
FAST: Framework for Automating Software Testing

Ana Paula Furtado1,2, Silvio Meira
1Informatics Centre – CIn

Federal University of Pernambuco

Recife, Brazil

e-mail: {apccf, srlm}@cin.ufpe.br

Carlos Santos, Tereza Novais, Marcelo Ferreira
2Recife Centre for Advanced Studies and Systems –

CESAR

Recife, Brazil

e-mail: {carlosdombosco,terezanovais,

marsantosfer}@gmail.com

Abstract—— The automation of software testing has played an

important role in assessing the quality of software prior to

delivering the product to the market. Several practices to

introduce test automation are found both in the literature and

in practice. However, most of these are not directly related to

how automation practices could be systematically introduced

into a software development context. Therefore, this paper

describes a study which is still in progress on the best practices

of test automation and how they can be systematically

introduced into the software development process. It is in this

context that this article presents and describes FAST –

Framework for Automating Software Testing and does so by

defining automation levels, areas and practice areas. The

methodology used for this research is based on a systematic

review of the literature, empirical research, a focus group and a

case study. The initial general approach of the framework has

been defined and will undergo this method of evaluation in

order to collect feedback and identify improvements that need

to be made in order to produce the complete version of the

framework.

Keywords - software testing automation; software testing;

process improvement; software quality.

I. INTRODUCTION

Test automation is the use of software to support test
activities. It is considered an important topic of research and
has been intensively studied in the literature [25]. However,
despite its wide use, there are still gaps between existing
approaches to test automation and its use in the software
industry. The process of test automation needs time to mature:
the creation of an infrastructure for tests for automation
requires time and for automation-related processes to mature
[25]. If the strategy for introducing automation in a project
were to be inappropriate, this would not allow the company to
reap the benefits related to test automation. Moreover, a large
amount of time and resources is needed to support testing
activities in the software development process [21]. For
example, based on the model developed by Kit [17], it is
estimated that software testing uses up to 80% of the total cost
of software development, while the use of test automation
could reduce the software development effort by up to 50%.
Fewster [8] states that automating the running of tests is
becoming more popular due to the need to improve the quality
of software, whilst the complexity of software systems is
becoming greater.

Despite the need to provide test automation techniques,
there is still a lack of approaches and guidelines to assist with
the design, implementation, and maintenance of test
automation approaches [33]. Based on the gaps derived from
observations in the software industry and on academic
research, the problem related to this study can be stated as:
How should software test automation be introduced in the
software development process?

The main goal of this research is to produce a framework
for software testing that could be used by the software industry
to support the systematic introduction of test automation in the
software development process. More specifically, we propose
a test automation framework to reduce costs and improve
product quality during the life-cycle of software development.

The rest of this paper is organized as follows. Section 2
gives a review of the literature followed, in Section 3, by a
description of the research methodology. Section 4 introduces
the technical approach and how it has been assessed so far.
Finally, Section 5 contains some concluding remarks and
offers suggestions for future studies.

II. LITERATURE BACKGROUND

This study is based on the concepts and theory associated
with testing in the software engineering domain, more
precisely in the area of test automation. Many of the tasks and
activities of tests can be automated, as can aspects of testing
techniques. Many additional test tasks and activities can be
supported by software-based tools, such as test case
management; test monitoring and control; test data
generation; static analysis; test case generation; test case
execution; test environment implementation and
maintenance; and session-based testing [14].

With a view to improving software quality, some studies
present technical approaches to introduce testing within the
software development context, by defining maturity models.
Over the years, some maturity models and approaches have
been developed, including models specifically related to the
software testing area (those related to this study), as well as
generic ones.

