functionality and technology: Around 2012-2013, the

organization decided to switch from the proprietary TSC
and MCU controllers and protocols towards industry-standard
controllers (Beckoff) and protocols (SNMP, Modbus over IP
and OPC DCOM DA). The introduction of these requirements
triggered an update of the PEMM application using newer
versions of the NS expanders (now called PEMM v2), which
incorporated a new mechanism to facilitate the extraction
(harvesting) and addition (injection) of customizations. While
the functional changes could have been implemented in PEMM
v1 without combinatorial effects, they required customizations
which would need to be redone in the case of a regeneration
at a later point in time. Therefore, the decision was made to
migrate to the new version of expanders. As the new version
of expanders can use the same descriptor files and expand
a similar source code structure, porting the application to a
new expander version required much less effort in comparison
with a rewrite. Using the new expander versions also implied
the incorporation of new frameworks (e.g., Knockout) and
new versions of the existing frameworks (e.g., Struts 2),
compilers (JDK) and servers (e.g., Jonas application server)
with their accompanying fixes and functional enhancements.
Moreover, the programming team changed: a developer of the
infrastructure monitoring organization, familiar with these new
frameworks, was appointed to work on the new application.

Structure:
Again, a large portion of the code base could be generated

using the expanders resulting in a very similar general structure
as before. This time however, anchors were added to the struc-
ture, which allow the harvesting/injection mechanism to work.
This mechanism solves the issue of overwriting customizations
in case of regeneration. Customizations to the code base (e.g.,
GUI elements) can now be made in three ways:

• insertions: customizations are put between predefined
anchors in the expanded code base;

• extensions: customizations are contained within sep-
arate files, added in the file structure in predefined
directories;

• overlays (discouraged): customizations overwriting
expanded files, but not being captured by the harvest-
ing/injection mechanism.

In case of a regeneration, the harvesting mechanism checks
the anchors for insertions and predefined directories for exten-
sions, which are both stored (“harvested”). This allows the
harvested code changes to be injected in the newly expanded
code base, and extended files to be added in the appropriate
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directories. The harvesting mechanism therefore leads to a
clean separation between the expanded code base and its
customizations. Given the recurrent structure of the expanded
code base, the main complexity of the application becomes
determined by the customizations, rather than the expanded
code base itself. In PEMM v2, customizations only represent
a small fraction of the overall code base: 5 percent.

Evolvability: The harvesting/injection mechanism enabled
new dimensions of evolvability: as customizations could be
applied to a newly generated code base, both could start to
evolve independently. The obsoleteness of marginal expansions
illustrates the usefulness of the mechanism. Additional data
attributes could now be simply added to the descriptors,
upon which a completely new code base (including injected
customizations) could be generated. Similarly, a new code base
could be generated based on new technology versions. For
example, when a new version of the presentation framework
provides new features which are included in the expanders,
a new code base could be generated and injected with the
customizations. The application is then enhanced with the new
features, without requiring additional effort. As a result, the
technologies used in the application could easily be kept up to
date.

IV. DISCUSSION

In this section, we respectively discuss some case reflec-
tions (Section IV-A), introduce a generalization of the four
case phases (Section IV-B) and discuss the implications of the
case findings for other enterprise layers (Section IV-C).

A. Case Discussion
Certain noteworthy reflections in relation to the current

state-of-the-art in software engineering can be made based on
the case documented in the previous section.

First, a tendency has been observed to deprecate or “throw
away” large portions of code when functional requirements
or team members change. This “not invented here syndrome”
[14] typically results in a lot of rework and little reuse. An
illustration of this phenomenon is the redevelopment of the
application after phase 1. The case further illustrates how, in
subsequent phases, this inclination can be mitigated by apply-
ing a fine-grained, reusable code structure. Many functional
changes have been implemented, and different programmers
have been working on the application, without the need to
deprecate the existing code base. This reuse enabled a focus
on applying functional changes, rather than reworking archi-
tectural aspects of the code. As a result, the application has
been updated regularly during 7 years, without requiring large
code deprecations.

Second, the contrast between the widely used design pat-
terns and software elements as proposed by NS Theory should
be noted. While design patterns might incorporate substantial
design knowledge regarding evolvability, their concrete imple-
mentation is still left to the programmer. Applying multiple
design patterns simultaneously results in a complex structure,
which, if created by hand, is error-prone and difficult to
maintain. This has been acknowledged by various scholars
reviewing the state-of-the-art of design patterns: “general
design principles can guide us, but reality tends to force trade-
offs between seemingly conflicting goals, such as flexibility
and maintainability against size and complexity” [15, p. 88].

... ... ...

Phase 1 Phase 2 Phase 3 Phase 4

...

Legend: * grey = module-specific part
              * white = recurring part

Figure 1. 4 phases, each one with their distinct variability dimensions.

