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Abstract—Distributed applications depend on application-layer 
communication protocols to exchange data among processes and 
coordinate distributed operations, independent of underlying 
communication subsystems and lower level protocols. Since such 
protocols are application-specific, developers often must invent 
or re-invent solutions to reoccurring problems involving sending 
and receiving messages to meet specific functionality, efficiency, 
distribution, reliability, and security requirements. This paper 
introduces a pattern language, called CommDP, consisting of 
nine design patterns that can help developers understand 
existing reusable solutions and how those solutions might apply 
to their situations. Consistent with other pattern languages, the 
CommDP patterns are described in terms of the problems they 
address, their contexts, and solutions. The problems and 
consequences of the solutions are evaluated against four 
desirable qualities: reliability, synchronicity, longevity, and 
adaptability for scalable distribution. 

 
Keywords-design patterns; pattern languages; communication 

protocols. 

I.  INTRODUCTION 

At the application level, a distributed system is two or 
more processes sharing resources and working together via 
network communications to accomplish a common goal 
[1][2]. Such systems are ubiquitous in today’s Internet-
connected world and are found in virtually every application 
domain, such as personal productivity tools, social media, 
entertainment, research, and business. Even single-user 
software systems that appear to be non-distributed may in fact 
communicate with other processes in the background to 
download updates, track usage statistics, or capture error logs, 
and are therefore actually distributed systems. 

In general, the developers of a distributed system try to 
increase its overall throughput, reliability, and scalability by 
hosting data and/or operations on multiple machines, while 
minimizing network traffic, congestion, and turn-around 
times. Exactly how they do this depends heavily on the nature 
and requirements of the application. In some cases, developers 
may choose to distribute instances of one type of resource, 
e.g., image files in a peer-to-peer shared photo library. In other 
situations, developers may group resources such that all 
instances of a single type are on one server. Still in other cases, 
developers can take hybrid approaches, distributing certain 
types of resources among peers and hosting other types on 
dedicated servers. A closely related design issue deals with the 
granularity of the distributed resources, i.e., data and 
operations. From a data perspective, the possible choices 
range from whole databases to individual records or even 
individual fields within records. From an operations 

perspective, the choices range from entire subsystems to 
atomic operations. With today’s programming languages, 
many developers follow the object-oriented paradigm, 
encapsulating operations with data and making choices for 
granularity that range from entire sets of objects to object 
fragments [3]. 

Besides deciding on the granularity and distribution of 
resources (data, operations, or objects), developers often have 
to consider requirements for security, fault tolerance, 
maintainability, openness, extensibility, scalability, and 
dynamic quality of service [2]. The degree to which an 
application possesses these desirable characteristics is 
primarily a consequence of architectural design choices, 
which, in turn, place new requirements on inter-process 
communications. 

The problem is not that existing application-level 
communications protocols are poorly designed and 
implemented; rather, the problem is that application developer 
has to re-invent or re-design them for every new application. 

In this paper, we will refer to an exchange among two or 
more processes for a particular purpose as a conversation. A 
single conversation may be short and simple, like querying a 
stock’s price, or it could be long and complex, like the 
streaming of a video. The rules that govern a particular type 
of conversation are a communication protocol and a collection 
of protocols is called a protocol suite [4][5]. 

Application-layer communication protocols (ACPs) are 
often defined on top of other protocols. For example, the 
Hypertext Transfer Protocol (HTTP), which is an ACP, is 
defined on top of the Transmission Control Protocol (TCP) 
[1]. Many higher level ACPs, like webservice-based ACPs, 
are in turn defined on top of HTTP [1]. Section II provides 
additional background on protocols and protocol suites, as 
well as a brief discussion on layered communication 
subsystems. 

Because requirements for ACPs can come from an 
application’s (a) functional requirements, (b) architectural 
design, and (c) use of lower layer protocols, coming up with 
effective designs can be challenging. Fortunately, the 
problems that developers are likely to encounter are not 
uncommon and have known solutions. The key is to capture 
this knowledge in a way that developers can easily find it and 
adapt it to a new application. This is precisely what design 
patterns can do [6]. 