The first model to appear was the Software Capability
Maturity Model – CMM-SW [23]. From that point on, some
models appeared in order to present maturity models in the
test process, such as MMAST [20], TAP [29], TMM [30],
TCMM [2], TIM [7], TPI [19], TOM [32], TSM [11], TMMI
[31], MPT.Br [10], and TAIM [6]. Besides these, some

78Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

maturity models mention best practices for software
development processes, without specifically focusing on
testing discipline, such as CMM-SW [23], CMMI [28] and
MPS.Br [27]. However, most of the test automation-related
studies are defined as maturity models. These require levels of
implementation and maturity assessment and this is one of the
differences between these models and the one set out in this
article.

In addition, except for Test Automation Improvement
Model (TAIM), these models do not directly address
techniques to introduce test automation into software
development and therefore they do not answer the research
question that this paper poses. On the other hand, TAIM
presents a model based on measurement to support
automation and the steps for improvement to be followed in
10 key areas and 1 general area. This approach is defined as a
maturity model but it does not show what steps towards
maturity must be taken in order to introduce automation.

Another approach related to this is the Maturity Model for
Automated Software Testing (MMAST). This is a model that
was developed for manufacturers of computerized medical
equipment and its purpose is to define the appropriate level of
automation into which an equipment manufacturer fits. It has
four maturity levels: Level 1 - accidental automation, level 2
- beginning automation, level 3 - intentional automation and
Level 4 - advanced automation. Despite being a maturity
model, it has neither key areas nor process areas and its
description is very broad and does not include matters as to
how test automation can, in fact, be performed.

The Testing Assessment Program (TAP) is a maturity
model which consists of 5 maturity levels, namely: initial and
ad hoc (chaotic); repeatable and intuitive; defined qualitative;
quantitative managed; and optimizing continuous
improvement. Maturity is evaluated based on four key areas,
namely: goals, people, management and techniques. however,
the literature has only superficial descriptions of the model
that impede it from making a more detailed analysis.

Test Maturity Model (TMM) is a model with 5 maturity
levels: Level 1 - initial, Level 2 - phase definition, Level 3 -
integration, Level 4 - management and measurement and
Level 5 - optimization/ defect prevention and quality control.
However, TMM does not discuss any issue directly related to
test automation.

Testing Capability Maturity Model (TCMM) consists of 5
maturity levels: initial, repeatable, defined, managed and
optimizing. The model includes key areas for each maturity
level. However, the little information available does not
describe TCCM appropriately so that what automation issues
are present in the model can be analyzed.

Testability Support Model (TSM) was developed with a
view to identifying actions that can improve the ability that a
system has to be testable. This has three levels of maturity and
6 Key Support Areas, namely: Software Engineering
Infrastructure, Project plans, Product information, Software
design, Testware and Test environments. However, there is
little information available on the model that enables it to be
analyzed in greater depth.

Test Improvement Model (TIM) is a model intended to
guide testing functions in their improvement work which has

a four-step improvement ladder. The initial level has been
given the number zero, as it is a non-compliance level and the
other levels are numbered from 1 to 4, namely: Level 1 –
optimizing, Level 2 – risk-lowering, Level 3 – cost-
effectiveness and Level 4 – baseline. It has 5 key areas,
namely: organization; planning and tracking; test case,
testware and reviews. In its scope, testware deals with the
actual testing procedures that are run, the support software, the
data sets that are used to run the tests, and the supporting
documentation. It includes managing the configuration of
testware and the use of testware and tools. The model also
mentions that tools can assist in performing non-creative and
repetitive tasks, such as running the same test cases several
times and automating testing activities. However, no
guidelines are presented to support them

The Test Process Improvement Model (TPI) has 3 levels
and 14 scales. Each level consists of a number of scales and
these indicate which key areas need to be improved. The
levels are: controlled, efficient and optimizing. The model
also has 20 key areas, 1 of which is testware management. The
model states that testing products (testware) should be
maintainable and reusable and so they must be managed. Yet,
test automation itself is absent in the model.

