
Pymoult : On-Line Updates for Python Programs

Sébastien Martinez and Fabien Dagnat
IRISA, Télécom Bretagne

Brest, France
Email: first.last@telecom-bretagne.eu

Jérémy Buisson
IRISA, Écoles de Saint-Cyr Coëtquidan

Guer, France
Email: jeremy.buisson@irisa.fr

Abstract—On-line updates have proved to be essential for critical
long running applications that hardly can be stopped. Indeed,
security patches or feature enhancements need to be applied
frequently. Pymoult is a platform allowing on-line updates for
Python programs. It provides many mechanisms from the liter-
ature for updating running programs without requiring them to
be stopped, allowing update developers to combine and configure
the mechanisms for each update. This paper presents the design
of Pymoult and details the implementation of several mechanisms
it provides. With the help of an example, this paper also presents
how mechanisms can be combined and configured to design on-
line updates with Pymoult.

Keywords–On-line updates; Python; Software maintenance

I. INTRODUCTION

Today’s world expects software systems to be available at
every moment, whether the system provides critical services
like airport traffic control or whether its downtime would cause
user discomfort like an operating system forcing a reboot
for updating. Updating running software systems becomes a
critical issue as it requires the system to be restarted, causing
downtime and loss of state as well as financiary losses [1].
Not applying updates or postponing them is dangerous, as
updates are necessary to keep software safe from bugs and
security breaches. Dynamic Software Updating (DSU) allows
updates to be applied on running software without requiring
it to be restarted, causing little service disruption and no loss
of data. This goal is reached by using DSU mechanisms for
modifying the control flow (redefining functions) and the data
flow (converting the data to a new version) of a given program.
The majority of DSU platforms gather a predetermined set of
these mechanisms they use to apply each update.

A lot of platforms have been proposed [2], [3], defining
several mechanisms. Each mechanism has different proper-
ties and constraints. A DSU platform selects the best suited
mechanisms for the type of program it targets and the kind of
updates it expects. For example, K42 [4] is an operating system
embedding its own DSU system. It handles its updates by
swapping modified components when all old threads running
out of date code are terminated. These mechanisms are best
suited to the design of K42, which has a component based
architecture and runs short lived threads. Updates often consist
in the modification of components and, because the threads
are short-lived, waiting for old threads to terminate is an easy
way to ensure that components are swapped when they are
quiescent. But when applying an unforeseen kind of update,
the fixed set of mechanisms provided by the DSU system might
be inefficient or even it may be impossible. For example, K42
does not handle API changes very well because they need to
apply changes across the components.

Pymoult is a DSU platform providing several DSU mech-
anisms for updating Python programs. Its approach is to let an

update developer select and configure the DSU mechanisms
best suited for its update. While it requires more work from
update developers than automated DSU platforms, it ensures
that every update can be applied with best suited mechanisms.
This paper presents the design and implementation of Pymoult.
Section II discusses the implementation of DSU mechanisms
in Python and presents Pypy-dsu, our custom Pypy interpreter
enhanced for DSU support. Section III details the design
of Pymoult and discusses the implementation of some of
the mechanisms it provides before presenting an example
of dynamic update using Pymoult in section IV. Section V
compares Pymoult to other DSU platforms and Section VI
introduces future work before concluding this paper.

II. PYTHON AND ON-LINE UPDATES
While many DSU mechanisms can be implemented in

Python, some of them are impossible to develop using the
standard implementation. For that reason, Pymoult uses Pypy-
dsu, a Python interpreter enhanced with DSU features.

A. DSU capabilities of bare Python
Python is a dynamically typed, interpreted, object-oriented

language. It has natural indirection and allows dynamic manip-
ulation of programs models. The flexibility of Python and its
introspection features make it easy to implement DSU mech-
anisms. For example, object fields, class methods, variables
and functions are treated the same way, they are manipulated
directly through their name. This allows, for example, to easily
redefine a function foo by calling foo=foo_v2 since each
call to foo resolves the function name.

