
A Pattern Language for Application-level Communication Protocols

Jorge Edison Lascano1,2, Stephen Wright Clyde1
1Computer Science Department, Utah State University, Logan, Utah, USA

2Departamento de Ciencias de la Computación, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador

email: edison_lascano@yahoo.com, Stephen.Clyde@usu.edu

Abstract—Distributed applications depend on application-layer
communication protocols to exchange data among processes and
coordinate distributed operations, independent of underlying
communication subsystems and lower level protocols. Since such
protocols are application-specific, developers often must invent
or re-invent solutions to reoccurring problems involving sending
and receiving messages to meet specific functionality, efficiency,
distribution, reliability, and security requirements. This paper
introduces a pattern language, called CommDP, consisting of
nine design patterns that can help developers understand
existing reusable solutions and how those solutions might apply
to their situations. Consistent with other pattern languages, the
CommDP patterns are described in terms of the problems they
address, their contexts, and solutions. The problems and
consequences of the solutions are evaluated against four
desirable qualities: reliability, synchronicity, longevity, and
adaptability for scalable distribution.

Keywords-design patterns; pattern languages; communication

protocols.

I. INTRODUCTION

At the application level, a distributed system is two or
more processes sharing resources and working together via
network communications to accomplish a common goal
[1][2]. Such systems are ubiquitous in today’s Internet-
connected world and are found in virtually every application
domain, such as personal productivity tools, social media,
entertainment, research, and business. Even single-user
software systems that appear to be non-distributed may in fact
communicate with other processes in the background to
download updates, track usage statistics, or capture error logs,
and are therefore actually distributed systems.

In general, the developers of a distributed system try to
increase its overall throughput, reliability, and scalability by
hosting data and/or operations on multiple machines, while
minimizing network traffic, congestion, and turn-around
times. Exactly how they do this depends heavily on the nature
and requirements of the application. In some cases, developers
may choose to distribute instances of one type of resource,
e.g., image files in a peer-to-peer shared photo library. In other
situations, developers may group resources such that all
instances of a single type are on one server. Still in other cases,
developers can take hybrid approaches, distributing certain
types of resources among peers and hosting other types on
dedicated servers. A closely related design issue deals with the
granularity of the distributed resources, i.e., data and
operations. From a data perspective, the possible choices
range from whole databases to individual records or even
individual fields within records. From an operations

perspective, the choices range from entire subsystems to
atomic operations. With today’s programming languages,
many developers follow the object-oriented paradigm,
encapsulating operations with data and making choices for
granularity that range from entire sets of objects to object
fragments [3].

Besides deciding on the granularity and distribution of
resources (data, operations, or objects), developers often have
to consider requirements for security, fault tolerance,
maintainability, openness, extensibility, scalability, and
dynamic quality of service [2]. The degree to which an
application possesses these desirable characteristics is
primarily a consequence of architectural design choices,
which, in turn, place new requirements on inter-process
communications.

The problem is not that existing application-level
communications protocols are poorly designed and
implemented; rather, the problem is that application developer
has to re-invent or re-design them for every new application.

In this paper, we will refer to an exchange among two or
more processes for a particular purpose as a conversation. A
single conversation may be short and simple, like querying a
stock’s price, or it could be long and complex, like the
streaming of a video. The rules that govern a particular type
of conversation are a communication protocol and a collection
of protocols is called a protocol suite [4][5].

Application-layer communication protocols (ACPs) are
often defined on top of other protocols. For example, the
Hypertext Transfer Protocol (HTTP), which is an ACP, is
defined on top of the Transmission Control Protocol (TCP)
[1]. Many higher level ACPs, like webservice-based ACPs,
are in turn defined on top of HTTP [1]. Section II provides
additional background on protocols and protocol suites, as
well as a brief discussion on layered communication
subsystems.

Because requirements for ACPs can come from an
application’s (a) functional requirements, (b) architectural
design, and (c) use of lower layer protocols, coming up with
effective designs can be challenging. Fortunately, the
problems that developers are likely to encounter are not
uncommon and have known solutions. The key is to capture
this knowledge in a way that developers can easily find it and
adapt it to a new application. This is precisely what design
patterns can do [6].

Unfortunately, design patterns for communication
protocols at application layer have yet not been gathered,
correlated, and formally organized into a cohesive and
thorough collection. To this end, this paper introduces a
system of design patterns, i.e., a pattern language, for ACPs,

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

called CommDP. The patterns in CommDP come from a
variety of sources and are by themselves not new ideas, as is
the case for all newly documented design patterns [7]. Section
III provides more background information on design patterns
and pattern languages, as well as information about related
work.