Unfortunately, design patterns for communication 
protocols at application layer have yet not been gathered, 
correlated, and formally organized into a cohesive and 
thorough collection. To this end, this paper introduces a 
system of design patterns, i.e., a pattern language, for ACPs, 
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called CommDP. The patterns in CommDP come from a 
variety of sources and are by themselves not new ideas, as is 
the case for all newly documented design patterns [7]. Section 
III provides more background information on design patterns 
and pattern languages, as well as information about related 
work. 

Since designing ACPs is different from designing 
executable software, it is necessary to discuss desirable 
qualities for protocols. Section IV introduces four, namely 
reliability, synchronicity, longevity, and adaptability for 
scalable distribution. Section V presents a design pattern 
template that incorporates these characteristics into the 
definition of communication problems and the consequences 
of pattern solutions. 

Section VI-A introduces three communication idioms that 
act as conceptual building blocks for all the ACP patterns in 
CommDP. We then provide an overview of the ACP patterns 
in Section VI-B. Additional details for the CommDP patterns 
are available on-line1. 

Patterns are rarely used in isolation; instead, developers 
typically weave multiple pattern instantiations together to 
create complete solutions [8]. A system of patterns, i.e., a 
pattern language, not only includes a collection of patterns, 
but relationships among them that help developers know how 
they might be effectively combined [9]. Section VI-C 
provides a digest of these relationships for CommDP. Finally, 
in Section VII, we summarize the value of CommDP and 
outline our future research direction. 

II. PROTOCOLS AND PROTOCOL SUITES 

Software and electrical engineers model, design, and 
implement inter-process communications in layers. Fig. 1 
shows a simple 5-layer model commonly favored by those 

who work with IP-based protocols [1][10]. There are several 
other common models, such as the 7-layer OSI model [11]. A 
conversation between Process 1 and Process 2 can be 
discussed at any layer and, for each layer, it must adhere to 
agree upon protocol(s) for that layer. For example, if Process 
1 were a web browser, Process 2 were a web server, and the 
conversation a simple web-page request, then the application-

 
1 http://commdp.serv.usu.edu/ 

layer protocol would be HTTP, the Transport-layer protocol 
would be TCP, and the Network-layer protocol would be IP. 

Besides providing a convenient way for discussing 
protocols, layered models establish a basis for creating 
substitutable software communication subsystems. Since we 
are addressing ACPs in this paper, we do not deal directly with 
design and implementation of these software components. 
Nevertheless, we assume that appropriate communication 
subsystems exist at the transport layer for streaming of 
unstructured data and transmitting datagrams (semi-structured 
data). Section V relies on this reasonable assumption to define 
four communication idioms. 

At the application layer, a protocol governs why, when, 
and how processes interact with each other to accomplish a 
common goal. Specifically, an ACP should define the 
following: 

1. the processes involved in the interaction in terms of 

the roles they play during a conversation; 

2. the possible sequences of messages for valid 

conversations; 

3. the structure of the messages; 

4. the meaning of the messages; and 

5. relevant behaviors of the participating processes. 
 
Because processes in a distributed system typically have 

to communicate with each other for many different tasks, e.g., 
authentication, resource sharing, and coordination, it is 
common for a distributed system to require multiple ACPs, 
i.e., an ACP suite. 

III. DESIGN PATTERNS AND PATTERN LANGUAGES  

Christopher Alexander et al. defined a pattern as a reusable 
solution to a reoccurring problem [9]. Kent Beck and Ward 
Cthe detailsunningham started to apply the concept of pattern 
languages to software engineering in 1987 [12], and the idea 
was later popularized by Eric Gamma et al. with their 
landmark language of 23 patterns [6]. Since then, pattern 
languages have been documented for many areas of software 
engineering, including architectural design [13][14], user-
interface design [15], event handling [16][17][18], and 
concurrency [19]-[25]. There are even patterns specifically for 
distributed computing [8], distributed objects [26][27][28], 
communication software [29][30], RESTful and SOAP web 
services [31], cloud computing [32], and distributed real-time 
and embedded systems [33]. However, to date, no pattern 
language has been published specifically for ACPs. 

There are two hoped-for benefits of pattern languages that 
are important to ACP design. First, they create a vocabulary 
that enables developers to discuss complex ideas in a few 
words [28]. Second, they allow developers of all experience 
levels to benefit from expert reusable solutions [34]. 