The objective of the Organization Testing Maturity Model
(TOM) is to identify and prioritize organizational bottlenecks
and generate solutions to these problems. A questionnaire is
used to identify and prioritize both the symptoms and
suggestions for improvement. Despite its name, it is not
characterized as maturity model, as its focus is to solve
problems and not improve testing in the organization, and
there is no information on test automation.

The Test Maturity Model Integration (TMMi) is a model
for improving the testing process developed as a guide and
reference framework. It follows the staged version of CMMI,
and also uses the concepts of maturity levels for evaluating
and improving the testing process. TMMi consists of 5
maturity levels, namely: Level 1 - initial; Level 2 - managed;
Level 3 - defined; Level 4 - measured; and Level 5 -
optimization. Each level of maturity presents a set of process
areas that must maturity at that level, in which each level of
maturity is the starting point for the next level.

Despite being a maturity model specifically for the test
area and its having systematic ways to enter the practice of
software testing in the context of projects under development,
it does not have a process area specifically dedicated to tools
and/or test automation, nor does it include systematic
suggestions for improving testing automation.

The Brazilian Maturity Model for Testing (MPT.BR) is a
reference model that defines, implements and improves
testing processes based on its being continuously improved. It
also tackles the same approach to improving the testing
process by using process areas that include the best practices
of testing activities throughout the testing life cycle of the
product. The model has 5 maturity levels, namely: Level 1 -
partially managed; Level 2 - managed; Level 3 - defined;
Level 4 - prevention of defects and Level 5 - automation and
optimization.

Within the ambit of test automation, the model shows the
process area of Automation of Executing the Test (AET), the

79Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

purpose of which is to develop and maintain a strategy to
automate the running of the test. This process area comprises
the following list of specific practices:

 Defining the objectives of the automation regime;

 Defining criteria for selecting test cases for
automation;

 Defining a framework for automating testing;

 Managing automated testing incidents;

 Ensuring adherence to the objectives of automation;
and

 Analyzing the return on investment in automation.
Although the specific practices have a systematic way for

introducing testing, they are still vague as to identifying the
moment at which automation is to be performed. There is no
specific information on introducing automation into the
software development process, besides its not saying which
testing levels can be automated. The written format is generic
and comprehensive, into which every type of automation can
fit. However, it does not help choosing where automation
should start and what benefits can be achieved.

Therefore, this article puts forward a framework that can
fill this gap in current research and aids taking a more flexible
approach, for which there are no strict steps for introducing
practices as this is in a maturity model. In this context, the next
section will detail the research methodology associated with
this study.

III. RESEARCH METHODOLOGY

The research methodology planned for this study has three
phases. The first is a Bibliographical Review, which
comprises an exploratory review and a systematic review and
the second is that of defining the Proposal. The latter is
developed, underpinned by an empirical research including
conducting interviews in the industry. The third phase is
Evaluation, which will be conducted by using a focus group
and a case study. Fig. 1 illustrates this approach.

Figure 1. The design of the research activities | Source: author.

A. Exploratory Review

An exploratory review, or a bibliographical review, is a
critical, meticulous and comprehensive analysis of current
publications in a given field of knowledge. It is an important

step in the research, since it supports understanding the subject
of research and assessment, if this is worth studying, and
provides insights into how a researcher can define the scope
for a particular area of interest [4]. The literature review
correlates the research to the ongoing dialogue in the
extensive literature, thereby filling in gaps and extending prior
studies [22].

The main objective of this research instrument is to
identify and explore publications related to the area being
studied in order to learn how this problem has been
approached and analyzed in previous studies with a view to
reaching a better understanding of the research problem being
investigated.

An ad-hoc bibliographical review has been undertaken by
conducting searches of the scientific libraries available, such
as IEEE Explorer, Engineering Village (including Inspec and
Compendex), Scopus, ACM, Google Scholar and Springer.

B. Systematic Review

According to Kitchenham [18], a systematic review of the
literature is a way to identify, assess and interpret all relevant
research available on a specific research question, or related
phenomena of interest.