Since designing ACPs is different from designing
executable software, it is necessary to discuss desirable
qualities for protocols. Section IV introduces four, namely
reliability, synchronicity, longevity, and adaptability for
scalable distribution. Section V presents a design pattern
template that incorporates these characteristics into the
definition of communication problems and the consequences
of pattern solutions.

Section VI-A introduces three communication idioms that
act as conceptual building blocks for all the ACP patterns in
CommDP. We then provide an overview of the ACP patterns
in Section VI-B. Additional details for the CommDP patterns
are available on-line1.

Patterns are rarely used in isolation; instead, developers
typically weave multiple pattern instantiations together to
create complete solutions [8]. A system of patterns, i.e., a
pattern language, not only includes a collection of patterns,
but relationships among them that help developers know how
they might be effectively combined [9]. Section VI-C
provides a digest of these relationships for CommDP. Finally,
in Section VII, we summarize the value of CommDP and
outline our future research direction.

II. PROTOCOLS AND PROTOCOL SUITES

Software and electrical engineers model, design, and
implement inter-process communications in layers. Fig. 1
shows a simple 5-layer model commonly favored by those

who work with IP-based protocols [1][10]. There are several
other common models, such as the 7-layer OSI model [11]. A
conversation between Process 1 and Process 2 can be
discussed at any layer and, for each layer, it must adhere to
agree upon protocol(s) for that layer. For example, if Process
1 were a web browser, Process 2 were a web server, and the
conversation a simple web-page request, then the application-

1 http://commdp.serv.usu.edu/

layer protocol would be HTTP, the Transport-layer protocol
would be TCP, and the Network-layer protocol would be IP.

Besides providing a convenient way for discussing
protocols, layered models establish a basis for creating
substitutable software communication subsystems. Since we
are addressing ACPs in this paper, we do not deal directly with
design and implementation of these software components.
Nevertheless, we assume that appropriate communication
subsystems exist at the transport layer for streaming of
unstructured data and transmitting datagrams (semi-structured
data). Section V relies on this reasonable assumption to define
four communication idioms.

At the application layer, a protocol governs why, when,
and how processes interact with each other to accomplish a
common goal. Specifically, an ACP should define the
following:

1. the processes involved in the interaction in terms of

the roles they play during a conversation;

2. the possible sequences of messages for valid

conversations;

3. the structure of the messages;

4. the meaning of the messages; and

5. relevant behaviors of the participating processes.

Because processes in a distributed system typically have

to communicate with each other for many different tasks, e.g.,
authentication, resource sharing, and coordination, it is
common for a distributed system to require multiple ACPs,
i.e., an ACP suite.

III. DESIGN PATTERNS AND PATTERN LANGUAGES

Christopher Alexander et al. defined a pattern as a reusable
solution to a reoccurring problem [9]. Kent Beck and Ward
Cthe detailsunningham started to apply the concept of pattern
languages to software engineering in 1987 [12], and the idea
was later popularized by Eric Gamma et al. with their
landmark language of 23 patterns [6]. Since then, pattern
languages have been documented for many areas of software
engineering, including architectural design [13][14], user-
interface design [15], event handling [16][17][18], and
concurrency [19]-[25]. There are even patterns specifically for
distributed computing [8], distributed objects [26][27][28],
communication software [29][30], RESTful and SOAP web
services [31], cloud computing [32], and distributed real-time
and embedded systems [33]. However, to date, no pattern
language has been published specifically for ACPs.

There are two hoped-for benefits of pattern languages that
are important to ACP design. First, they create a vocabulary
that enables developers to discuss complex ideas in a few
words [28]. Second, they allow developers of all experience
levels to benefit from expert reusable solutions [34].

IV. QUALITIES OF COMMUNICATION PROTOCOLS

Like software, ACP suites, as whole, should possess
certain desirable qualities that contribute to the overall success
of a system. Some of these desirable qualities come directly

Figure 1. 5-Layer Model for IP-based Communications

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

from the software arena. For example, cohesion is the degree
to which the elements of a software component align with a
single purpose [35]. Cohesion and its definition can apply
almost directly to ACPs, but this is a subject for future
research (see Section VII). Another desirable software quality
directly applicable to ACPs is modularization. Modularization
is the degree to which a system is divided up into independent
components [36]. When a system has good modularization,
developers do not have to look very far beyond a component
to understand it or reason about it. We believe the same to be
true for ACPs, but the details of modularization applied to
ACPs are also a subject for another paper (see Section VII).