IV. QUALITIES OF COMMUNICATION PROTOCOLS 

Like software, ACP suites, as whole, should possess 
certain desirable qualities that contribute to the overall success 
of a system. Some of these desirable qualities come directly 

 

Figure 1. 5-Layer Model for IP-based Communications 
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from the software arena. For example, cohesion is the degree 
to which the elements of a software component align with a 
single purpose [35]. Cohesion and its definition can apply 
almost directly to ACPs, but this is a subject for future 
research (see Section VII). Another desirable software quality 
directly applicable to ACPs is modularization. Modularization 
is the degree to which a system is divided up into independent 
components [36]. When a system has good modularization, 
developers do not have to look very far beyond a component 
to understand it or reason about it. We believe the same to be 
true for ACPs, but the details of modularization applied to 
ACPs are also a subject for another paper (see Section VII). 

Although we believe cohesion and modularization are 
important qualities for ACPs, they do not directly help in 
describing reoccurring communication problems nor are they 
good discriminators for reusable solutions, because all pattern 
solutions should, by definition, have good cohesion and 
modularization. So, we turn our attention to four other 
qualities with discriminating definitions for ACPs, namely: 
reliability, synchronicity, longevity, and adaptability for 
scalable distribution. 

A. Reliability 

For an ACP, reliability is the degree to which a process 
that sends a message as part of a conversation obtains an 
assurance that the intended recipient(s) received it, entirety 
and uncorrupted, and reacted as prescribed in the ACP. At the 
application level, reliability is typically achieved by the 
recipients returning messages that provide the sender with 
confirmation that the message was received and/or processed. 
When such return messages fail to arrive in a timely fashion, 
reliable ACPs will require the sender to retransmit the original 
message. 

In Section VI, where we present an overview of the ACP 
patterns in CommDP, we rank each of the patterns in terms of 
reliability using the following 3-point rubric: 

Rank/Criteria 
3 The problem (P) addressed by the pattern is primarily 

concerned with reliability and the solution (S) can 
make the following guarantees under normal and 
extreme conditions: 
a. The sender can distinguish between successful 

and failed conversations. 
b. The receiver can distinguish between successful 

and failed conversations. 
c. In successful conversations, any process X that 

sends a message M to process Y, gives a timely 
assurance to X (in some subsequent message) 
that Y received M. 

d. In successful conversations, for any process X 
that sends a message M to process Y, if M is 
supposed to trigger a non-trivial behavior in Y, 
then X receives a timely assurance that Y 
successfully handled M. 

2 P is concerned with reliability and S can guarantee at 
least (a) and (c) from above in normal situations. 

1 P is not concerned with reliability and S doesn’t limit 
reliability. 

Clearly, there are other conceivable problem/solution 
criteria for reliability not listed above, such as a reoccurring 
problem where reliability is a major concern and a solution 
that doesn’t address it. However, we don’t include such 
meaningless classifications because they wouldn’t help 
classify patterns with expert, reusable solutions. 

B. Synchronicity 

In the most general sense, synchronization deals with the 
coordinated execution of actions in a distributed system and 
what the state information is necessary for that coordination. 
This broad definition encompasses, but is not limited to, the 
common view among programmers that synchronous 
communications occur when the sender of a message stops 
and waits for a response from the message receiver [37]. 
However, this is not the only way to achieve synchronization. 
Some other common mechanisms are logical clocks [38][39], 
vector clocks [40][41], vector timestamps [42], optimistic 
concurrency controls [43], and timing signals. 

To evaluate the synchronization requirements for ACPs, 
we consider: (a) what are the actions that need to be 
coordinated, (b) where will those actions be executed, and (c) 
what kind of state information is needed to achieve the desired 
coordination. A distributed system may perform many 
different tasks comprised of numerous operations, but rarely 
all of them have to be fully coordinated. In fact, the more 
independent the individual operations are, the more a system 
can maximize concurrency and increase throughput. From a 
coordination perspective, where the operations take place is 
actually more important than what the operations do. For 
example, if all of the actions occur in just one process, then 
that process may not need to know anything about the state of 
the other process. Once developers know what operations 
have to be coordinated and where they will execute, they can 
consider what local or global state information the 
coordination logic will need. 

