
Transaction-Aware Aspects with TransJ: An Initial Empirical Study to

Demonstrate Improvement in Reusability

Anas M.R. AlSobeh

Computer Information Systems-Yarmouk University

Irbid, Jordan

Email: anas.alsobeh@yu.edu.jo

Stephen W. Clyde

Computer Science-Utah State University

Logan, Utah, USA

Email: stephen.clyde@usu.edu

Abstract—TransJ is an extension to AspectJ for encapsulating

transaction-related cross-cutting concerns in modular aspects.

This paper presents an empirical study to evaluate the

reusability and performance cross-cutting concerns

implemented with TransJ compare to AspectJ alone. As part

this study, we define a reuse and performance quality model as

an extension to an existing quality model. We then formalize

eight hypotheses that can be tested using metrics from the

quality model. Finally, to assess the hypotheses, we compare

implementations of different sample applications across two

study groups: one for TransJ and another for AspectJ. Results

from the study show improvement in reusability when using

TransJ, while preserving the performance.

Keywords-Transaction-related Aspects; Aspect-Oriented

Programming (AOPL); Abstractions; Transaction Joinpoint;

Dynamic Weaving; Pointcuts; Transaction-related Contexts

(TCC's); software reuse; and performance.

I. INTRODUCTION

The implementation of complex applications using Aspect-Ori-
ented Software Development (AOSD) ـــas a modern modularization
techniqueـــ results in a better implementation structure relative to es-
sential application qualities, such as maintainability, reusability,
modularity, and reduce complexity [1]. One of the recognized
strengths of Aspect-Oriented Programming Languages is the separa-
tion of concerns (SoC’s) through the definition of modular abstrac-
tions, called Aspects, that reduce scattering and tangling of crosscut-
ting concerns (CC’s) in the application code. By definition, CC’s im-
pact multiple components of an application’s core code. Common
examples include logging, enforcement of real-time constraints, con-
currency controls, transaction management, access controls, and so
on. Implementing these such concerns directly into a Distributed
Transaction Processing System (DTPS) can cause the scattering and
tangling of code and, thus, make the code unnecessarily complex and
difficult to understand, reuse, maintain, and evolve.

AspectJ is considered the de facto standard and the most widely
used Aspect-Oriented Programming (AOP) framework for modeling
CC’s. It extends Java with mechanisms for supporting logic related
to CC’s, starting with aspect, which are first-class programming con-
structs for CC’s [2][3]. Aspects encapsulate advice, pointcuts, and
type-introduction declarations. An advice is a method that embodies
some piece of CC functionality, but it is not called explicitly like class
or object methods. Instead the execution of an advice method is wo-
ven into the core application according to specifications, called
pointcuts. A pointcut is a predicate that defines where to weave ad-
vice at compile time and when to execute at runtime. More specifi-
cally, it is a pattern that identifies a set of joinpoints, which are best
characterized as intervals within the program’s execution flow. A
joinpoint represents places (intervals or times) in execution on pro-
gram and advice run before, after, or around these intervals [2].

AspectJ supports many different kinds of joinpoints, such as
fields, methods, constructors, and catch blocks in exception handling,
but they only related to program-language abstractions and their con-
texts are limited to single-threaded execution flows. The problem is
that AspectJ does not inherently handle higher level abstractions or
application-level contexts, like transactions, which may be tied to
runtime objects and used by multiple execution threads or processes.
Hence, AspectJ cannot directly support the dynamic weaving of ad-
vice into transaction abstractions or directly leverage transaction con-
text information.

TransJ is an extension to AspectJ that introduces transaction-
aware aspects, independent of any specific transaction-processing
framework. With TransJ, developers can weave Transaction-Related
Crosscutting Concerns (TCC’s) into a DTPS in a modular and reus-
able way, while preserving core functionality, and obliviousness to
those TCC’s. (See Section II).

In this paper, we report on a study that investigated the impact of
TransJ on the reuse of DTPS code while preserving performance. It
does so by evaluating certain desirable characteristics and attributes
defined in an extended quality model (see Section III) using a set of
computable metrics. Based on an initial theoretically investigation,
we hypothesized that developers would see improvement reuse im-
provements while preserving the software performance when using
TransJ. We formalize this notion into eight specific hypotheses (see
Section IV). Section V explains our experiment methodology; selec-
tion of the sample software application; and identification of interest-
ing TCCs that would provide good coverage. The methodology also
included supporting activities such as recruitment and training of the
developers as test subjects. After the experiment, we collected and
analyzed data from the code, journals, questionnaires, and surveys.
From the results (see Section VI) of the study, we conclude that ap-
plication using TransJ have less coupling (less scattered), less com-
plex, and required less effort and time to enhance. Also, they are more
cohesive (less tangling) and oblivious without sacrificing the perfor-
mance. These preliminary results lead us to believe that further ex-
perimentation with TransJ and refinement of its framework could
prove to be very beneficial to a wide range of software applications.