Although we believe cohesion and modularization are
important qualities for ACPs, they do not directly help in
describing reoccurring communication problems nor are they
good discriminators for reusable solutions, because all pattern
solutions should, by definition, have good cohesion and
modularization. So, we turn our attention to four other
qualities with discriminating definitions for ACPs, namely:
reliability, synchronicity, longevity, and adaptability for
scalable distribution.

A. Reliability

For an ACP, reliability is the degree to which a process
that sends a message as part of a conversation obtains an
assurance that the intended recipient(s) received it, entirety
and uncorrupted, and reacted as prescribed in the ACP. At the
application level, reliability is typically achieved by the
recipients returning messages that provide the sender with
confirmation that the message was received and/or processed.
When such return messages fail to arrive in a timely fashion,
reliable ACPs will require the sender to retransmit the original
message.

In Section VI, where we present an overview of the ACP
patterns in CommDP, we rank each of the patterns in terms of
reliability using the following 3-point rubric:

Rank/Criteria
3 The problem (P) addressed by the pattern is primarily

concerned with reliability and the solution (S) can
make the following guarantees under normal and
extreme conditions:
a. The sender can distinguish between successful

and failed conversations.
b. The receiver can distinguish between successful

and failed conversations.
c. In successful conversations, any process X that

sends a message M to process Y, gives a timely
assurance to X (in some subsequent message)
that Y received M.

d. In successful conversations, for any process X
that sends a message M to process Y, if M is
supposed to trigger a non-trivial behavior in Y,
then X receives a timely assurance that Y
successfully handled M.

2 P is concerned with reliability and S can guarantee at
least (a) and (c) from above in normal situations.

1 P is not concerned with reliability and S doesn’t limit
reliability.

Clearly, there are other conceivable problem/solution
criteria for reliability not listed above, such as a reoccurring
problem where reliability is a major concern and a solution
that doesn’t address it. However, we don’t include such
meaningless classifications because they wouldn’t help
classify patterns with expert, reusable solutions.

B. Synchronicity

In the most general sense, synchronization deals with the
coordinated execution of actions in a distributed system and
what the state information is necessary for that coordination.
This broad definition encompasses, but is not limited to, the
common view among programmers that synchronous
communications occur when the sender of a message stops
and waits for a response from the message receiver [37].
However, this is not the only way to achieve synchronization.
Some other common mechanisms are logical clocks [38][39],
vector clocks [40][41], vector timestamps [42], optimistic
concurrency controls [43], and timing signals.

To evaluate the synchronization requirements for ACPs,
we consider: (a) what are the actions that need to be
coordinated, (b) where will those actions be executed, and (c)
what kind of state information is needed to achieve the desired
coordination. A distributed system may perform many
different tasks comprised of numerous operations, but rarely
all of them have to be fully coordinated. In fact, the more
independent the individual operations are, the more a system
can maximize concurrency and increase throughput. From a
coordination perspective, where the operations take place is
actually more important than what the operations do. For
example, if all of the actions occur in just one process, then
that process may not need to know anything about the state of
the other process. Once developers know what operations
have to be coordinated and where they will execute, they can
consider what local or global state information the
coordination logic will need.

To rank synchronicity for ACP patterns, we will use the
following definitions:

 C is a conversation involving a closed set of processes,
𝐶. 𝑃 = {𝑝1 , … , 𝑝𝑛} , and a set of messages, 𝐶. 𝑀 =
{𝑚1, … , 𝑚𝑛} , such that 𝑠𝑒𝑛𝑑𝑒𝑟(𝑚𝑖) ∈ 𝐶. 𝑃 ∧
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠(𝑚𝑖) ⊆ 𝐶. 𝑃 for 1 ≤ 𝑖 ≤ 𝑛 where
𝑠𝑒𝑛𝑑𝑒𝑟(𝑚𝑖) is the process that sent message 𝑚𝑖 and
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠(𝑚𝑖) is the set of processes that received 𝑚𝑖.

 A is a set of operations, {𝑎1, … , 𝑎𝑛} that run on 𝐶. 𝑃 and
whose execution requires coordination, e.g., ordering,
simultaneous execution, etc.

 h(a) is the host process for operation, 𝑎, where 𝑎 ∈ 𝐴
and ℎ(𝑎) ∈ 𝐶. 𝑃

 s(a) is the state information that h(a) needs to coordinate
a’s execution with the rest of the operations in A.

 H(A) is the set of host processes for all operations in A
Below is an informal 3-point rubric for ranking

synchronicity for CommDP patterns using these definitions.
We believe that a more rigorous ranking system would have
value beyond the categorization of ACP patterns, and its full
definition is beyond the scope and purpose of this paper.