To rank synchronicity for ACP patterns, we will use the 
following definitions: 

 C is a conversation involving a closed set of processes, 
𝐶. 𝑃 = {𝑝1 , … , 𝑝𝑛} , and a set of messages, 𝐶. 𝑀 =
{𝑚1, … , 𝑚𝑛} , such that 𝑠𝑒𝑛𝑑𝑒𝑟(𝑚𝑖) ∈ 𝐶. 𝑃 ∧
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠(𝑚𝑖) ⊆ 𝐶. 𝑃  for 1 ≤ 𝑖 ≤ 𝑛  where 
𝑠𝑒𝑛𝑑𝑒𝑟(𝑚𝑖)  is the process that sent message 𝑚𝑖  and 
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠(𝑚𝑖) is the set of processes that received 𝑚𝑖. 

 A is a set of operations, {𝑎1, … , 𝑎𝑛} that run on 𝐶. 𝑃 and 
whose execution requires coordination, e.g., ordering, 
simultaneous execution, etc. 

 h(a) is the host process for operation, 𝑎, where 𝑎 ∈ 𝐴 
and ℎ(𝑎) ∈ 𝐶. 𝑃 

 s(a) is the state information that h(a) needs to coordinate 
a’s execution with the rest of the operations in A. 

 H(A) is the set of host processes for all operations in A 
Below is an informal 3-point rubric for ranking 

synchronicity for CommDP patterns using these definitions. 
We believe that a more rigorous ranking system would have 
value beyond the categorization of ACP patterns, and its full 
definition is beyond the scope and purpose of this paper. 
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Rank/Criteria 
3 The problem (P) addressed by the pattern deals with 

situations where |H(A)| > 1 and the solution (S) can 
guarantee that for all a ∈ A, h(a) receives s(a) via 
messages, mi ∈ C. M, in time to do the prescribed 
coordination. 

2 P deals with situations where |H(A)| =  1 and S can 
guarantee that for all a ∈ A, h(a) receives s(a) via 
messages, mi ∈ C. M, in time to do the prescribed 
coordination. 

1 P is not concerned with synchronicity, e.g., |A| = 0, 
and S does not limit synchronicity. 

C. Longevity 

Longevity is the degree to which an ACP can support 
long-running conversations caused by long-running 
operations. The primary problem for conversation with long-
running operations is that there could be huge span of times 
when processes are uncertain of each other’s states. Consider 
a simple request/reply conversation where some process A 
sends a request to B, but B takes a long time to execute the 
requested operation and sends back a reply. While waiting for 
the reply, process A doesn’t know if B received the request, 
has failed, or is just taking a long time. ACPs that support 
long-running operations include mechanisms for exchanging 
state information independent of results. 

We rank the longevity for ACP patterns according to the 
following 3-point rubric: 

Rank/Criteria 
3 The problem (P) addressed by the pattern is primarily 

concerned with long-running conversations and the 
solution (S) can guarantee the following in 
successful conversations: 
a. Participants made aware of each other’s states in 

periodically. 
b. Each participant in the conversation can detect 

when other participants are no longer available or 
accessible. 

2 P is concerned with long-running conversations and 
S provides for (a). 

1 P is not concerned with long-running conversations 
and S doesn’t limit longevity. 

D. Adaptability for Scalable Distribution 

ACPs can support scalability by providing location 
transparency and/or replication transparency [42], and by 
allowing resources (data, operations, or objects) to be 
distributed across multiple hosts. To understand location and 
replication transparency, consider a website with a large 
number of resources. It can support scalability by placing the 
various resources on an expandable collection of backend 
servers and use a front-end server to distribute requests from 
browsers. If the browser doesn’t need to know where a 
resource is actually located, then the system supports location 
transparency. Similarly, as traffic increases, the system could 
replicate resources across multiple backend servers. If the 
client doesn’t have to know that replicas exist, then the system 
supports replication transparency. Both location and 
replication transparency simplify scalability. 