Fields can be added or deleted from objects and classes,
allowing easy modification of objects or classes. The type of an
object is kept as a __class__ field which refers to that type.
By consequence, changing the type of an object corresponds to
changing the class the __class__ field refers to and adding
or deleting fields to conform the object to its new type.

Thanks to the meta-object protocol embedded in Python,
Pymoult can implement a lazy method for updating objects.
In Python, attributes and methods of objects are accessed
(for writing, reading or calling) using __getattribute__
and __setattr__ methods of their class. By default, these
methods resolve to the implementation in the object class.
By overriding these methods for a given class, we can run
updating code on an object before accessing its fields. Objects
can therefore be updated only when actually used (i.e., when
one of their fields is accessed).

Python is also a uni-typed language, allowing variables to
change type dynamically without requiring specific tools. The
type checking uses duck-typing. For example, if a.foo is
called, the type of object a is checked for a method called
foo. Variables can therefore be modified freely except for the
deletion of fields used in the program.

80Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

B. The Pypy-dsu interpreter
Several DSU mechanisms can not be properly implemented

in Python. For example, in a standard Python interpreter, it is
not possible for a thread to suspend another one. This inability
is a problem when needing to suspend parts of a program.
We therefore decided to extend the features of a Python
interpreter. We chose to base ourselves on the Pypy interpreter,
a Python interpreter written in Python. Pypy is easier to
modify than CPython (the reference Python interpreter) and
already extends Python with object proxies and continuations
that were helpful when implementing DSU mechanisms. This
subsection presents new features that where added in Pypy-
dsu, our customized Pypy interpreter.

1) Traces for controlling threads: Suspending a thread is
implemented using traces. Python traces are functions called
after each statement. To suspend a thread, a trace waiting for
an event to be triggered is inserted. On the next statement, the
trace will block until the event is triggered, causing the thread
to be suspended. In Pypy, a trace cannot be set for a given
thread and traces only start on the next call to a function. In
Pypy-dsu it is possible to set a trace for a given thread using
sys.settrace_for_thread. When setting the trace, one
can choose whether the trace should start immediately or on
the next function call. This feature allowed the development
of mechanism to suspend and resume thread and control their
execution (see paragraph II-B3 for an example).

2) Intercepting object creation: Although Pypy provides a
garbage collector, it cannot be used to get a reference on every
object created since the starting of the program. Such feature is
essential when implementing mechanisms to update the data of
a program. We therefore added the possibility to setup a global
hook with set_instance_hook that is called each time an
object is created. We use that hook to maintain a pool of weak
references to each object created by the program. Each time
an object is created, a hook creating a weak reference to it and
adding it to the pool is called. This pool is used each time a
mechanism requires accessing all the data at a same time.

3) Dropping frames: It is not possible in Python to manip-
ulate the stack of a thread, making it impossible to support on
stack replacement of functions. We added new instructions to
drop frames from the stack. Calling a dropNframe value
statement will cause the N most recent frames to exit immedi-
ately, returning value. On stack replacement of a function by
a new one is implemented using traces and the drop2frames
function to force the two most recent frames to exit and
return value. A trace calling the new function before using
drop2frames is inserted in the target thread. When the
thread enters a frame running the old function, the trace
captures the local state of that frame and calls the new function,
giving that state as an argument. The return value of the new
function is then given as argument to drop2frames. The
last two frames (i.e., the frame of the trace and the frame of
the old function) are dropped and the return value of the new
function is returned to caller of the old function.

III. PYMOULT
To our knowledge, Pymoult is the first DSU platform

for Python programs. Its approach is to provide as many
DSU mechanisms as possible through an API that allows
their combination and configuration. Since the creation of
Pymoult in 2012, we implemented over 30 DSU mechanisms.
For that reason and for the features we previously detailed,

Application
variables

classes

functions

threads

Pymoult

DSU Mechanisms

On-line Patch

Update

Manager

new variables

new classes

new functions

Update Instance

Manager Instance

1

3

2

4

4

Figure 1. Map of an on-line update

we think that Python is a good language for writing DSU
mechanisms, and testing platforms designs. The design of
Pymoult is the result of incremental work. Since the first
version of Pymoult [5] and throughout the experiments we
conduced with it, the design evolved to its actual form we
present in this section.