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Rank/Criteria
3 The problem (P) addressed by the pattern deals with

situations where |H(A)| > 1 and the solution (S) can
guarantee that for all a ∈ A, h(a) receives s(a) via
messages, mi ∈ C. M, in time to do the prescribed
coordination.

2 P deals with situations where |H(A)| = 1 and S can
guarantee that for all a ∈ A, h(a) receives s(a) via
messages, mi ∈ C. M, in time to do the prescribed
coordination.

1 P is not concerned with synchronicity, e.g., |A| = 0,
and S does not limit synchronicity.

C. Longevity

Longevity is the degree to which an ACP can support
long-running conversations caused by long-running
operations. The primary problem for conversation with long-
running operations is that there could be huge span of times
when processes are uncertain of each other’s states. Consider
a simple request/reply conversation where some process A
sends a request to B, but B takes a long time to execute the
requested operation and sends back a reply. While waiting for
the reply, process A doesn’t know if B received the request,
has failed, or is just taking a long time. ACPs that support
long-running operations include mechanisms for exchanging
state information independent of results.

We rank the longevity for ACP patterns according to the
following 3-point rubric:

Rank/Criteria
3 The problem (P) addressed by the pattern is primarily

concerned with long-running conversations and the
solution (S) can guarantee the following in
successful conversations:
a. Participants made aware of each other’s states in

periodically.
b. Each participant in the conversation can detect

when other participants are no longer available or
accessible.

2 P is concerned with long-running conversations and
S provides for (a).

1 P is not concerned with long-running conversations
and S doesn’t limit longevity.

D. Adaptability for Scalable Distribution

ACPs can support scalability by providing location
transparency and/or replication transparency [42], and by
allowing resources (data, operations, or objects) to be
distributed across multiple hosts. To understand location and
replication transparency, consider a website with a large
number of resources. It can support scalability by placing the
various resources on an expandable collection of backend
servers and use a front-end server to distribute requests from
browsers. If the browser doesn’t need to know where a
resource is actually located, then the system supports location
transparency. Similarly, as traffic increases, the system could
replicate resources across multiple backend servers. If the
client doesn’t have to know that replicas exist, then the system
supports replication transparency. Both location and
replication transparency simplify scalability.

Another technique for supporting scalability is allowing
complex resources to be broken up into smaller resources and
distributed across multiple servers. One approach for doing
this is to untangle cross-cutting concerns, like security or
logging, from complex operations and host these pieces of
functionality on proxies [44][42].

Here is a simple rubric for the adaptability for scalable
distribution.

Rank/Criteria
3 The problem (P) addressed by the pattern is primarily

concerned about scalability or the distribution of
action or resources and the solution (S) can provide
two or more of following:
a. Location transparency for shared resources

distributed across multiple hosts
b. Load balancing with shared resources replicated

across multiple hosts
c. Untangling of cross-cutting concerns into

separate actions
2 P is concerned with scalability or distribution of

resources and S provides at least one (a), (b), or (c).
1 P is not concerned with scalability or distribution and

S doesn’t limit them.

V. TEMPLATE FOR COMMUNICATION-PROTOCOL

PATTERNS

To document the patterns in CommDP, we have
developed a template, loosely based on the way Gamma,
Helm, Johnson and Vlissides documented their patterns [34],
referred to here as the GoF template. The main goal is to keep
the documentation as simple as possible, while still capturing
the details of the pattern. Following are the elements of
CommDP pattern template.

A. Name

As with the GoF template, the name uniquely identifies the
pattern. Since the name will become part of the vocabulary for
the pattern language, it is important that it captures the essence
of the pattern, distinguishes it from other patterns, and is as
concise as possible.

B. Intent

The intent is an abstract for the pattern. It summarizes the
problem, the context, and the solutions, particularly in terms
of reliability, synchronicity, longevity, and adaptability for
scalable distributes.

C. Description

The description consists of three subsections that explain
the problem, context, and solution. The problem subsection
relates closely to the Motivation part in the GoF template, in
that it explains the nature of the reoccurring communication-
protocol design problem. This subsection should highlight the
problem’s need for reliable communications, synchronization,
long-running conversations, or scalable distribution. The
context subsection is like the Applicability in the GoF
template, capturing information when the pattern may or may
not be applicable and assumptions about distributed systems
in which the communications will take place. The solution is

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

analogous to the Structure in the GoF template. It focuses on
the describing protocol design ideas and how they can be
adapted.