II. HIGH-LEVEL OVERVIEW OF TRANSJ

Fig. 1 provides a high-level overview the TransJ’s layered design
[6], in which each layer embodies reusable functionality and provides
services to the layer above it and uses the services of the layer below
it.

One component at the lowest layer is the Unified Model for Join-
points in Distributed Transactions (UMJDT), first introduced in a
2014 ICSEA paper [5]. The UMJDT is a conceptual model for weav-
ing advice into distributed transactions that captures key events and
context information, and use that ideas to define interesting join-
points relative to transaction execution and context data for woven
advice.

AspectJ and some transaction-processing framework, like JTA,
are two components at the lowest level.

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

The Core TransJ Infrastructure Layer (CTIL) is a library that im-
plements a transaction joinpoint model on top of an AspectJ joinpoint
model. It defines transaction abstractions, transaction-events join-
points, a collection of pointcuts for gathering context information that
can be used in the advice code, and mechanisms to track transaction
contexts and joinpoints. This library allows developers to treat trans-
actions as first-class concepts into which aspects can be woven, pro-
moting greater enhancements, obliviousness, and localization, along
with code reusability.

The Reusable Aspect Layer (RAL) is a toolkit-like collection of
transaction-related aspects that application programmers should find
useful in many different kinds of applications with significant trans-
action requirements. These reusable aspects can decrease the devel-
opment time; make CC’s more understandable, reusable, and predict-
able; and ensure that the core application is oblivious to the CC’s.

Application-level Aspect Layer is where application developers
implement transaction-related aspects using the abstractions pro-
vided by TransJ directly or by specializing the aspects from the RAL.
These aspects can encapsulate complex TCC behaviors in under-
standable, predictable and reusable software components, without
sacrificing obliviousness or efficiency [6].

III. EXTENDED-QUALITY MODEL FOR TRANSACTIONAL

APPLICATION (EQMTA)

 Many empirical studies have found that different soft-ware fac-
tors influence the quality of a software system [7][8][9]. Of these, we
picked reusability and performance as important qualities to consider
initially because of potential for cost savings that they both represent.
To formalize the reuse and performance qualities, we adapt and ex-
tend the Extended-Quality Model [9], which was based on the Com-
parison Quality Metrics (Sant’Anna quality model) [1][7] to include
quality factors and internal attributes specific for DTPS’s, forming
EQMTA.

EQMTA consists of four elements: Qualities, Factors, Quality
Attributes, and Metrics. The qualities, i.e., reusability and perfor-
mance, are the most abstract concepts in the model and represent the
ultimate goals of “good” software. Each quality is affected by one or
more factors, which are in turn determined by quality attributes (in-
ternal attributes). The quality attributes describe the internal view of
the system attributes with a set of quality metrics that are de-fined
and used to provide a scale and method for measurement.

Fig. 2 shows the specific qualities, quality factors, and quality
attributes of the EQMTA’s suite, and Fig. 3 shows the metrics. A
single star (*) next to an element in either of these figures tags a con-
cept that not exist in the original EQM [8] or Comparison Quality
Model [1]. Double stars (**) mark elements that are in the previous

models, but have been modified to be a measure quality in transaction
systems.

The quality factors are the secondary quality attributes that influ-
ence the defining primary qualities and associated with well-estab-
lished internal quality attributes of the soft-ware systems as shown in
Fig. 2. Raza [8] proposes three important characteristics of modular
code, namely understandable, obliviousness and localization of de-
sign decisions. Hence, reasoning reusability in terms of understanda-
bility, localization of design decisions, and obliviousness are not
complete. Introduction of efficiency, predictability, and scalability
are also equally important. At the time Parnas [11] and Coady [12]
proposed that the definition of reusable modular code, obliviousness
and extensibility has not been documented as fundamental design
principles. How-ever, in the context of our research experiment, they
are critical to understanding the impact of TransJ.

A. EQMTA Metrics

The EQMTA contains 29 design and code metrics for the 9 inter-
nal attributes shown in Fig. 3. In some cases, we had to adapt the
metrics to better evaluate the attributes in DTPS. Twelve of the met-
rics can be computed automatically from the code written by the sub-
jects. The others have to be computed by hand. Below are brief de-
scriptions of these metrics, so the reader can better understand the

Figure 1. TransJ Architectural Block Diagram.

Figure 3. Measurement Metrics in EQMTA

Figure 2. Extended-Quality Model for Transactional Applications

(EQMTA)

R
eu

sa
b

ili
ty

Factors:
Understandability,

Extensibility*,
Localization,

Obliviousness

SoTC**

Coupling

Cohesion

Code
Complexity

Aspects

P
er

fo
rm

an
ce

*

Factors: Efficiency*,
Predictable*,
Scalability*

Throughput*

Transaction
Volume*

Transaction
Velocity*

Productivity*

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

results presented in Section VI. For space considerations, the full
definitions of all metrics are not shown.
1) Separation of Transaction Concern (SoTC)/ Scattering