Another technique for supporting scalability is allowing 
complex resources to be broken up into smaller resources and 
distributed across multiple servers. One approach for doing 
this is to untangle cross-cutting concerns, like security or 
logging, from complex operations and host these pieces of 
functionality on proxies [44][42]. 

Here is a simple rubric for the adaptability for scalable 
distribution. 

Rank/Criteria 
3 The problem (P) addressed by the pattern is primarily 

concerned about scalability or the distribution of 
action or resources and the solution (S) can provide 
two or more of following:  
a. Location transparency for shared resources 

distributed across multiple hosts 
b. Load balancing with shared resources replicated 

across multiple hosts 
c. Untangling of cross-cutting concerns into 

separate actions 
2 P is concerned with scalability or distribution of 

resources and S provides at least one (a), (b), or (c). 
1 P is not concerned with scalability or distribution and 

S doesn’t limit them. 

V. TEMPLATE FOR COMMUNICATION-PROTOCOL 

PATTERNS 

To document the patterns in CommDP, we have 
developed a template, loosely based on the way Gamma, 
Helm, Johnson and Vlissides documented their patterns [34], 
referred to here as the GoF template. The main goal is to keep 
the documentation as simple as possible, while still capturing 
the details of the pattern. Following are the elements of 
CommDP pattern template. 

A. Name 

As with the GoF template, the name uniquely identifies the 
pattern. Since the name will become part of the vocabulary for 
the pattern language, it is important that it captures the essence 
of the pattern, distinguishes it from other patterns, and is as 
concise as possible. 

B. Intent 

The intent is an abstract for the pattern. It summarizes the 
problem, the context, and the solutions, particularly in terms 
of reliability, synchronicity, longevity, and adaptability for 
scalable distributes. 

C. Description 

The description consists of three subsections that explain 
the problem, context, and solution. The problem subsection 
relates closely to the Motivation part in the GoF template, in 
that it explains the nature of the reoccurring communication-
protocol design problem. This subsection should highlight the 
problem’s need for reliable communications, synchronization, 
long-running conversations, or scalable distribution. The 
context subsection is like the Applicability in the GoF 
template, capturing information when the pattern may or may 
not be applicable and assumptions about distributed systems 
in which the communications will take place. The solution is 
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analogous to the Structure in the GoF template. It focuses on 
the describing protocol design ideas and how they can be 
adapted. 

D. Consequences 

As with the GoF template, the consequences are important 
part of CommDP pattern definitions because developers will 
use them to determine if the pattern is a good fit for a particular 
situation. The consequences of CommDP patterns are 
described in terms of the qualities discussed in Section 4. The 
rankings provide a general classification, and pros explain the 
consequences in more detail. 

E. Known Uses 

Like the GoF template, this part references known 
instances of the pattern in production systems 

F. Aliases and Related Work 

The section combines two elements of the GoF template 
by the similar names. 

G. References 

This section contains a bibliography for the citations made 
elsewhere in the pattern definition. 

VI. COMMDP 

A design pattern is composed of a set of patterns and 
idioms that are used together to solve a design engineering 
problem. 

A. ACP Idioms 

Before launching into a description of CommDP’s 
patterns, it is important to first introduce three fundamental 
building blocks for all ACPs: point-to-point send, multicast, 
and broadcast. These are idioms instead of patterns because 
their usage depends on the lower layer communication 
protocols and because, by themselves, they do not address the 
qualities discussed in Section 4. 

A point-to-point send is the transmission of a single 
message from one process to another, such as a message sent 
over a TCP connection or via a UDP datagram. An underlying 
communication subsystem may provide some reliability 
relative to the transmission but, at the application-level, a 
single message does not allow the sender to know if the 
receiver processed the message or anything about the 
receiver’s state, nor does it help with longevity or adaptability 
for scalable distribution. 

A multicast send is the transmission of a single message to 
a set of receiving processes [45]. It can be implemented at 
virtually any layer in communication hierarchy, including the 
physical layer. Mechanisms for identifying the group of 
receiving processes vary from sender determined to receiver 
subscriptions. By themselves, multicast are idioms for ACPs. 
The same is true for broadcasts, which also transmit messages 
to multiple receivers [45]. 