D. Consequences

As with the GoF template, the consequences are important
part of CommDP pattern definitions because developers will
use them to determine if the pattern is a good fit for a particular
situation. The consequences of CommDP patterns are
described in terms of the qualities discussed in Section 4. The
rankings provide a general classification, and pros explain the
consequences in more detail.

E. Known Uses

Like the GoF template, this part references known
instances of the pattern in production systems

F. Aliases and Related Work

The section combines two elements of the GoF template
by the similar names.

G. References

This section contains a bibliography for the citations made
elsewhere in the pattern definition.

VI. COMMDP

A design pattern is composed of a set of patterns and
idioms that are used together to solve a design engineering
problem.

A. ACP Idioms

Before launching into a description of CommDP’s
patterns, it is important to first introduce three fundamental
building blocks for all ACPs: point-to-point send, multicast,
and broadcast. These are idioms instead of patterns because
their usage depends on the lower layer communication
protocols and because, by themselves, they do not address the
qualities discussed in Section 4.

A point-to-point send is the transmission of a single
message from one process to another, such as a message sent
over a TCP connection or via a UDP datagram. An underlying
communication subsystem may provide some reliability
relative to the transmission but, at the application-level, a
single message does not allow the sender to know if the
receiver processed the message or anything about the
receiver’s state, nor does it help with longevity or adaptability
for scalable distribution.

A multicast send is the transmission of a single message to
a set of receiving processes [45]. It can be implemented at
virtually any layer in communication hierarchy, including the
physical layer. Mechanisms for identifying the group of
receiving processes vary from sender determined to receiver
subscriptions. By themselves, multicast are idioms for ACPs.
The same is true for broadcasts, which also transmit messages
to multiple receivers [45].

B. ACP Patterns

Table I. COMMDP PATTERNS lists the nine patterns
currently in CommDP, along with their rankings from their

consequences relative to the characteristics discussed in
Section 4 (R=Reliability, S=Synchronicity, L=Longevity, and
A=Adaptability for Scalable Distribution). Their full
definitions are available on [http://commdp.serv.usu.edu].

The Request-Reply pattern is undoubtedly the most
common. It addresses the problem where a process, A, needs
to access or use shared resources in another process, B, with a
reasonable degree of reliability and synchronicity. The
solution consists of A sending B a message (i.e., a request)
and B sending back a message (i.e., a reply) after processing
the request, as you can see in Fig. 2. For A, this simple
mechanism provides a modest level of reliability and
synchronization, because the reply proves that B received the
request and can provide relevant information about B’s state.
Furthermore, if A does not receive a reply within a specific
amount of time (i.e., a timeout), it can resend the request. It
can continue to timeout and retry until it eventually receives a
reply or it exceeds some maximum number of retries. This
“timeout/retry” behavior is the essence of the request-reply
pattern.

TABLE I. COMMDP PATTERNS

The Request-Reply-Acknowledge pattern extends this
solution with a third message (an acknowledgement) that A
sends to B after receiving the reply, and gives B a
timeout/retry behavior with respect to its sending of the reply
and waiting for an acknowledgement, see Fig. 3. This pattern
is useful in situations were significant processing may occur
on A after receiving the reply or when it is problematic for B
to reprocess duplicated requests caused by A’s timeout/retry
behavior. With this pattern, instead of reprocessing a duplicate
request, B can simply cache its replies and resends them to A
when necessary. The acknowledgement tells B that A has
received the reply and, thus, can remove it from its cache. This
pattern offers more reliability and synchronization than
request-reply, but at the cost of an additional message.

Name Consequences

R S L A

Request-Reply 2 2 1 1

Request-Reply-Acknowledge 3 3 1 1

Idempotent Retry 3 1 1 1

Intermediate State Messages 3 3 3 1

Second Channel 1 3 3 1

Front End 1 1 1 3

Proxy 1 1 1 3

Reliable Multicast 3 3 1 2

Publish-Subscribe 2 1 1 3

Figure 2. Request-Reply Message Sequence

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

The Idempotent Retry pattern [46] captures a different
solution to the problem of processing duplicate requests. Like
Request-Reply, its solution consists of A sending a request to
B with a timeout/retry behavior and B sending a reply back to
A. But, unlike Request-Reply, the semantics of the protocol
dedicate the processing of the request must be idempotent.
This pattern applies to situations where the requested
processing is relatively light, i.e., less expensive than caching
replies.

The next pattern, Intermediate State Message, is also
similar to Request-Reply, but addresses the problem of long-
running conversations due to request actions taking
substantial amounts of time to complete. To solve this
problem, it has B send A one or more intermediate messages
that reflect its current state. For example, B may send a
message immediately after receiving the request to let A know
that it got the request, another message when the processing is
10%, another at 20% complete, and so on. Each intermediate
message provides state information about B, which improves
synchronization in the presence of time-consuming actions,
see Fig. 4.