Phase 2 of the case, where the code structure needed to be
recreated manually, illustrates this. However, in subsequent
phases, code reuse was enabled by the expansion mechanism.
As a result, manual coding was no longer required to apply
existing design knowledge, leading to a consistent and correct
application of the accumulated knowledge. The mechanism of
applying design knowledge through the use of expanders has
been discussed in [16].

Third, the lack of an expansion mechanism jeopardizes true
black-box reuse of software modules. As argued in [4, p.178]:
“in many cases, the problem is not that the component cannot
be found in a repository, or cannot be reused at this point in
time, the main problem is that this would create dependencies
of which the future implications are highly uncertain.” This
implies that white-box inspection remains necessary in order
to safely reuse modules in an evolving system, since not all
dependencies of a module can be considered to be visible in
its interface (i.e., hidden dependencies exist). The expansion
mechanism allows a one-time inspection of a modular structure
and, because of the systematic duplication of that structure,
a deterministic construction (guaranteeing the absence of ad-
ditional dependencies) of (re-)expanded code. Moreover, re-
expansions, such as illustrated in PEMM v2, even allow
the removal of newly discovered hidden dependencies in the
elements within older NS-based applications.

B. Generalizing the four phases to modular structures
The four versions of the SMS/PEMM system as described

in Section III can actually be analyzed in terms of general
modularity structures as well. That is, in each of the four
phases, a more NS-like approach was adopted in which the
software code was modularized in a more fine-grained way.
Reflecting on the essence of each of these phases may help us
in applying NS reasoning to modular systems in general and
to other application domains, such as modular organizational
artifacts. Figure 1 provides a visual overview of these four
phases in general modularity reasoning. We will now briefly
discuss each of them separately, while paying specific attention
to the variability dimensions and recombination potential in
each of the phases. The former specifies the dimensions along
which the evolution of the system takes place. The latter
quantifies the number of different ways in which the system
can be arranged, based on its modular structure.

1) Phase 1: one monolithic block.: In the first phase, the
application could more or less be considered as one monolithic
block. While any application itself obviously consists out of
a set of modular primitives as provided by the programming
language used (e.g., functions, structs, classes), no special
attention was given to a purposeful delineation of parts within
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the overall application. This is similar to a general system in
which no deliberate modularization is introduced. Flexibility
in such design is clearly limited as the recombination potential
basically only equals 1. This means that no parts of the
system can be re-used (within one system or between several
systems) or separately adapted and combined with other parts.
As a consequence, adaptations are mostly not contained into
one well-defined part of the overall system. Therefore, the
variability dimension is the system as a whole and Figure 1
therefore only represents one grey box for this phase.

2) Phase 2: identifying a first set of modules.: In the second
phase, the application was more purposefully structured, i.e.,
different parts were deliberately separated (e.g., classes for
local interfaces, home interfaces and agents). As the modular-
ization was already quite fine-grained and similar functionality
was required several times, a certain repetitiveness in the code
base became clear. Therefore, in order to clarify this way of
working in general modularity reasoning, the second column
of Figure 1 first of all represents a system as consisting out
of several subsystems or modules. Additionally, this phase
already exhibits a special kind of modularity as each of
these modules consists out of a manually constructed (mostly)
recurring part (i.e., the white part) and a part specific for that
module (i.e., the grey part). This means that the variability
dimension is redirected towards the set of individual modules:
the goal of modularity is that each of the modules can be
adapted (e.g., upgraded to a newer version) and be plugged
in into the system as a whole (i.e., recombined with one
another). Based on such modular design, the recombination
potential becomes kN when having N modules with each k
versions. Increasing N or k therefore significantly increases
the recombination potential of such system.

However, it needs to be mentioned that subdividing a
system and creating versions of each of these subsystems in
order to increase the recombination potential is only successful
if done wisely. That is, problems arise due to coupling at the
intramodular level if content is duplicated among modules.
Coupling at the intermodular level may arise if dependency
rippling occurs. Regarding the former, applying a change to a
duplicated part requires each of the modules (in which the
duplicated part is embedded) to be adapted. Regarding the
latter, ripple effects may cause that a change in one modules
requires all other modules (using this first module) to change
as well in order to be still able the use first module. The
NS theorems formulated in general modularity reasoning can
therefore be argued to focus on designing systems which
eliminate both such intramodular coupling (e.g., via Separation
of Concerns) and intermodular coupling (e.g., via Version
Transparency) [9].