B. ACP Patterns 

Table I. COMMDP PATTERNS lists the nine patterns 
currently in CommDP, along with their rankings from their 

consequences relative to the characteristics discussed in 
Section 4 (R=Reliability, S=Synchronicity, L=Longevity, and 
A=Adaptability for Scalable Distribution). Their full 
definitions are available on [http://commdp.serv.usu.edu]. 

The Request-Reply pattern is undoubtedly the most 
common. It addresses the problem where a process, A, needs 
to access or use shared resources in another process, B, with a 
reasonable degree of reliability and synchronicity. The 
solution consists of A sending B a message (i.e., a request) 
and B sending back a message (i.e., a reply) after processing 
the request, as you can see in Fig. 2. For A, this simple 
mechanism provides a modest level of reliability and 
synchronization, because the reply proves that B received the 
request and can provide relevant information about B’s state. 
Furthermore, if A does not receive a reply within a specific 
amount of time (i.e., a timeout), it can resend the request. It 
can continue to timeout and retry until it eventually receives a 
reply or it exceeds some maximum number of retries. This 
“timeout/retry” behavior is the essence of the request-reply 
pattern. 

TABLE I. COMMDP PATTERNS 

 
 
 
 

The Request-Reply-Acknowledge pattern extends this 
solution with a third message (an acknowledgement) that A 
sends to B after receiving the reply, and gives B a 
timeout/retry behavior with respect to its sending of the reply 
and waiting for an acknowledgement, see Fig. 3. This pattern 
is useful in situations were significant processing may occur 
on A after receiving the reply or when it is problematic for B 
to reprocess duplicated requests caused by A’s timeout/retry 
behavior. With this pattern, instead of reprocessing a duplicate 
request, B can simply cache its replies and resends them to A 
when necessary. The acknowledgement tells B that A has 
received the reply and, thus, can remove it from its cache. This 
pattern offers more reliability and synchronization than 
request-reply, but at the cost of an additional message. 

Name Consequences 

R S L A 

Request-Reply 2 2 1 1 

Request-Reply-Acknowledge 3 3 1 1 

Idempotent Retry 3 1 1 1 

Intermediate State Messages 3 3 3 1 

Second Channel 1 3 3 1 

Front End 1 1 1 3 

Proxy 1 1 1 3 

Reliable Multicast 3 3 1 2 

Publish-Subscribe 2 1 1 3 

 

Figure 2. Request-Reply Message Sequence 

26Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances



The Idempotent Retry pattern [46] captures a different 
solution to the problem of processing duplicate requests. Like 
Request-Reply, its solution consists of A sending a request to 
B with a timeout/retry behavior and B sending a reply back to 
A. But, unlike Request-Reply, the semantics of the protocol 
dedicate the processing of the request must be idempotent. 
This pattern applies to situations where the requested 
processing is relatively light, i.e., less expensive than caching 
replies. 

The next pattern, Intermediate State Message, is also 
similar to Request-Reply, but addresses the problem of long-
running conversations due to request actions taking 
substantial amounts of time to complete. To solve this 
problem, it has B send A one or more intermediate messages 
that reflect its current state. For example, B may send a 
message immediately after receiving the request to let A know 
that it got the request, another message when the processing is 
10%, another at 20% complete, and so on. Each intermediate 
message provides state information about B, which improves 
synchronization in the presence of time-consuming actions, 
see Fig. 4. 

The Second Channel pattern is also for situations 
involving long-running conversations, but ones dominated by 
significant amounts of data transfers instead of time-

consuming actions. Because the large data transfers can delay 
intermediate state messages, this pattern’s solution suggests 
opening a second communication channel between A and B 
that is dedicated to data transfer, leaving the original 
communication channel available for intermediate state or 
control messages, as it is shown in Fig. 5. The File Transfer 
Protocol (FTP) and its variations are classical examples of this 
pattern[10][45]. 

The Front End pattern addresses the problems of making 
the location of shared resource transparent to the client, 
allowing the number of resources to change dynamically. It 
has a resource client send requests to a front-end process that 
automatically redistributes them to appropriate resource 
managers, B processes. After processing the request, a 
resource manager replies back to the client directly, for a 
graphic description of this pattern, you can see Fig. 6. The 
front-end process can use a variety of criteria to decide how to 
redistribute requests, including request type, resource type or 
identity, and resource manager load. By itself, this pattern’s 

 

Figure 3. Request-Reply-Acknowledge Message Sequence 

 

Figure 4. Intermediate State Message Sequence 

 

Figure 5. Second Channel Message Sequence 

 

Figure 6. Front End Message Sequence 
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primary focus is on the distribution and scalability of 
resources. 