Metrics
SoTC defines the ability to capture, encapsulate and manipulate

unnecessary complexities of transaction system that are relevant to
a particular concern [13]. The Concern Diffusion in Transaction Ap-
plication (CDTA), Concern Diffusion over Transaction Operations
(CDTO) and Concern Diffusion over Line of Code (CDLOC) are
SoTC metrics. CDTA number of primary transaction components
(class or aspect) whose main purpose is to contribute to the imple-
mentation of a concern. CDTO counts the number of methods and
advices that access any primary transaction component to pull all
relevant operation context information by calling their methods or
using them in formal parameters, local variables, return types, and
throws declarations. Constructors also are counted as operations.
CDLOC counts the total lines of primary transaction components
whose main purpose is to contribute to the implementation of a sin-
gle transaction-related concern.
2) Transaction-related Coupling Metrics

It is an indication of the strength of interconnections between
the transaction components in a DTPS [10][14]. Coupling between
Components (CBC), Depth Inheritance Tree (DIT), and Coupling
on Intercepted Modules (CIM) are coupling metrics. CIM counts the
number of classes, aspects or interfaces explicitly named in
pointcuts of a given aspect. High values of these metrics indicate
tight coupling, due to high crosscutting.
3) Transaction-related Cohesion and Tangling Metrics

The cohesion of a transaction is a measure of the degree fitness
between its internal pieces [7]. Lack of Cohesion in Transaction Op-
erations (LCTO) measures the lack of cohesion of a class or aspect
in terms of the occurrences of the method and advice pairs that do
not access the same context variable and hence should be reasonably
separated [15]. High cohesion often correlates with loose coupling,
and vice versa [10]. Low coupling is often an indicator of a well-
structured DTPS and a good design, and when combined with high
cohesion, supports the general goals of high reusability.
4) Complexity Metrics

The EQMTA defines metrics that are concerned with the differ-
ent aspects of the DTPS complexity. It measures how transaction
components are structurally interrelated to one another and
measures the size of a software system’s design and code [1]. In
EQMTA, the Vocabulary Size (VS), Line of Code (LOC), Method
Lines of Code (MLOC), Transaction Lines of Code (TLOC), Num-
ber of Transaction Operations (NTO), and Weighted Operations per
Transaction Component (WOTC), McCabe’s Cyclomatic Complex-
ity (CC), and Response for Module (RFM) are complexity and size
metrics in EQMTA. VS counts the number of classes and aspects
into the DTPS. Sant’ Anna mentioned that if the number of compo-
nents increases, it is a clue of more cohesive and less tangled set of
abstract datatype concepts [1]. NTO counts the number of transac-
tion-related operations. A transaction contains with more operations
are less likely to be reused and assumed to have more complex col-
laboration with other components. Sometimes LOC is less, but NTO
is more, which indicates that the transaction component is more
complex. The number of advices and methods and complexity is an
indication of how much time and effort is required to develop and
maintain the transaction-related components. The larger the value of
WOTC, the more complex the program would be [15][16]. CC is
intended to measure system complexity by examining the software
program’s flow graph [17]. In practice, CC amounts to a count of
the decision points present in the software system. The high value
of CC affects transaction components reuse. RFM counts the num-
ber of methods and advices that are executed by a given transaction

in response to the request received by another transaction or system.
Transactions with a higher RFM value are more complex and com-
plicated.
5) Aspects/Obliviousness Metrics

The EQMTA involves metrics on concerns that evolve into con-
crete pieces of code, i.e., Aspects, and contribute directly to the core
functionality of the transaction software system [8]. This model de-
fines the following aspect metrics: Number of Inter-type Declara-
tions (NITD), Crosscutting Degree of an Aspect (CDA), Aspect
Scattering over Transaction Components (ASTC), and Aspect Scat-
tering over Transaction Operations (ASTO).
6) Transaction Throughput Metrics

Transaction throughput is the rate at which transactions are pro-
cessed by the system. The EQMTA defines the rate of the Mean Re-
sponse Time (MRT) to measure the performance of an individual
transaction, in milliseconds. MRT represents the amount of time re-
quired for transaction completion, i.e., commit or abort. The re-
sponse time for a transaction tends to decrease as you increase over-
all throughput.
7) Transaction Volume Metrics

Transaction volume is an indication of the efficiency of transac-
tion system to handle huge data volume, which determine the
amount of transactions processed by the system over the defined pe-
riod of time, i.e., second. The EQMTA defines the following trans-
action volume metrics: Number of the Committed Transactions
(NCT), Number of the uncommitted (aborted) Transactions
(NUCT), and Timed-out Transaction (ToT).
8) Transaction Velocity Metrics

Transaction Velocity gives an indication of the performance of
the transaction system. Rate of the Transaction Per Minute (RTPM)
is the only velocity metric in EQMTA that measures velocity of a
transaction in our model. RTPM is the average number of transac-
tions that are begin completed, either committed, aborted, or timed-
out, per minute on the transaction system.
9) Productivity Metrics

Productivity is a measure of the amount of effort needed to un-
derstand, implement and debug the transaction system components.
It considers the amount of bugs, and total development time into ac-
tive and passive times. Active Time (AT), Passive Times (PT),
Number of Bugs (NoB), Number of Changes in Concern at the ap-
plication level (NoC), and Number of Changes in Concern and its
Application (NoCA) are productivity metrics. NoC and NoCA count
the number of changes required to reuse the concern for another ap-
plication, and to maintain the concern, respectively. The difference
among them is that the NoC only considers changes in the concern;
however, the NoCA considers changes both in the concern and ap-
plication. A lower value of PT, AT, NoB, NoC and NoCA is more
desired to increase the efficiency of the development transaction-
related components.