3) Phase 3: reusing modular structures in a systematic
way.: As from the third phase, the software developers stopped
creating the recurring part manually and started generating
these recurring parts. Therefore, the left part of the third
column of Figure 1 shows general and explicitly predefined
parts which can be used as the “background” for modules.
More specifically, predefined structures for three types of
modules are provided in this example (e.g., in a software
context: an empty data, action, and flow element). In the right
part of the third column, the “background” of the module is
combined with the module-specific part in order to arrive at
a fully functional module. When analyzing the recombination

potential in this case, one has to consider both the versions
of the predefined modules (e.g., an ameliorated predefined
structure to encapsulate processing functions), as well as the
versions of the module-specific parts (e.g., an updated pro-
cessing function with a new encryption algorithm). Therefore,
in case we consider only one predefined module type j, the
recombination potential becomes l×kN when having l versions
of the predefined module type j, N instantiated modules of
type j, and k versions of each module-specific part. It should
be noticed that, for each new version of a predefined modular
structure applied to an already existing module, the module-
specific part should again be incorporated into this modular
“background” manually. Therefore, this recombination poten-
tial cannot fully be realized at this stage of modularization
yet.

4) Phase 4: expanding elements and harvesting customiza-
tions.: In the last phase, depicted in the fourth column
of Figure 1, the module-specific parts can be isolated and
separately stored (i.e., harvested, as represented in the right
side of the column) before a regeneration of the recurring
predefined modular structures is performed. Therefore, the
module-specific parts do not have to be incorporated manually
in this modular “background” any longer. Instead, these parts
are automatically injected into the general parts at predefined
locations. This enables to achieve the mentioned recombination
potential in the previous phase in reality. Stated otherwise, two
different variability dimensions have to be considered. First,
we have the different versions of the module-specific parts.
Second, there are different versions of the module-generic
parts. This means that classical version numbering in such
cases becomes rather useless: it does not make a lot of sense
anymore to consider a fixed “version” of the modular system as
it is the result of the combination of two different variability
dimensions (i.e., all general parts and module-specific parts
can have different versions).

C. Implications for other enterprise layers
While the core of this paper discussed how NS Theory

specifically modularizes the software layer within an enterprise
architecture, the previous subsections reflected on the implica-
tions for the software engineering field and modular systems
in general. Based on these reflections, some preliminary im-
plications for other enterprise layers can be discussed.

First, the case illustrates how software evolvability was
enabled by allowing changes to small modules, rather than
updating one large, monolithic design (cfr. removing the need
for code deprecation), as discussed in Section IV-A. In current
enterprise architecture approaches, AS-IS and TO-BE versions
are typically designed. Here, the focus is mainly directed
to two separate, monolithic designs as opposed to gradual
changes to small, individual modules. For truly evolvable
enterprise architecture layers, the evolution of smaller modules
should be addressed.

Second, the usage of repetitive structure instantiations
through expanders was contrasted with the documentation of
more generic design patterns (cfr. Section IV-A). On different
organizational layers, recurring structures or patterns have been
proposed as well [17]. Initial explorations of organizational
patterns (“elements”), conform with NS Theory, have already
been presented [3], [9]. For instance, De Bruyn [9] conceptu-
ally suggests a set of possible cross-cutting concerns and ele-
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ments at this level. Currently, these approaches have however
not yet been implemented in practice and should be further
elaborated in future research. Ultimately, this would lead to
the interesting phenomenon of clearly described variability di-
mensions within organizational layers, which provides decision
makers with clear options for evolving the organization [18].

Third, we discussed how NS Theory demonstrates the diffi-
culty of designing truly black-box modules (cfr. Section IV-A).
It has been argued by various scholars that several other layers
within organizations can be considered as modular structures
as well [19]. Based on these arguments, several attempts have
been made in the past to apply NS reasoning to such layers,
such as business processes and enterprise architectures [8],
[3], [9]. These efforts mainly concentrated on identifying and
proving the existence of combinatorial effects in a diverse set
of organizational layers and functional domains [8], [3], [20],
[21], demonstrating a similar issue: it is hard to create truly
black-box, fine-grained modules on these levels as well.

Fourth, the concept of recombination potential demon-
strates the relevance of addressing the difficult research chal-
lenges outlined in the previous implications. Achieving a
larger recombination potential in organizational artifacts such
as products, processes and departments would (1) enable mass
customization of products, which currently still results in high
costs and a large complexity [22]; (2) provide a systematic
approach to versioning artifacts, which is a large issue when
implementing innovation at a steady pace [1]; and (3) aid in
executing complex mergers and acquisitions, by considering
organizational departments as modular options [18].

V. CONCLUSION

In this paper, we discussed a longitudinal case study of
an NS application. We focused on how an increasingly fine-
grained software structure enabled different types of evolvabil-
ity. Such a description contributes to the NS knowledge base,
since it illustrates the theoretical implications of NS Theory.
Following this description, we generalized our findings towards
generic modular structures. Since different enterprise architec-
ture layers have been considered as modular structures before,
we applied the resulting insights to other layers. This effort
contributes to ongoing research in the Enterprise Engineering
field, by integrating the current paper with previous research,
and exploring future research challenges.
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