Like the Front End, the Proxy pattern, presented in Fig. 7, 
introduces a process between a resource client and a resource 
manager. However, the intermediate process, called a proxy, 
serves other functional purposes besides re-distribution of the 
requests, for example it may provide authentication, access 
control, audit logging, and data transformation functionality. 
Also, the resource manager returns replies through the proxy 
to client, completely isolating the client from the resource 
manager. 

The Reliable Multicast pattern builds on the multicast 
idiom to provide reliability and synchronization among a 
group of processes. Its solution is a protocol that starts with a 
process A sending a request message to a group of process, 
B={b1, .., bn}. Each process bi sends a reply back to A when it 
receives the request and is ready to process it. After A receives 
reply from all B processes, then A will multicast a go-ahead 
message back out to all B message indicating that they can 
proceed with the processing of the request, shown in Fig. 8. In 
this way, the execution of the request is synchronized among 
all of the B processes. If A fails to receive a reply from every 
B process, it can resend the request to some or all of them until 
it gets a reply from all of them or terminates the conversation 

as failed. This pattern focuses on providing strong reliability 
and synchronization, but can also help with scalable 
distribution of resources. 

Finally, the Publish-Subscribe [8] pattern is a powerful 
mechanism for decoupling message senders (publisher) from 
message receivers (subscribers). With this pattern, an 
intermediate process acts as a store-and-forward buffer for 
message transmission with the capabilities for managing 
subscribers and delivering individual message to multiple 
subscribers. 

C. CommDP: Pattern Relationships and Composition 

Patterns are rarely used in isolation; instead, developers 
combine their solutions to solve complex problems. Virtually 
any of the CommDP patterns could be combined with any 
other pattern, but the more useful combinations are ones that 
have complimentary characteristics, like Request-Reply with 
Second Data Channel or Request-Reply Acknowledge with 
Front End. 

To ensure that the CommDP pattern set was as minimal as 
possible, we did not include in any pattern in CommDP that 
was simply an aggregation of two or more patterns. For 
example, there is a common type of distributed system that 
deals with information flow and processing. In such systems, 
a process A might send a request to B through a series of 
intermediate proxy-like processes that transform or augment 
data in request on its way to B. At each intermediate step, a 
reply is sent back to A, informing it of the message’s process. 
Eventually, when the transformed message arrives at B and 
processes it, then B sends a final reply message back to A. 
This particular solution offers good reliability, 
synchronization, longevity, and adaptability to scalable 
distribution, but it is actually just a composition of the Proxy 
pattern (applied perhaps multiple times) and the Intermediate 
State Message pattern. 

VII. SUMMARY AND FUTURE WORK 

CommDP pulls together reusable solutions to reoccurring 
design problems with ACPs, filling a much needed gap in the 
knowledge base for developers of distributed systems. We 
have characterized the nature of the problems that the 
CommDP patterns address and the consequences of their 
solution in terms of four desirable qualities, namely: 
reliability, synchronicity, longevity, and adaptability for 
scalable distribution. These qualities are both instructive and 
discriminating, in that they can help a developer understand 
the solutions and choose the most appropriate solution for a 
given situation. However, more work needs to be done to 
formalize these qualities and to solidify their sufficiently and 
completeness relative communication-protocol design. So this 
is one of our research group’s immediate goals. 

We also hope to investigate other qualities, like cohesion 
and modularization that might be valuable for protocol design 
even if they are not good discriminators for design patterns. 
Being able to reason about assess, and teach these qualities 
more formally will help developers create better distributed 
systems. 

Finally, over time, we hope the expand the patterns in 
CommDP, without adding any that are just compositions of 

 

Figure 7. Proxy Message Sequence 

 

Figure 8. Reliable Multicast Message Sequence 

28Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances



existing patterns, to encompasses a boarder range of reusable 
solutions for ACPs. 
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