In order to achieve these benefits, a systematic review is
under development which will be used to help assess the
benefits and limitations of software testing automation and to
analyze how the cost and quality of software is affected as a
result of introducing automation practices.

In this research, an analysis is made of material published
between 2005 and 2015, based on the main libraries such as
IEEE Explorer, Engineering Village (including Inspec and
Compendex), Scopus, ACM, Google Scholar and Springer. In
addition, several relevant journals and conference proceedings
are examined under the manual method. This is work-in-
progress, during which data are being extracted by automatic
searches. These data will be used to synthesize this study and
report the results.

This systematic review is very important because it will
ensure that all relevant studies in the literature are mapped.
This will underpin how best to define the strategy needed to
introduce test automation and guarantee that all related work
is known and assessed in this research.

C. Empirical Research with Interview

The empirical research with interview, based on experts’
opinion, was one of the methods chosen to support this study.
This consists of a comprehensive system for collecting
information to describe, compare or explain knowledge,
attitudes and behavior [24].

A group of experts in software testing automation was
selected in order to collect their opinions, attitudes and
expectations about the research questions for this study.

The survey was organized in three parts. The objective of
Part 1 was to gather personal information and information on
the professional background. The goal of Part 2 was to
validate the problems of test automation, and this included
analyzing the challenges, problems, benefits of the testing
automation area and determining what gaps there are. Part 3
focused on analyzing the automation strategy used in the

80Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

companies, and included questions about the test strategy,
levels of automation and technologies used. Finally, the aim
of Part 4 was to evaluate what opinions experts have as to the
hypothesis of this study.

This survey was applied to 4 experts on testing, 2 of whom
work in England and the other 2 in Brazil. They work directly
on test activities in their companies and each of them has had
more than ten years’ experience in testing.

The results from Part 2 mainly showed that there is a
shortage of qualified professional who can engage on test
automation and this makes it harder to introduce automation
practices into a project. Moreover, the lack of senior
management support also makes it more difficult to include
automation practices in a project. Moreover, the difficulties
faced in setting up an automation environment is also an
impediment, as is the need for rework on tests assets due to
changes made in requirements.

In Part 2, the benefits gained from test automation were:
an increase in the team’s velocity; more frequent delivery of
working software; code continuous integration; fast execution
of a group of test cases; parallel work can be done while tests
are running; better visibility of code test coverage; and
increasing the likelihood of finding new errors before
delivering software to the market.

In Part 3, the intention was to collect experiences on how
test automation was first introduced into a project. No results
could be reached from this question, which re-emphasized the
hypothesis of this study that there are no systematic ways to
introduce test automation in a project that has not
implemented this practice when that project was under
development.

D. Focus Group

Using a focus group is an approach in which a group of
people gather to evaluate concepts and/or problems [3], and
consists of a survey to obtain qualitative insights and feedback
from experts in certain subjects. A focus group meeting
involves semi-structured group interviews, in which the
interactions in the group are explicitly used to generate data.
Participants offer personal opinions but can also interact based
on the response of other participants while the interviewer acts
as moderator so that the interview remains focused on its
objectives [9].

The objective of the focus group in the context of this
paper is to evaluate the proposal of this thesis with a view to
collecting suggestions for improving and developing the
proposal prior to conducting the case study.

E. Case Study

A case study can be defined as a research strategy on
understanding the dynamics present in a given environment,
in accordance with the view of Eisenhardt [5]. A case study is
an empirical method that targets analyzing a phenomenon in
a given context. The purpose of the case study is to seek pieces
of formal evidence by using variables that can be measured
and to draw inferences coming from the example for a given
population.

Case studies are appropriate when the boundaries between
the phenomenon and the context are not clearly defined, and

the type of evidence is considered to be very rich and
contextualized [9].