The Second Channel pattern is also for situations
involving long-running conversations, but ones dominated by
significant amounts of data transfers instead of time-

consuming actions. Because the large data transfers can delay
intermediate state messages, this pattern’s solution suggests
opening a second communication channel between A and B
that is dedicated to data transfer, leaving the original
communication channel available for intermediate state or
control messages, as it is shown in Fig. 5. The File Transfer
Protocol (FTP) and its variations are classical examples of this
pattern[10][45].

The Front End pattern addresses the problems of making
the location of shared resource transparent to the client,
allowing the number of resources to change dynamically. It
has a resource client send requests to a front-end process that
automatically redistributes them to appropriate resource
managers, B processes. After processing the request, a
resource manager replies back to the client directly, for a
graphic description of this pattern, you can see Fig. 6. The
front-end process can use a variety of criteria to decide how to
redistribute requests, including request type, resource type or
identity, and resource manager load. By itself, this pattern’s

Figure 3. Request-Reply-Acknowledge Message Sequence

Figure 4. Intermediate State Message Sequence

Figure 5. Second Channel Message Sequence

Figure 6. Front End Message Sequence

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

primary focus is on the distribution and scalability of
resources.

Like the Front End, the Proxy pattern, presented in Fig. 7,
introduces a process between a resource client and a resource
manager. However, the intermediate process, called a proxy,
serves other functional purposes besides re-distribution of the
requests, for example it may provide authentication, access
control, audit logging, and data transformation functionality.
Also, the resource manager returns replies through the proxy
to client, completely isolating the client from the resource
manager.

The Reliable Multicast pattern builds on the multicast
idiom to provide reliability and synchronization among a
group of processes. Its solution is a protocol that starts with a
process A sending a request message to a group of process,
B={b1, .., bn}. Each process bi sends a reply back to A when it
receives the request and is ready to process it. After A receives
reply from all B processes, then A will multicast a go-ahead
message back out to all B message indicating that they can
proceed with the processing of the request, shown in Fig. 8. In
this way, the execution of the request is synchronized among
all of the B processes. If A fails to receive a reply from every
B process, it can resend the request to some or all of them until
it gets a reply from all of them or terminates the conversation

as failed. This pattern focuses on providing strong reliability
and synchronization, but can also help with scalable
distribution of resources.

Finally, the Publish-Subscribe [8] pattern is a powerful
mechanism for decoupling message senders (publisher) from
message receivers (subscribers). With this pattern, an
intermediate process acts as a store-and-forward buffer for
message transmission with the capabilities for managing
subscribers and delivering individual message to multiple
subscribers.

C. CommDP: Pattern Relationships and Composition

Patterns are rarely used in isolation; instead, developers
combine their solutions to solve complex problems. Virtually
any of the CommDP patterns could be combined with any
other pattern, but the more useful combinations are ones that
have complimentary characteristics, like Request-Reply with
Second Data Channel or Request-Reply Acknowledge with
Front End.

To ensure that the CommDP pattern set was as minimal as
possible, we did not include in any pattern in CommDP that
was simply an aggregation of two or more patterns. For
example, there is a common type of distributed system that
deals with information flow and processing. In such systems,
a process A might send a request to B through a series of
intermediate proxy-like processes that transform or augment
data in request on its way to B. At each intermediate step, a
reply is sent back to A, informing it of the message’s process.
Eventually, when the transformed message arrives at B and
processes it, then B sends a final reply message back to A.
This particular solution offers good reliability,
synchronization, longevity, and adaptability to scalable
distribution, but it is actually just a composition of the Proxy
pattern (applied perhaps multiple times) and the Intermediate
State Message pattern.

VII. SUMMARY AND FUTURE WORK

CommDP pulls together reusable solutions to reoccurring
design problems with ACPs, filling a much needed gap in the
knowledge base for developers of distributed systems. We
have characterized the nature of the problems that the
CommDP patterns address and the consequences of their
solution in terms of four desirable qualities, namely:
reliability, synchronicity, longevity, and adaptability for
scalable distribution. These qualities are both instructive and
discriminating, in that they can help a developer understand
the solutions and choose the most appropriate solution for a
given situation. However, more work needs to be done to
formalize these qualities and to solidify their sufficiently and
completeness relative communication-protocol design. So this
is one of our research group’s immediate goals.