To update a running program with Pymoult, the pro-
gram developer must start a specific Pymoult thread called
Listener in the program. That thread enables the supplying
of on-line patches for the running application. An on-line patch
is a piece of Python code that uses the Pymoult API. It contains
the code of the updated elements of the program (e.g., func-
tions, classes) and instructions on which DSU mechanisms to
use. Dynamic updates rely on Manager and Update classes.
A manager (an instance of the Manager class) is responsible
for applying modifications according to the instructions given
by an update object (an instance of the Update class).

Subsection III-A presents the design of Pymoult and details
how to write an on-line patch with Pymoult. Subsection III-B
details the implementation of some mechanisms provided by
Pymoult and section IV presents the example of an on-line
update using Pymoult.

A. Design
In Pymoult, an update is composed of several instances of

an Update class. These instances are supplied to a manager
that will apply them. For the remainder of this section, we use
the term update object to refer to instances of Update. An
on-line patch is therefore a set of update objects.

Figure 1 presents the architecture of a program undergoing
an on-line update. An on-line patch embeds new variables,
classes and functions 1 which are used by an update object
to specify the instructions for the manager 2 . The manager
controls and modifies the elements of the program 3 using
DSU mechanisms provided by Pymoult and as specified by
the update object 4 .

Pymoult provides several off-the-shelf manager classes that
can be instantiated in the program or in an on-line patch to
create new managers. The regular Manager class describes
a manager that operates only when the program calls its
apply_next_update method. This kind of manager allows
the program to decide when modifications can be applied
to it. The ThreadedManager class describes a manager
that operates in its own thread. It applies modifications each
time an update object is supplied to it. Pymoult also provides
preconfigured managers that are bound to an Update class
and will always use the same DSU mechanisms to apply every
modification. Lastly, one can extend the Manager class to

81Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

1 2 3 4 5 6 7 8 9

4b

check
requirements

preliminary
setup

waiting
alterability

suspend
threads

apply
modifications

pre-resume
setup

resume
threads

wait end of
update

clean up

clean failed
alterability

alterability not reached

Figure 2. The updating process

Update

name:str

check_requirements():str
preupdate_setup()
wait_alterability():bool
check_alterability():bool
clean_failed_alterability()
apply():str
preresume_setup()
wait_over()
check_over():bool
cleanup()

Manager

name:str

suspend_threads()
resume_threads()
add_update(Update)
apply_next_update()

Thread
∗ threads

updates ∗

threads ∗

Figure 3. Update and Manager classes

define one’s own manager. The classes involved in the updating
process are presented in Figure 3.

Update developers can define their own update classes
by extending the Update class. An update class has one
method for each step of the updating process. These methods
can use the DSU mechanisms provided by Pymoult through
calls to specific functions. Update objects are instances of
developer defined update classes and are supplied to managers.
The managers implement the updating process pictured in
Figure 2. When an update is supplied to a manager, that
manager checks the requirements of the update 1 . To do so,
it calls the check_requirements method of the update
that returns "yes", "no" or "never" if the requirements
are (respectively) met, not met or can never be met. If
"no" is returned, the update is postponed. If "never" is
returned, the update is canceled and if "yes" is returned, the
updating process continues. The manager then proceeds to the
preliminary setup step 2 where it installs elements required
for the next steps. To do so, it calls the preupdate_setup
method of the update. When the preliminary setup is finished
(i.e., the preupdate_setup method has returned), the
manager waits for the application to be in a safe state we
call alterability 3 by calling the wait_alterability
method of the update. That method returns True when the
application can be safely modified or False if a safe state
could not be met in a fixed amount of time. If False is
returned, the manager invokes a cleanup step 4b in which
it calls the clean_failed_alterability method of
the update for uninstalling the elements that were set up
in the preliminary setup step. The update is then post-
poned. If wait_alterability returns True, the manager
suspends some threads of the program 4 by calling its
suspend_threads method. If the update specifies threads
in its threads attribute, suspend_threads will suspend