IV. EXPERIMENTAL HYPOTHESES

The theoretical ideas underpinning TransJ lead to the following
eight hypotheses. All of these hypotheses have the same premise and
are tested using the EQTMA metrics. Let 𝑆 represent a software
system that has TCC’s and is implemented in AspectJ. Also, let 𝑆′
be an implementation of same system using TransJ. The premise is
implementation of the TCC in 𝑆′ make reasonably effective use of
TransJ.
A. 𝑆′ has better encapsulation and Separation of Concerns (SoCs)

and less scattering than 𝑆.
B. 𝑆′ has a lower coupling than 𝑆.
C. 𝑆′ has higher cohesion and less tangling than 𝑆.
D. 𝑆′ not significantly larger or complex 𝑆.
E. 𝑆′ is significantly more oblivious to TCC’s than 𝑆.

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

F. The runtime of 𝑆′is no worse than 𝑆
G. The implementation TCC’s in 𝑆′ requires a smaller number of

changes to reuse compared to 𝑆.
H. The total programming hours for 𝑆′ is less than 𝑆, indicating

that 𝑆′ is less complex and more readable than 𝑆.

V. EXPERIMENTAL PROCEDURE

The research experiment consisted of the following steps:
1. Experiment Approval: We submitted an application for con-

ducting this Human Research Experiment to the USU IRB and
got its approval [4]. Before submitting this application, all the
researchers passed the online human research experiment-
training course offered through the Collaborative Institutional
Training Initiative (CITI) [18].

2. Selection of Applications: we developed three non-trivial soft-
ware applications that were diverse in the way they imple-
mented transactions; used JTA API, X/Open standards, Jboss
Application Server; multithreaded; and therefore provide a
good coverage of different types of distributed transactions as
shown in Table 1. We used Java 2 Enterprise Edition (J2EE) to
build these non-trivial applications. They include classes for
distributed resources and make used Enterprise Java Bean
(EJB), Java Persistence (JPA), Maven, Hibernate, Jboss, JTA,
Arjuna, and MySql database drivers. The current EJB architec-
ture supports flat transactions only, but the Arjuna supports
nested transactions in the application. Most of the implementa-
tion details are not relevant to the contributions of this paper,
and are there omitted for space considerations.

3. Selection of TCC's: we picked three common TCC's for the ex-
perience such that they were applied to all the sample applica-
tions and the various concepts of transactions, as shown in Ta-
ble 2. To reduce chaos in our data, we wanted to make sure that
these CC's were adequately simple to a novice developer could
understand and integrate them into the selected sample appli-
cations in less than 15 hours, regardless of whether TransJ or
AspectJ is used.

4. Recruitment of Developers: To transparently recruit the devel-
opers, we sent invitation letters and then recruited four devel-
opers who were experienced OO and AOP software develop-
ment, Java, transaction, and software-engineering design prin-
ciples such as reusability and performance. We randomly orga-
nized them into two study groups: 1 and 2. Group 1 imple-

mented using an AOP approach and Group 2 used TransJ fash-
ion. Next, the participants completed a survey that assessed
their background and skill levels. We also provided JTA, Ar-
juna library, Jboss, AOP training to developers in Groups, and
had them worked through some practice applications. Simi-
larly, we trained Group 2 developers with TransJ, and had them
worked through some practice applications. Next, each devel-
oper filled a pre-implementation questionnaire, developed the
application using initial requirements, recorded hourly journals
and completed a post implementation questionnaire.

5. We analyzed the understanding of the requirements, familiarity
with the language and tools, and debugging the most prominent
challenges. They also recorded hourly journals of productivity.
At the end of implementation, each developer filled the post-
implementation questionnaire. Observation of this question-
naire indicated that all developers correctly understood the re-
quirements, familiarized with the language, tools, and de-
bugged the challenges.

We measured EQMTA code metrics using both manual-
based and automated tool-based methods [19][20]. Total meas-
urements include following: experiment input variables in-
cluded a total of four developers and three applications with
each; experiment generated a total of 12 software systems
against which the metrics need to be applied; the 29 code met-
rics of EQMTA, which will have a total of 348 measurements.
Of these, 144 measurements from 12 metrics were generated
using tools, and 204 measurements from 17 metrics were cal-
culated manually.