We also hope to investigate other qualities, like cohesion
and modularization that might be valuable for protocol design
even if they are not good discriminators for design patterns.
Being able to reason about assess, and teach these qualities
more formally will help developers create better distributed
systems.

Finally, over time, we hope the expand the patterns in
CommDP, without adding any that are just compositions of

Figure 7. Proxy Message Sequence

Figure 8. Reliable Multicast Message Sequence

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

existing patterns, to encompasses a boarder range of reusable
solutions for ACPs.

REFERENCES

[1] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair,

Distributed Systems: Concepts and Design, 5 edition.

Boston: Pearson, 2011.

[2] “Distributed computing,” Wikipedia, the free

encyclopedia. 27-Feb-2016.

[3] S. W. Clyde, “Object mitosis: a systematic approach to

splitting objects across subsystems,” in , Proceedings of

the Third International Workshop on Object Orientation

in Operating Systems, 1993, 1993, pp. 182–185.

[4] “Communications protocol,” Wikipedia, the free

encyclopedia. 10-Apr-2016.

[5] “protocol | computer science,” Encyclopedia Britannica.

[Online]. Available:

http://www.britannica.com/technology/protocol-

computer-science. [Accessed: 20-Apr-2016].

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G.

Booch, Design Patterns: Elements of Reusable Object-

Oriented Software, 1 edition. Addison-Wesley

Professional, 1994.

[7] J. O. Coplien and N. B. Harrison, Organizational

Patterns of Agile Software Development. Upper Saddle

River, NJ: Prentice Hall, 2004.

[8] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-

Oriented Software Architecture Volume 4: A Pattern

Language for Distributed Computing, Volume 4 edition.

Wiley, 2007.

[9] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,

I. Fiksdahl-King, and S. Angel, A Pattern Language:

Towns, Buildings, Construction. New York: Oxford

University Press, 1977.

[10] C. White, Data Communications and Computer

Networks: A Business User’s Approach, 7 edition.

Boston, MA: Cengage Learning, 2012.

[11] “ISO/IEC 10026-1:1992 - Information technology --

Open Systems Interconnection -- Distributed

Transaction Processing -- Part 1: OSI TP Model.”

[Online]. Available:

http://www.iso.org/iso/iso_catalogue/catalogue_ics/cat

alogue_detail_ics.htm?csnumber=17979. [Accessed:

20-Apr-2016].

[12] K. Beck and W. Cunningham, “Using Pattern

Languages for Object-Oriented Programs,” in Object-

Oriented Programming, Systems, Languages, and

Application, Sep. 1987.

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,

and M. Stal, Pattern-Oriented Software Architecture

Volume 1: A System of Patterns, Volume 1 edition.

Chichester ; New York: Wiley, 1996.

[14] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,

Pattern-Oriented Software Architecture Volume 2:

Patterns for Concurrent and Networked Objects,

Volume 2 edition. Chichester England ; New York:

Wiley, 2000.

[15] J. Tidwell, Designing Interfaces, 2 edition. Sebastopol,

CA: O’Reilly Media, 2011.

[16] D. C. Schmidt, “Reactor: An Object Behavioral Pattern

for Concurrent Event Demultiplexing and Dispatching,”

in Pattern Languages of Program Design, New York,

NY, USA: ACM Press/Addison-Wesley Publishing Co.,

1995, pp. 529-545.

[17] I. Pyarali, T. Harrison, and D. Schmidt, “Asynchronous

Completion Token: an Object Behavioral Pattern for

Efficient Asynchronous Event Handling,” in Proc. 3rd

Annual Conference on The Pattern Languages

Programs, 1997, pp. 1-7.

[18] I. Pyarali, T. Harrison, D. C. Schmidt, and T. D. Jordan,

“Proactor - An Object Behavioral Pattern for

Demultiplexing and Dispatching Handlers for

Asynchronous Events,” in Pattern Languages of

Program Design (J. O. Coplien and D. C. Schmidt, eds.),

Reading, MA: Addison-Wesley, 1995.

[19] M. K. Douglas C. Schmidt, “Leader/Followers - A

Design Pattern for Efficient Multi-threaded Event

Demultiplexing and Dispatching,” in 7th Pattern

Languages of Programs Conference, Allerton Park,

Illinois, 2000.

[20] D. C. Schmidt, “Strategized locking, thread-safe

interface, and scoped locking,” C Rep., vol. 11, no. 9,

1999.

[21] R. G. Lavender and D. C. Schmidt, “Active Object an

Object Behavioral Pattern for Concurrent

Programming” in Pattern Languages of Program

Design 2 edited by John Vlissides, Jim Coplien, and

Norm Kerth., Boston, MA: Addison-Wesley, 1996.