In this context, a case study should be used as a tool to
validate the solution proposed, and will be conducted as
proposed by Runeson and Höst [26], based on the following
steps:

 Designing the case study;

 Preparing for data collection;

 Collecting evidence;

 Analyzing the data collected; and

 Writing a Report.
The case to be applied will be in a software development

company that has an academic management product that
integrates all areas of the educational institution. The data
collection method will start from the principle that the
researcher will have direct contact with the data and collect
them in real-time (first degree data), by using interviews and
focus groups.

Data analysis shall be conducted quantitatively, using
correlation analysis, which describes how a given
measurement of a process activity is related to the same
measurement in a previous process, and thus compare them.
The measurement being compared is the cost of testing, by
assessing whether it decreases when automated testing is
introduced into the software development process. In addition,
the quality of the software shall also be analyzed from when
automated testing was introduced in the software development
process.

Based on all observations so far gathered, in line with the
steps defined in the research methodology, the technical
approach has been developed and will be detailed in the
following Section.

IV. TECHNICAL APPROACH

The approach developed to support the objective of this
study and to answer the research questions is the Framework
for Automating Software Testing (FAST).

According to ISO/IEC/IEEE [16], a framework can be
defined as “a reusable design (models and/or code) that can be
refined (specialized) and extended to provide some portion of
the overall functionality of many applications”.

Although conceptually, the term ‘framework’ is more
related to the technical component of a software, this study
uses this term in order to make it clearer how a group of best
practices can be adapted to a project in accordance with its
specific needs so as to reap the best benefits of software testing
automation. FAST differs from a maturity model in that the
practice areas are not mandatory and there is no need to certify
a company in the framework; and in accordance with the
needs of a specific environment, each process area can be
applied to a project.

Therefore, FAST is defined in accordance with the
components shown in Fig. 2 and described as follows:

 Automation level. Determining this is a separate test
effort that has its own documentation and resources
[15]. This represents the scope within which
automation activities will be welcomed in a project;

81Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

 Area is a general range of interest in which FAST is
divided into two parts, Technical and Support, as
shown in Fig. 3. It includes what is needed to
introduce testing automation techniques into a
project and consists of process areas;

 Process Area This is a group of related practices in
an area that, when implemented collectively, satisfies
a set of goals considered important for enhancing that
area [28]. Each process area is assigned a specific
purpose, has guidelines that must be implemented,
and suggested work products that must be produced
by engaging on such practices.

Figure 2. FAST components | Source: author.

The relationship between the areas were defined in
accordance with CMMI-DEV [28], where the support process
areas address processes that are used in the context of
performing other processes. In this case, the Support Area
comprises a fundamental support function and relies on the
processes of the Technical Area for input. For example, the
process area for Project Planning will plan the test strategy for
the Process Area of Unit Testing.

Figure 3. FAST areas | Source: author.

Fig. 3 presents the overall structure of FAST, together with
the process areas for each area. The framework can be applied
by instantiating it in a project context, where the process areas
can be adapted to best fit the environment where it will be
applied. The objectives and process areas will be described in
the following section.

A. FAST Support Area

The objective of the FAST Support area is to cover
essential mechanisms to support establishing and maintaining
the automation environment. It was developed based on the

reference model of both CMMI-DEV, which covers a generic
view of best practices for software development projects, and
TMMI, which has a group of guidelines specific to test
projects. The objective of process is to undertake practices that
are fundamental to systematically introducing automation
practices but are not specifically directed towards automation
practices. The objective and guidelines of the process areas
from the support area are given below.

Project Planning

The purpose of Project Planning is to define a plan to
support setting up an automated test project for which the
guidelines are as follows:

 Plan test project;

 Define test strategy;

 Make estimates;

 Analyze project and product risks; and

 Obtain commitment to the plan.
The work products related to this process area can be a

test plan which has the information required by the guidelines.

Project monitoring

The purpose of Project Monitoring is to provide an
understanding of the project’s progress so that appropriate
corrective actions can be taken when the project’s
performance significantly diverges from the plan [28].