VI. EXPERIMENT RESULTS

This section presents empirical results relevant to the eight hy-
potheses. We analyzed and evaluated the reusability and perfor-
mance using the code developed by the student participants, ques-
tionnaires, hourly journals, and maintenance history. In the follow-
ing graphs, the vertical axes represent the measurements, and the
horizontal axes represent the three activities of the experiment. For
each activity, there are two bars: a blue bar for the results of AspectJ
group and an orange bar for the results of TransJ group. For space
limitation, we did not show all results.

A. 𝑆' has better encapsulation and Separation of Concerns

(SoCs) and less scattering than 𝑆

From the graphs in Fig. 4, we found that the interest average of
CDTA, CDTO and CDLOC values for TransJ went to zero in all
three activities of the experiment, and the result was significantly
different from AspectJ in the all activities. The reason for this phe-
nomenon is that TransJ pointcuts provide total obliviousness be-
tween the transaction application and TCC's. AspectJ, transaction

TABLE 1. CATEGORIES OF SELECTED APPLICATIONS

Applications Gadget

Manufac-

turing

System

Conference

Registra-

tion System

Local

Bank

System

1 Distributed * *
Local *

2 Flat * *
Nested *

3 Few Resources * *
Many Resources *

4 Low Concur-

rency

 *

High Concur-

rency

* *

5 Low Potential for

Conflict

 * *

High Potential

for Conflict

*

TABLE 2. SELECTED TRANSACTION-RELATED CROSSCUTTING

CONCERNS (TCC)

Aspect Name Description

1 Measuring

Performance

It measures some performance-related

statistics for transaction-based applica-
tions between a client and server, such

as turn-around time (i.e., response

time).

2 Data-Sharing
Optimization

It shares context information across
hosts only when necessary.

3 Audit Trail It records a history of actions executed

by transactions and users in order to
monitor transaction activities and pro-

vide assurance that meet the predefined

minimum requirements.

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

components and their operations for CC's were significantly more
diffused in the transaction application because the pointcuts had to
be tied to programming constructs instead of transaction abstrac-
tions. From these results, we can conclude that the first hypothesis
holds true for better separation of concerns in TransJ than in As-
pectJ.

B. 𝑆' has a lower coupling than 𝑆

Fig. 5 shows that TransJ implementation decreased the values of
CBC, DIT, and CIM in all the three activities of the experiment.
TransJ removed dependencies and did not maintain any direct rela-
tionship between TCC's and the core transaction application compo-
nents. In AspectJ, unnecessary coupling of TCC's with the core ap-
plication components increased CBC, which hindered reuse and
code understandability.

On the one hand, wide variations were found in DIT and CIM
metrics from TransJ group and AspectJ group. The most significant
indicator of the decrease in coupling between aspects and the core
code is the impact of TransJ’s joinpoints on the CIM metric. This
metric counts the number of modules explicitly named in pointcuts.
Compared to the AspectJ activities, the TransJ activities have a re-
duction of 100%, 100% and 100% in CIM (i.e., all of the three ac-
tivities have an average value of zero for CIM metric). This was
caused by providing a comprehensive set of pointcuts, which fully
encapsulates the distributed transaction abstractions. This allows
participant programmers to reuse the pointcuts directly, so they did
not need to override or inherit the aspect components to name in the
pointcuts of a given class. In contrast, the AspectJ programmers suf-
fered from a lack of clarity of relationship among TCC's and appli-
cation components, wherein aspects acquire context information
from one of more classes. Thus, they preferred to inherit all of the
attributes and operations from parent (superclass) methods in CC's
to share context data across aspects and distributed transaction ap-
plication components.

In consonance with these results, we can confidently conclude
that the second hypothesis holds true for reduced coupling in TransJ
compared with AspectJ.

C. 𝑆' has higher cohesion and less tangling than 𝑆

 In Fig. 6, the result reveals that TransJ maintains a lower value
for LCTO than AspectJ in all the three activities of the experiment.
Thus, TransJ promoted encapsulation with implementing a more in-
dependent component that implements a single logical function
(more cohesive) than implemented with AspectJ. Compared to the
AspectJ group, the TransJ group improved cohesion in all activities,
sometimes significantly (from 8% to 75%). The decrease in the co-
hesion of the AspectJ activities is caused by the need to extract new
methods to expose advisable joinpoints i.e., multiple transaction
joinpoints cannot be advised as an atomic unit (e.g., begin – commit,
begin – abort, or lock – release). From these results, we conclude
that the third hypothesis holds true for increased cohesion in TransJ
than in AspectJ.