them, if not it will suspend the threads controlled by the
manager (i.e., the threads in its threads attribute). If the
manager does not control any threads, no thread is suspended.
The manager then proceeds to the apply step 5 where it calls
the apply method of the update. That method realizes all
the modifications needed by the update (e.g. redefine func-
tions, transform the data). The following step of the manager,
the pre-resume setup step 6 , calls the preresume_setup
method of the update that follows the same principle as the
preupdate_setup method. Suspended threads are then
resumed by the resume_threads method of the manager
7 . When all threads are resumed, the manager waits for the

update to be over 8 by calling the wait_over method of
the update that returns when the update is over. Indeed the
apply step may have started tasks that run along the rest of the
program. For example, the update can start lazy modifications
of objects and requires all the objects to be transformed before
completing. When the update is over, the manager cleans up
any element installed in the preliminary setup and pre-resume
steps 9 by calling the cleanup method of the update.

While this updating process is exactly followed as we just
described by instances of ThreadedManager, instances of
Manager wait passively for a safe state and for the end of
the update. They give back the hand to the program each time
they have to wait. For that purpose, they call the non-blocking
check_alterability method (resp. check_over) in-
stead of wait_alterability (resp. wait_over).

B. Mechanisms
Mechanisms are provided as functions that can be called in

the methods of update classes. In this subsection, we follow the
updating process detailed in the previous one and present some
mechanisms that can be used for each step. Figure 4 presents
an update object using the mechanisms discussed here.

1) Preliminary setup: Some mechanisms provided by Py-
moult need preliminary installation before being used. This is
the case of the forceQuiescence mechanism that forces
a function to be quiescent. In the pre-update setup step, the
setupForceQuiescence function replaces the targeted
function by a stub that blocks all incoming, non-recursive
calls by waiting for a specific continue event to be activated.
A watcher thread is then started. That thread watches the
quiescence of the targeted function.

2) Waiting alterability: We call alterability the state of a
program when it can be updated without provoking errors.
Indeed, if the update is applied at a wrong moment, updated
code can call obsolete code and cause a crash. For example,
an outdated function could try to access an updated piece of
data that is no longer compatible with the function.

82Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Application Variables
a (of type A)

Classes
A

Functions
foo
bar

Threads
thread 1
thread 2

On-line patch
New Variables

New Classes
B

New Functions
foo2

Update Class
• wait_alterability
-forceQuiescence: foo
• apply
-redefineFunction: foo → foo2
-redefineClass: A → B
-access immediately instances of A,
updateToClass: A → B.

Manager Instance
• threads

thread1, thread2
Alterability

Quiescence of foo

update object

suspend

redefineFunction

redefineClass

Data Accessor
+ update to class

Figure 4. An example of update using Pymoult

Alterability can be detected by watching alterability cri-
teria such as the quiescence of a component to be up-
dated [6] or any condition on the state of the program.
These criteria depend on the modifications applied by the
update and may vary among all the updates. Several such
criteria are proposed in the literature as the tranquility [7]
or the serenity [8] of components. Pymoult provides several
functions for expressing alterabilty crtieria. Here, we discuss
the waitForceQuiescence function that expresses the cri-
terion “target function must be quiescent” while forcing its qui-
escence instead of waiting for it. waitForceQuiescence
waits for the watcher thread started in the previous step to
detect the quiescence of the target function, then returns.