It has the following guidelines:

 Monitor progress against the plan;

 Monitor product quality;

 Conduct corrective actions as per the demand; and

 Manage corrective actions to closure.
The work products related to this process area can be

defined as project monitoring sheets, together with systems to
track adherence to the project schedule and issues from start
to closure.

Configuration management

One reason maintainability is so important is that without
it tests cannot be accumulated. Therefore, the purpose of
Configuration Management is to establish and maintain the
integrity of testware by defining the management system for
the configuration, for which there are the following
guidelines:

Establish project baselines;

 Control and track changes; and

 Establish the integrity of the project.
The main work products related to this process area are

the configuration management system together with its plan.

Measurement and analysis

The purpose of this process area is to define, collect,
analyze and apply measurements to support an organization in
objectively evaluating the effectiveness and efficiency of the
test process [31]. In this case, all indicators defined are
specifically aligned to the automation strategy, in order to best
achieve its desired objectives. The guidelines for this are as
follows:

 Define test indicators for the project;

 Specify test measures in terms of data collection and
storage procedures;

82Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

 Specify analysis procedures;

 Collect test measurement data;

 Analyze test measurement data;

 Communicate results; and

 Store data and results.
The main work product here is the measurement and

analysis plan, together with the data collected and formally
analyzed.

Requirement

The purpose of this process area is to clearly define the test
automation requirements and the following guidelines area
associated with this process area:

 Define what products need to be automated;

 Prioritize requirements; and

 Maintain the traceability of requirements.
The work products in this case are those on the list of

requirements, for which tests will be automated in the

software development process.

Incident management

The purpose of this is process area is to objectively define
the mechanism and procedures to formally monitor all product
incidents derived from test automation activities. It supports
testers in the investigation and documentation of test incident
reports and the retesting of defects when required [10].

In order to achieve this, the following guidelines are
suggested:

 Establish incident management system;

 Register, classify and prioritize incidents;

 Solve and track incident upon its closure; and

 Escalate non-solved incidents.
The main work product related to this process area is the

incident management system.

B. FAST Technical Area

The objective of the FAST Technical area is to establish
and maintain automated mechanisms for testing software
applications throughout test levels in order to produce test
environments that can be developed, managed and maintained
efficiently. The technical area consists of four process areas,
in accordance with the automation levels that a software can
undergo, and its objective is to describe practices to support
automation activity. The details of the processes areas of the
technical area re given below.

Unit Testing

The objective of this process area is to provide
mechanisms so that unit tests are implemented in a systematic
and documented way in order to maximize the benefits of
automation in the test project. This area has the following
guidelines:

 Design the test suite;

 Implement the refined plan and test design;

 Measure the test unit;

 Run the test procedures;

 Evaluate test completion; and

 Evaluate the effort and test unit.

The work products related to this process area are the test
items, the design of the test specification [15], test summary
report [15], and reporting the failures found.

Integration Testing

The purpose of the Integration Testing process area is to
evaluate the integration between software components, to
ensure that the architectural design of the system is
implemented correctly [13][13]. It tests the interface between
components and interactions in different parts of the system,
such as operating system, the file system and the interface
between the systems [1]

This process area has the following guidelines:

 Design the integration approach (bottom-up or top-
down), in accordance with the system’s
requirements;

 Design the set of integration tests;

 Implement the design of the integration tests:

 Run the test procedures;

 Assess whether the tests have been completed and
whether they have achieved the required coverage of
the requirements; and

 Formally record and direct the non-conformities and
restrictions arising from the integration actions.

The work products related to this process area are the set
of integration tests and formally reported results.

System Testing

The purpose of the System Testing process is to test the
integrated and complete systems so as to assess its ability to
communicate with each other and validate whether the
systems are in accordance with the specifications of the
requirements [15].

The objective of this process area is to test the finalized
system and analyze the behavior of the system as a whole in
order to analyze compatibility with the specified
requirements, and can be performed in line with the testing
approach selected, such as risk-based products, business
processes or other description of the behavior of a high-level
system [1].