D. 𝑆′ not significantly larger or complex 𝑆

Figures 7 (a) through 7 (e) show that TransJ implementations de-
creased the metric values for LOC, MLOC, TLOC, NOT, WOTC,
CC and RFM and increased VS value in all the three activities of the
experiment. In comparison with TransJ, AspectJ programmers
found the aspects and application code tends to contain very terse
pointcuts, advices and extra code, especially, when combined with
transaction constructs, such as transaction demarcations, to pull all
relevant context information. In TransJ, two induced factors affect
these metrics: the UMJDT model captures various general distrib-
uted transaction abstractions in meaningful, reusable joinpoints and
a set of base aspects, which help developers implement the TCC's in
simpler and logical method bodies, i.e., advice, with no extra lines
of codes and less number of operations and advices, thus this re-
duced the RFM value. Second, TransJ’s joinpoints referenced by
broad contexts and stable pointcut definitions, therefore, applica-
tions did not need additional context information, such as an identi-
fier or lock snapshot. This allowed the reusable and application-
level aspects to inherit or reuse pointcuts to apply the logic of TCC'
in appropriate transaction places. Hence, TransJ reduced the values
of MLOC, TLOC, NTO, WOTC, and RFM. Fig. 7 (d) shows that
the value of CC is smaller for TransJ than AspectJ, because TransJ
hides complex transaction abstractions, as mentioned, which result
in simple conditional statements and less tangled code. As predicted
by the above hypothesis, results shown in Fig. 7 (e) give sufficient
evidence that the average VS value of all programs was more for
TransJ than AspectJ, due to inlined code in transaction scopes being
extracted and gathered to inner classes, i.e., contexts and base as-
pects (caused improvements of 12% to 23%). Although the number
of components were more in TransJ implementations, but they were
more cohesive. From these results, we can confidently conclude that

Figure 4. CDTA, CDTO, and CDLOC Coverage over Applications

Figure 5. CBC, DIT and CIM Coverage over Applications

Figure 6. LCTO Coverage over Applications

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Act.1 Act.2 Act.3

A
ve

ra
ge

 L
ac

k
of

 C
oh

es
io

n
Pe

r
pr

og
ra

m
m

in
g

A
ct

iv
it

y

AspectJ TransJ

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

the fourth hypothesis hold true for less complex and a small code
size software in TransJ compared with AspectJ.

E. 𝑆' is significantly more oblivious to TCC’s than 𝑆

 Fig. 8 shows that TransJ implementations significantly reduced
the values of NITD, CDA, ASTC and ASTO metrics. Compared to

the AspectJ, NITD and CDA for all TransJ activities differed by
100%. The reason for having this result, i.e., zero value, TransJ pro-
grammers directly used transaction abstractions and did not need to
use Inter-Type Declarations (ITDs) for sharing of context infor-
mation between application and aspect components. Significant re-
duction in ASTC and ASTO was due to the layers of indirections
among the transaction application and aspect components, which
TransJ provides but are missing in AspectJ. In a nutshell, the im-
provement of the TransJ activities verse the AspectJ activities was
caused by (a) the higher level of reuse of base aspects, and (b)
scoped joinpoints, i.e., contexts, eliminating the need to create oper-
ations to expose new joinpoints. From these results, we can confi-
dently conclude that the fifth hypothesis hold true for less oblivious
software CC's in TransJ compared with AspectJ.

F. The runtime of 𝑆′is no worse than 𝑆

Figures 9 (a) through 9 (c) show that TransJ implementation
slightly decreased the metric values for MRT, NUCT, ToT, and
slightly increased NCT with maintaining the RTPM in all three ac-
tivities of the experiment. TransJ allows dynamic weaving of as-
pects at run-time by looking up to the contexts instead of needing to
programing by hand as done in AspectJ. Figures 9 (a) and 9 (b) in-
dicate that the TransJ group performed very slightly better than the
AspectJ group for Act.1 and Act.2 with almost 0% improvement for
Act.3. This lack of improvement for Act.3 was caused by the over-
head of creating a transaction and transaction operation thread in-
stances, synchronization and the high concurrent potential for con-
flicts over the shared resource. In other words, there are no major
differences between the efficiency of TransJ activities and AspectJ
activities.

Fig. 9 (c) shows that the results for the NUCT and ToT metrics
remained the same for the Act.1 and Act.2. However, in Act.3
TransJ decreased very slightly the potential of having better ToT and
NUCT values. The decrease in NUCT and ToT values in TransJ at
Act.3 was caused by exposing advisable joinpoints, i.e., lockingJP
and resourceLockedJP and dynamic weaving of aspects on them.

Figure 7 (a) Average LOC, MLOC, TLOC and WOTC over

Applications

Figure 7 (b) Average RFM over Applications

Figure 7 (c) Average NTO over Applications

Figure 7 (d) Average CC over Applications

0

0.5

1

1.5

2

A C T . 1 A C T . 2 A C T . 3

A
V

E
R

A
G

E

O
F

C
Y

C
L

O
M

A
T

IC

C
O

M
P

L
E

X
IT

Y

AspectJ TransJ

Figure 7 (e) Average VS over Applications

0

5

10

15

20

25

30

35

40

Act.1 Act.2 Act.3A
V

E
R

A
G

E
 V

O
C

A
B

O
LO

A
R

Y
 S

IZ
E

AspectJ TransJ

Figure 8. Average NITD, CDA, ASTC and ASTO over Applications

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

These joinpoints represented an indication of the benefits that can
come when concurrent operations access the shared resource. How-
ever, there are no major differences between the throughput of
TransJ activities and AspectJ activities. In a nutshell, the results of
figures do not give sufficient evidence to claim that the benefits of
improving software performance. But from these results, we can
confidently conclude that the sixth hypothesis holds true: preserving
runtime performance in TransJ compared to AspectJ.