3) Applying modifications:
a) Accessing and updating data: Pymoult provides

two ways to access data through the DataAccessor class
that behaves as an iterator. When creating an instance of
DataAccessor, one must precise the type of objects it
accesses and the strategy to use as a string. The immedi-
ate strategy accesses all the objects when the instance of
DataAccessor is created. It is then possible to iterate over
all the objects. The progressive strategy uses the meta-object
protocol described in section II-B to access objects lazily. Each
time an object of the given type is used by the program, it is
enqueued to the instance of DataAccessor. It is possible
to iterate over the objects progressively as they are accessed.
When the queue of accessed objects is empty, the iteration
hangs until new objects are accessed. As a consequence, it is
not possible to know a priori when all the objects have been
accessed and therefore, when the iteration ends.

When they are accessed, objects can be updated using the
updateToClass function. This function changes the type
of a given object to a given class by updating its __class__
attribute. A transformer supplied by the update developer is
then applied to the object to modify its attributes.

b) Updating functions and classes: One way to update
a function is to replace it by a new version. This mechanism
is provided through the redefineFunction function that

uses the native indirection of Python to change the body bound
to the old function’s name.

Similarly, classes can be redefined globally using
redefineClass or one can add new fields or modify
existing ones with addFieldToClass. In Python, classes
are just special objects that can be modified dynamically as
any other object.

4) Pre-resume setup: At this step, a mechanism may re-
quire some set up before resuming the excution of the program.
For example, this is the case of forceQuiescence. In this
step, the cleanForceQuiescence function activates the
continue event waited by the blocking stub added during the
pre-update setup. As a consequence, all the calls to the targeted
function are released.

5) Cleaning failed alterabilty: DSU mechanisms handling
alterability watching that required preliminary set up require
clean up if the program fails to reach alterability. If the
forceQuiescence mechanism fails to guide the program
to alterability, the cleanFailedForceQuiescence func-
tion stops the watcher thread, activates the continue event and
removes the stub installed in the pre-update setup step.

IV. AN EXAMPLE

Various uses of Pymoult have been tested to validate it.
Among the applications we have dynamically updated with
Pymoult is the Django application server. Pymoult allowed us
to update a running Django server from version 1.6.8 to version
1.6.10, choosing different DSU mechanisms for both succes-
sive updates (from 1.6.8 to 1.6.9 and from 1.6.9 to 1.6.10).
Such a complex update does not fit as an introductory example.
Instead, we present here the example of a program serving
pictures through a socket. This program is representative of
the Django example while staying simple.

Figure 5 presents the main elements of this program.
Picture objects are stored in folders a files dictionary.
Folders are served by the serve_folder method of
the ConnThread class which defines connection handling
threads. When starting, the program creates a listener to
receive future on-line patches (as explained in section III).
It also creates an instance of ThreadedManager and an
ObjectPool that will contain weak references to all the
created objects as explained in section II-B. That pool will
enable immediate access to objects for future updates. Each
time a new client connects to the server, a new ConnThread
instance starts responding to all the commands it receives. The
do_command method specifies the reaction to each received
command.

Figure 6 presents an on-line patch that introduces support
for comments. It is now possible to add a comment to pictures
and before serving pictures from a folder, the pictures are
annotated with their comment. The on-line patch redefines the
Picture class and the serve_folder and do_command
methods. In order to update the picture objects, the patch
provides a transformer named pic_trans.

The ServerUpdate class defines a new update class
which alterability criteria are the quiescence of the methods
do_command and serve_folder. Because the update
aims to redefine these two methods and to modify the picture
objects they both use, waiting for their quiescence before
updating ensures that it will not provoke errors. Before waiting

83Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

class Picture(object):
def __init__(self,path,name):...
def stream(self):...

class ConnThread(threading.Thread):
def __init__(self,connection):...
def serve_folder(self,folder):...
def do_command(self,command):...
def run(self):
while self.connection:
data = self.connection.recv(1024)
self.do_command(data.strip())

def main():
#create a socket to listen for commands
while True:
conn,addr = sock.accept()
ConnThread(conn).start()

if __name__ == "__main__":
listener = Listener()
listener.start()
manager = ThreadedManager()
manager.start()
ObjectsPool()
main()

Figure 5. Structure of the program

for alterability, the update captures all the ConnThread in-
stances and the main thread as they need to be suspended (Sus-
pending the main thread ensures that no new ConnThread is
created during the update). For that purpose, the patch defines
the method getAllConnThreads. When alterability is met,
the update uses addFieldToClass to redefine the methods
and uses a DataAccessor to access the picture objects. It
then uses updateToClass to update the accessed objects
and redefineClass to redefine the Picture class.