This process area has the following guidelines:

 Establish the testing approach of the system;

 Select the testing techniques of the system;

 Design the set of system tests;

 Implement the system tests;

 Run the system tests;

 Assess whether the test was completed; and

 Register, formally, and direct non-conformities.
This process area needs to address questions about the

selection of requirements so as to generate a group of test
cases to be automated and run in the context of a project. The
related work products are the set of test cases, and the formal
record in a specific tool of the results.

Acceptance Testing

The objective of the Acceptance Testing process area is to
ensure that the product is working and that it can be presented
for acceptance, in which the customer and/or user is expected
to be involved [12]. At this level of automation, the object to
be tested is the complete system and this must address

83Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

activities in order to demonstrate the customer’s acceptance
regarding the final system.

The objective of this process area is to ensure that the suite
of acceptance tests, planned in accordance with the strategy
and needs of the end user, is implemented so that it can run
automatically. To this end, this process area has the following
guidelines:

 Define acceptance criteria;

 Define the acceptance plan;

 Prepare the testing acceptance environment;

 Assess the conditions of acceptance; and

 Conduct the closure of acceptance.
The work products related to this process area are the

acceptance plan, the acceptance environment, the suite of
acceptance tests, the due register of the test results and
incidents recorded and followed upon until closure on the
appropriate tool.

In this context, this section presented the FAST way to
include the theoretical structure and its process areas. The
following section presents the conclusions and future studies
planned for this research.

V. CONCLUSIONS

This paper proposes a framework to support the systematic
introduction of test automation in the context of software
development. The approach was defined by describing
automation levels, technical and support areas, and practice
areas.

In order to evaluate this general approach, a plan was
drawn to conduct a focus group and a case study, in
accordance with the descriptions given in the methodology
Section, in order to gather feedback on the value of FAST
being feasible, complete and adequate. After this phase, it was
expected that the description of the framework would be
enhanced in order to finalize how to define the framework.

Some threats to this study were identified and are being
dealt with in order to minimize side effects to the expected
results. The first threat is the possibility of bias while
analyzing data from the case studies, since the results of
introducing FAST may vary according to the domain of
application. In order to minimize this threat, three different
scenarios and domains were planned to be part of the scope of
the case study, in which the absence of information in a
specific context can be complemented by having it in another.

Another threat would be to focus the definition of the
framework upon the perspective of the very few authors found
in the literature review. Hence, to diminish this possible
problem, a systematic review of the literature is being
developed to guarantee that all research studies are taken into
consideration when developing this project.

Therefore, this work-in-progress offers contributions to
research on test automation and its practice, whereby a
framework is compiled from a combination of experience,
practice and a systematic review of the literature in the form
of best practices, which can be applied when running tests in
software development.

ACKNOWLEDGMENT

This research work was supported by the Brazilian
National Research Council (CNPq) of the Ministry of Science,
Technology and Innovation of Brazil, process #206328/2014-
1. The international cooperation with the Open University was
part of the Science without Borders program
(http://www.cienciasemfronteiras.gov.br/web/csf).

REFERENCES

[1] R. Black, E. Veenendaal and D. Graham, Foundations of Software
Testing ISTQB Certification. 3rd Edition, Reino Unido, January 2012.

[2] S. M. Burgess and R. D. Drabick, “The I.T.B.G.testing capability
maturity model (TCMM)”, 1996, available from
https://wwwbruegge.informatik.tu-
muenchen.de/lehrstuhl_1/files/teaching/ws0708/ManagementSoftwar
eTesting/12-4-1-FPdef.pdf, retrieved: July, 2016.

[3] S. Caplan, “Using focus group methodology for ergonomic design.
Ergonomics”, v. 33, n. 5, p. 527-33, 1990.

[4] J. Creswell, Research design: qualitative, quantitative and mixed
methods approaches, 4th Edition, Washington D.C., 2014.