G. The implementation TCC’s in 𝑆′ requires a smaller number of

changes to reuse compared to 𝑆

From the results shown in Fig. 10 (a), we can see that TransJ
implementation significantly reduced the changes required to reuse
the performance measurement concern implementations in Act.1
and Act.2. This means that the application is more amenable to ex-
tension.

Compared with AspectJ, the presence of joinpoints in the base
aspect of TransJ allows the implementation of the CC' logic in reus-
able and application-level aspects, which allow contexts and CC's to
be explicitly communicated. Fig. 10 (a) presents the percentage of
CC's that were implemented by abstract aspects (in base aspect). The
data confirm that significant increases in reusability can be gained
by applying TransJ's joinpoints where appropriate.

Fig. 10 (b) provides another graphical representation of the anal-
ysis of reuse for AspectJ and TransJ. The orange-colored graphs rep-
resent scattering in TransJ (aspects only) and the blue-colored
graphs represent scattering in AspectJ implementations. The scat-

Figure 9 (a) Average MRT over Applications

Figure 9 (b) Average Transaction Velocity (RTPM) over

Applications

Figure 9 (c) Average NCT, NUCT and ToT over Applications

0

50

100

150

200

250

Act.1 Act.2 Act.3A
V

ER
A

G
E

TR
A

N
SA

CT
IO

N

R
ES

PO
N

SE
 T

IM
E

PE
R

M

IL
LI

SE
CO

N
D

AspectJ TransJ

0

5

10

15

Act.1 Act.2 Act.3

A
V

ER
A

G
E

SP
EE

D
 O

F
TR

A
N

SA
C

TI
O

N
 P

R
O

C
ES

SI
N

G

(#
TR

A
N

S
P

ER
 M

IN
U

TE
 /

 6
0

 S
)

AspectJ TransJ

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Act.1 Act.2 Act.3 Act.1 Act.2 Act.3 Act.1 Act.2 Act.3

NCT NUCT ToT

A
V

E
R

A
G

E

 N
C

,
N

U
C

 A
N

D
 T

O

T
R

A
N

S
A

C
T

IO
N

S

P
E

R
 S

E
C

O
N

D
S

AspectJ TransJ

Figure 10 (a) Average Number of Changes of Performance

Measurement Concern over Conference Registration System and Bank

System Applications

Figure 10 (b) ASTC, ASTO, CDA, NITD, CDTA, CDTO and CDLOC over Applications of AspectJ and TransJ

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

tered points in the graph indicate that the number of changes re-
quired for reusing a concern with TransJ and AspectJ in different
activities, respectively. The scattered points represent ASTC,
ASTO, CDA, NITD, CDTA, CDTO, and CDLOC metrics results.
Overall, activities of TransJ (highly reusable and more extensible),
but were highly scattered for AspectJ. The reason for less scattering
is discussed above. From these results, we can conclude that the sev-
enth hypothesis holds true: more reusability and extensibility in
TransJ compared to AspectJ.

H. The total programming hours for 𝑆′ is less than 𝑆, indicating

that 𝑆′ is less complex and more readable than 𝑆

From the results shown in Fig. 11, we can see that TransJ signif-
icantly reduced the period that required to read, understand, imple-
ment, and debug the implementations of TCC's in all activities of
the experiment compared to AspectJ. These results confirm that the
applications were more flexible to implement with TransJ and were
robust with respect to bugs and error compared to the AspectJ im-
plementation. In addition, this figure indicates that TransJ partici-
pants performed significantly better than the AspectJ participants for
all activities.

PT represents the amount of time they spent on reading the
source code, understanding secondary requirements and looking for
bugs. The increases in the PT in the AspectJ activities are caused by
the need to study the whole code to find new pointcuts to expose
advisable joinpoints and to gather the relevant information to a spe-
cific context that is required to weave the CC's of appropriate join-
points. In contrast, TransJ provides pointcuts that help developers
code the CC's obliviously. In addition, they do not need to create
shared data structures, i.e., contexts, to have an explicit cooperation
between base application code and aspects. This one simple benefit
in the mindset of programmers can drastically reduce the number
and seriousness of bugs, i.e., NoBs. From these results, we can con-
fidently conclude that the eighth hypothesis hold true: less software
development time is required for TransJ than for AspectJ.

VII. SUMMARY

In ICSEA 2014, we presented the new conceptual model, i.e.,
UMJDT, to define interesting joinpoints relative to transaction exe-
cution and context data for woven advice. TransJ is a new abstract
framework, which allows developers to encapsulate TCC's in reus-
able and cohesive modules [6]. This paper presents a preliminary
research experiment on hoped-for benefits of TransJ in comparison
with AspectJ. It defines an extended-quality model for transactional
application, then setup an experiment methodology, involving 8 hy-
potheses and data collection from 12 applications. Initial findings
provide sufficient evidence to conclude that TransJ is capable of en-
capsulating a wide range of TCC's and that it can provide more mod-
ular, reusable distributed transaction software without sacrificing
the performance. We hope to gather more empirical evidences of the

TransJ’s value by increasing the number of aspects in the reusable
aspect library and by continuing to expand the number and types of
applications that use TransJ. Our future research will include more
formal software-engineering productivity experiments to verify the
performance belief. TransJ can be extended for distributed remote
pointcuts that would simplify the implementation of even more com-
plex crosscutting concerns, such as recovery, or multithreaded in a
distributed system.