The on-line patch creates an instance of ServerUpdate
then supplies it to the manager. When the patch is sent to
the listener created by the application, it is loaded in the
application and its code is executed. The functions and classes
it contains are defined and the update object is created and
supplied to the manager.

Writing on-line patches as small programs which execution
will update the targeted program allows for a fine control over
the DSU mechanisms. For example, as presented in figure 7,
we could have chosen to apply the update without waiting
for the quiescence of do_command and serve_folder
and use on-stack replacement to update theses methods while
they are active. That would be a good choice if do_command
and serve_folder are rarely quiescent at the same time.
If the server handles a great amount of pictures, updat-
ing them all at the same time is long and disrupts the
service since connections are suspended during the update.
Updating picture objects lazily would be a better solution
as data would be migrated without suspending connections
(at the cost of the overhead introduced by the update of
objects the first time they are accessed). Figure 7 presents
this alternative patch for the update of the server. It uses
rebootFunction to capture the state of currently running
do_command and serve_folder methods then uses on-
stack replacement. For that purpose, the patch defines the
command_capture and serve_capture functions. The
update uses startLazyUpdate to start updating picture
objects lazily using the meta-object protocol described in II.

class Picture_V2(object):
def __init__(self,path,name):
...
self.commentary = "Witty comment"
self.basepath = path

def stream(self):...
def comment(self,text):...
def annotate(self):...

def getAllConnThreads():...
def pic_trans(pic):
pic.basepath = pic.path
pic.commentary = "Witty comment"

def serve_folder_v2(self,folder):...
def do_command_v2(self,command):...
class ServerUpdate(Update):
def preupdate_setup(self):
self.threads = getAllConnThreads()

def wait_alterability(self):
return waitQuiescenceOfFunctions([do_command,

serve_folder])
def apply(self):
addFieldToClass(ConnThread,"do_command",

do_command_v2)
addFieldToClass(ConnThread,"serve_folder",

serve_folder_v2)
accessor = DataAccessor(Picture,"immediate")
for picture in accessor:
updateToClass(picture,Picture,Picture_V2,

pic_trans)
redefineClass(Picture,Picture_V2)

conn_update = ServerUpdate(name="conn_update")
main.manager.add_update(conn_update)

Figure 6. Simplified on-line patch

class ServerUpdate(Update):
def preupdate_setup(self):
self.threads = getAllConnThreads()

def wait_alterability(self):
return True

def apply(self):
addFieldToClass(ConnThread,"do_command",

do_command_v2)
addFieldToClass(ConnThread,"serve_folder",

serve_folder_v2)
for thread in self.threads:
rebootFunction(do_command,do_command_v2,

command_capture)
rebootFunction(serve_folder,serve_folder_v2,

serve_capture)
startLazyUpdate(Picture,PictureV2,pic_update)
redefineClass(Picture,Picture_V2)

Figure 7. An alternate on-line patch (simplified)

V. RELATED WORK
To our knowledge, Pymoult is the only DSU platform for

Python and its approach letting update developers combine
and configure DSU mechanisms is an actual topic in the
field. While classical DSU platforms use the same combination
of mechanisms to apply every update, some platforms allow
update developers to configure some mechanisms.

In ProteOS, [9] Giuffrida et al. propose to let update
developers decide the alterability criteria for each update. The
criteria are expressed as filters on the state of the OS. ProteOS
allows processes to be updated by starting the new version of
a process and transferring and updating the data from the old
process to the new one. The data is accessed immediately using
code instrumentation.