[22] D. C. Schmidt, “Monitor Object,” in Pattern-Oriented

Software Architecture (F. Buschmann, K. Henney, D. C.

Schmidt), vol. 4, West Sussex PO19 8SQ, England: John

Wiley & Sons Ltd, 2007, pp. 368-369.

[23] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-

Async,” presented at the Second Pattern Languages of

Programs, Monticello, Illinois, 1995.

[24] D. C. Schmidt, N. Pryce, and T. H. Harrison, “Thread-

Specific Storage for C/C+,” More C Gems, vol. 17, p.

337, 2000.

[25] D. C. Schmidt and T. Harrison, “Double-checked

locking,” in Pattern languages of program design, vol.

3, 1997, pp. 363–375.

[26] L. Rising, Design Patterns in Communications

Software, 1 edition. Cambridge ; New York: Cambridge

University Press, 2001.

[27] P. Jain and D. C. Schmidt, “Service Configurator: A

Pattern for Dynamic Configuration of Services,” in

Proceedings of the 3rd Conference on USENIX

Conference on Object-Oriented Technologies (COOTS)

- Volume 3, Berkeley, CA, USA, 1997, pp. 16–16.

29Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[28] R. C. Martin, D. Riehle, and F. Buschmann, Pattern

Languages of Program Design 3, 1 edition. Reading,

Mass: Addison-Wesley Professional, 1997.

[29] L. Rising, Design Patterns in Communications

Software, 1 edition. Cambridge ; New York: Cambridge

University Press, 2001.

[30] D. C. Schmidt, “Using design patterns to develop

reusable object-oriented communication software,”

Commun. ACM, vol. 38, no. 10, pp. 65–74, 1995.

[31] R. Daigneau, Service Design Patterns: Fundamental

Design Solutions for SOAP/WSDL and RESTful Web

Services, 1 edition. Upper Saddle River, NJ: Addison-

Wesley Professional, 2011.

[32] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P.

Arbitter, Cloud Computing Patterns: Fundamentals to

Design, Build, and Manage Cloud Applications.

Springer Science & Business Media, 2014.

[33] “Patterns for Distributed Real-time and Embedded

Systems.” [Online]. Available:

https://www.dre.vanderbilt.edu/~schmidt/patterns-

ace.html. [Accessed: 04-Mar-2016].

[34] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G.

Booch, Design Patterns: Elements of Reusable Object-

Oriented Software, 1 edition. Addison-Wesley

Professional, 1994.

[35] E. Yourdon and L. L. Constantine, Structured Design:

Fundamentals of a Discipline of Computer Program and

Systems Design, 1st ed. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1979.

[36] “Modularity,” Wikipedia, the free encyclopedia. 11-

Apr-2016.

[37] M. Burrows, “The Chubby Lock Service for Loosely-

coupled Distributed Systems,” in Proceedings of the 7th

Symposium on Operating Systems Design and

Implementation, Berkeley, CA, USA, 2006, pp. 335–

350.

[38] L. Lamport, “Time, Clocks, and the Ordering of Events

in a Distributed System,” Commun ACM, vol. 21, no. 7,

pp. 558–565, Jul. 1978.

[39] M. Raynal, “About Logical Clocks for Distributed

Systems,” SIGOPS Oper Syst Rev, vol. 26, no. 1, pp. 41–

48, Jan. 1992.

[40] F. Mattern, “Virtual time and global states of distributed

systems,” in Parallel and Distributed Algorithms, 1989,

pp. 215–226.

[41] C. Fidge, “Logical Time in Distributed Computing

Systems,” Computer, vol. 24, no. 8, pp. 28–33, Aug.

1991.

[42] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair,

Distributed Systems: Concepts and Design, 5 edition.

Boston: Pearson, 2011.

[43] H. T. Kung and J. T. Robinson, “On Optimistic Methods

for Concurrency Control,” ACM Trans Database Syst,

vol. 6, no. 2, pp. 213–226, Jun. 1981.

[44] M. Voelter, “Patterns for Handling Cross-cutting

Concerns in Model-Driven Software Development,” in

ResearchGate, 2005.

[45] A. S. Tanenbaum and D. Wetherall, Computer networks,

5th ed. Boston: Pearson Prentice Hall, 2011.

[46] R. Daigneau, Service Design Patterns: Fundamental

Design Solutions for SOAP/WSDL and RESTful Web

Services, 1 edition. Upper Saddle River, NJ: Addison-

Wesley Professional, 2011.

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