REFERENCES

[1] C. Sant'Anna, A. F. Garcia, C. F. G. Chavez, C. J. de Lucena, and A.
Staa, “On the Reuse and Maintenance of Aspect-Oriented Software:
An Assessment Framework,” In Proc. 17th Brazilian Symp. Software
Engineering, Manaus, Brazil, pp. 19-34, 2003, doi: PUCRioInf,
MCC26/03.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.M.
Loingter, and J. Irwin, “Aspect-Oriented Programming.” Proceedings
of ECOOP '97, Springer Verlag, pages 220--242, 1997.

[3] G. Kiczales and M. Mezini, “Aspect-Oriented Programming and
Modular Reasoning,” in ICSE 2005, pp. 49-58, 2005.

[4] Office of Research and Graduate Studies at Utah State University,
Institutional Review Board [Online]. [retrieved: June, 2015],
Available: http://rgs.usu.edu/irb/.

[5] A. AlSobeh and S. Clyde, “Unified Conceptual Model for Joinpoints
in Distributed Transactions.” ICSE’14. The Ninth International
Conference on Software Engineering Advances. Nice, France.
October, pp. 8-15, 2014, ISBN: 978-1-61208-367-4.

[6] A. AlSobeh, “Improving Reuse of Distributed Transaction Softwares
with Transaction-aware Aspects,” in Ph.D. Dissertation, Computer
Science Department, Utah State University 2015. Paper 4590.
http://digitalcommons.usu.edu/etd/4590

[7] C. Nunes, U. Kulesza, C. Sant’Anna, I. Nunes, and C. Lucena, “On the
Modularity Assessment of Aspect-Oriented Multiagent Architectures:
a Quantitative Study.” International Journal of Agent-Oriented
Software Engineering, v. 2, pp. 34- 61, 2008.

[8] A. Raza and S. Clyde, “Communication Aspects with CommJ: Initial
Experiment Show Promising Improvements in Reusability and
Maintainability,” ICSEA'14, pp. 48-55, 2014, Nice, France, Oct. 2014.

[9] A. Raza and S. Clyde, “Weaving Crosscutting Concerns into Inter-
process Communications (IPC) in AspectJ,” ICSEA 2013. Venice,
Italy, pp. 234-240, 2013, ISBN: 978-1-61208-304-9.

[10] R. Burrows, A. Garcia and F. Taiani, “Coupling Metrics for Aspect-
Oriented Programming: A Systematic Review of Maintainability
Studies,” In Evaluation of Novel Approaches to Software Engineering,
volume 69 of Communications in Computer and Information Science,
pp. 277-290, 2010.

[11] L. Parnas, “On the Criteria to be used in Decomposing Systems into
Modules,” Commun. ACM, vol. 15, no.12, pp. 1053-1058, Dec. 1972.

[12] Y. Coady et al., “Can AOP Support Extensibility in Client-Server
Architecture?” In European Conference on Object-Oriented
Programming (ECOOP), Aspect-Oriented Programming Workshop,
June 2001.

[13] C. Sant’Anna, E. Figueiredo, A. Garcia, and C. J. P. Lucena, “On the
Modularity of Software Architectures: A Concern-Driven
Measurement Framework.” In Proc. ECSA, pp. 24-26, 2007, Madrid,
Spain.

[14] J. Zhao, “Measuring Coupling in Aspect-Oriented Systems”, Int.Soft.
Metrics Symp. 2004.

[15] S.R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Trans. Softw. Eng., vol. SE-20, no. 6, pp. 476–
493, June 1994

[16] T.J. McCabe, “A Complexity Measure,” IEEE Trans. Softw. Eng., vol.
2, no. 4, pp. 308-320, Dec. 1976.

[17] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft, and C. Ward,
"Cyclomatic Complexity and Lines of Code: Empirical Evidence of a

Figure 11. Average AT, PT and NoBs over Applications

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Stable Linear Relationship," Journal of Software Engineering and
Applications, vol. 3, no. 2, pp. 137-143, 2009.

[18] Collaborative Institutional Training (CIIT), 2014, Social & Behavioral
Research Modules [Online], [retrieved: June, 2015], Available:
https://www.citiprogram.org.

[19] Narayana, Narayana Transaction Anaylser (NTA) Tool [Online],
[retrieved: Septemeper, 2015], Available: http://narayana.jboss.org/

[20] SourceForge, Eclipse Metrics Project 1.3.6 [Online]. [retrieved: Jul,
2015] Available: http://metrics.sourceforge.net.

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