K42 [4] is an operating systems that allows its components
to be swapped at runtime. When applying an on-line patch, it

84Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

forces all swapped components to be quiescent by suspending
all threads created after the on-line update is requested and
waiting for the old threads to terminate. Components are
progressively swapped when they become quiescent.

Jvolve [10] is a DSU platform for Java programs. It
allows classes and methods to be redefined. Update developers
provide the source code of the program and of its updated
version as well as class transformers (for updating static class
fields) and object transformers (for updating object fields).
The alterability criteria for every update is that the program
must reach a VM safe point (usually a point where the
garbage collector is called) where the redefined methods are
quiescent. Update developers can also indicate methods whose
quiescence will constitute an additional alterability criterion.
When alterability is met, all threads are suspended and Jvolve
updates methods using indirection at VM level and on-stack
replacement. It accesses objects using the garbage collector
and updates them immediately.

For these three platforms, the on-line patch supplied by
the update developer is made of the source code of the new
version of the program plus some instructions (K42: code of
the transfomers; Jvolve and ProteOS: code of the transformers
and of the alterability criteria). While Jvolve and ProteOS
allow update developers to configure mechanisms by giving
additional alterabilty criteria, they support little variability on
the updating process. These platforms force the configuration
of DSU mechanisms (e.g alterability criteria are quiescence of
some functions) and only allow update developers to extend
some of them (e.g by giving new functions that need to be
quiescent for alterability). To our knowledge, Pymoult is the
first DSU platform giving as much control on the mechanisms
used for on-line updates.

VI. CONCLUSION AND FUTURE WORK

We presented the design of Pymoult and presented how
it allows DSU mechanisms to be combined and configured
when writting an on-line patch. We also presented an example
of on-line update of a Python program using Pymoult.

Pymoult is built atop a modified version of the Pypy
interpreter. Because the modifications we applied to Pypy are
little intrusive on the interpreter, they have no impact on the
way Pypy interprets Python programs. Pymoult is therefore
fully compatible with all the applications that are compatible
with Pypy. Nevertheless, many common Python applications
have compatibility issues with Pypy. The purpose of Pymoult
was to find a design that allows DSU mechanisms to be easily
configured and combined. Therefore, compatibility with every
Python application was not an issue. Nonetheless, to ensure
better compatibility with common Python software, we are de-
veloping a custom version of the CPython interpreter, the most
used Python interpreter. Having a CPython-dsu interpreter will
allow Pymoult to be tested with more real-life Python software.

Updating Django proved that Pymoult can be used to
update real world software. Further experiments, such as
overhead measurement, are required before validating the use
of Pymoult for production software.

Pycots [11], a component model enabling architectural
reconfiguration of applications, is an example of the use of
Pymoult. The model is paired with a development process for
specifying reconfiguration and proving their corectness using
Coq before executing them using Pymoult.

The design of Pymoult is well suited for designing cus-
tomized updates for Python programs. Having a similar design
for different languages would be a good thing because it would
allow combining DSU platforms for updating complex appli-
cations made of several programs using different languages.
We are currently working on a C version of Pymoult as a
means to establish an equivalent design for C programs.

Pymoult is free software published under GPL License.
Its source code, as well as several examples can be found
on the project repository [12]. The example presented in
subsection IV is based on the “interactive” example.

ACKNOWLEDGEMENT
The work presented in this paper is funded by Brittany

regional council, as part of project IMAJD.

REFERENCES
[1] Channelinsider, “Unplanned IT Outages Cost More than $5,000

per Minute: Report,” http://www.channelinsider.com/c/a/Spotlight/
Unplanned-IT-Outages-Cost-More-than-5000-per-Minute-Report-105393,
2011, [Online; accessed 28-September-2015].

[2] E. Miedes and F. D. Muñoz-Escoí, “A survey about dynamic software
updating,” Instituto Univ. Mixto Tecnológico de Informática, Universitat
Politècnica de València, Tech. Rep. ITI-SIDI-2012/003, May 2012.

[3] H. Seifzadeh, H. Abolhassani, and M. S. Moshkenani, “A survey
of dynamic software updating,” Journal of Software: Evolution and
Process, 2012. [Online]. Available: http://dx.doi.org/10.1002/smr.1556

[4] C. A. N. Soules et al., “System support for online reconfiguration,” in
Proc. of the Usenix Technical Conference, 2003, pp. 141–154.

[5] S. Martinez, F. Dagnat, and J. Buisson, “Prototyping DSU techniques
using Python,” in HotSWUp 2013 : 5th Workshop on Hot Topics in
Software Upgrades, USENIX, Ed., 2013.

[6] J. Kramer and J. Magee, “The evolving philosophers problem:
Dynamic change management,” IEEE Trans. Softw. Eng., vol. 16,
no. 11, Nov. 1990, pp. 1293–1306. [Online]. Available: http:
//dx.doi.org/10.1109/32.60317

[7] H. Chen, J. Yu, C. Hang, B. Zang, and P.-C. Yew, “Dynamic software
updating using a relaxed consistency model,” IEEE Transactions on
Software Engineering, vol. 37, no. 5, 2011, pp. 679–694.

[8] M. Ghafari, P. Jamshidi, S. Shahbazi, and H. Haghighi, “An architectural
approach to ensure globally consistent dynamic reconfiguration
of component-based systems,” in Proc of the 15th Symposium
on Component Based Software Engineering, ser. CBSE. New
York, USA: ACM, 2012, pp. 177–182. [Online]. Available: http:
//doi.acm.org/10.1145/2304736.2304765

[9] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Safe and automatic
live update for operating systems,” in Proc of the International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS. New York, USA: ACM, 2013,
pp. 279–292. [Online]. Available: http://doi.acm.org/10.1145/2451116.
2451147

[10] S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic software
updates: A vm-centric approach,” in Proc of the Conference on
Programming Language Design and Implementation, ser. PLDI.
New York, USA: ACM, 2009, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1542476.1542478

[11] J. Buisson, E. Calvacante, F. Dagnat, S. Martinez, and E. Leroux,
“Coqcots & Pycots: non-stopping components for safe dynamic re-
configuration,” in Proc of the 17th Symposium on Component-Based
Software Engineering, ser. CBSE, ACM, Ed., New York, USA, 2014,
pp. 85 – 90.

[12] S. Martinez, J. Buisson, F. Dagnat, A. Saric, D. Gilly, and A. Manoury,
“Pymoult,” https://bitbucket.org/smartinezgd/pymoult, 2008, [Online;
accessed 28-September-2015].

85Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

http://www.channelinsider.com/c/a/Spotlight/Unplanned-IT-Outages-Cost-More-than-5000-per-Minute-Report-105393
http://www.channelinsider.com/c/a/Spotlight/Unplanned-IT-Outages-Cost-More-than-5000-per-Minute-Report-105393
http://dx.doi.org/10.1002/smr.1556
http://dx.doi.org/10.1109/32.60317
http://dx.doi.org/10.1109/32.60317
http://doi.acm.org/10.1145/2304736.2304765
http://doi.acm.org/10.1145/2304736.2304765
http://doi.acm.org/10.1145/2451116.2451147
http://doi.acm.org/10.1145/2451116.2451147
http://doi.acm.org/10.1145/1542476.1542478
https://bitbucket.org/smartinezgd/pymoult

	Introduction
	Python and on-line updates
	DSU capabilities of bare Python
	The Pypy-dsu interpreter
	Traces for controlling threads
	Intercepting object creation
	Dropping frames

	Pymoult
	Design
	Mechanisms
	Preliminary setup
	Waiting alterability
	Applying modifications
	Pre-resume setup
	Cleaning failed alterabilty

	An example
	Related work
	Conclusion and future work
	References