[5] K, Eisenhardt, Building theories from case study research. The
Academy of Management Review, October 1989.

[6] S. Eldh, K. Andersson, A. Ermedahl and K. Wiklund, “Towards a test
automation improvement model (TAIM)”, in 014 IEEE Seventh
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), Cleveland, pp. 337-342, April 2014.

[7] T. Ericson, A. Subotic and S. Ursing, “TIM - A test improvement”,
Software Testing Verification and Reliability 7(4), pp. 229-246,
December 1998.

[8] M. Fewster, Common Mistakes in Test Automation, Grove Consultant,
2011.

[9] S. Fincher and M. Petre, Computer Science Education Research.
Taylor and Francis, January 2004.

[10] A. P. Furtado, M. Gomes, E. Andrade and I. Farias, “MPT.BR: A
Brazilian maturity model for testing”, in The 12th International
Conference on Quality Software (QSIC), Xi’an, pp. 220-229, August
2012.

[11] D. Gelperin, “A testability support model (TSM)”, in the fifth
International Conference On Software Testing, Analysis & Review,
Orlando, Florida, pp. 13-17, May 1996.

[12] A. M. Hass, Guide To Advanced Software Testing, Artech House,
London, 2008.

[13] IEEE 610.12 Standard Glossary of Software Engineering
Terminology, IEEE Computer Society, 1990.

[14] IEEE 29119-1: Software and Systems Engineering – Software Testing
– part 1: Concepts and Definitions, IEEE Computer Society, 2013.

[15] IEEE 829 Standard for Software and System Test Documentation,
IEEE Computer Society, 2008.

[16] ISO/IEC/IEEE 24765 International Standard, Systems and Software
Engineering Vocabulary, 2010.

[17] E. Kit and S. Finzi, Software testing in the real world: improving the
process, Addison-Wesley Publishing Co., New York, 1995.

[18] B. Kitchenham and S. Charters, Guidelines for Performing Systematic
Literature Reviews in Software Engineering, Software Engineering
Group, School of Computer Science and Mathematics, Keele
University, Tech. Rep. EBSE-2007-01, July 2007.

[19] T. Koomen and M. Pol, Test Process Improvement (TPI), A Practical
Step-by-step Guide to Structured Testing, Addison-Wesley, 1999.

[20] M. E. Krause, “A maturity model for automated software testing”, in
Medical Device & Diagnostic Industry Magazine, December 1994,
available from https://wwwbruegge.informatik.tu-
muenchen.de/lehrstuhl_1/files/teaching/ws0708/ManagementSoftwar
eTesting/12-4-1-FPdef.pdf, retrieved: July, 2016.

84Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[21] H. K. Leung and L. White, “A cost model to compare regression test
strategies,” in 1991 Conference on Software Maintenance, Sorrento,
pp. 201–208, October 1991.

[22] C. Marshall and G. Rossman, Designing Qualitative Research, SAGE
Publications, Washington, DC, USA, 2011.

[23] M. Paulk, C. Weber, S. Garcia, M. Chrissis and B. Bush, “The
Capability Maturity”, version 1.1., IEEE Software 10, no3 pp. 18-27,
1993.

[24] S. L. Pfleeger and B. A. Kitchenham, “Principles of survey research:
part 1: turning lemons into lemonade”, ACM SIGSOFT Software
Engineering Notes, 26(6), pp. 16-18, 2001.

[25] D. M. Rafi, K. R. K. Moses, K. Petersen and M. V. Mäntylä, “Benefits
and limitations of automated software testing: systematic literature
review and practitioner survey”, in 2012 7th International Workshop
on Automation of Software Test (AST), Zurich, p.p. 36-42, June 2012.

[26] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering”, In: Empirical Software
Engineering Journal, Volume 14, Issue 2, pp. 131-164, April 2009.

[27] Softex, “MPS.BR – Brazilian software process improvement”, General
Guide, V1.2., Rio de Janeiro, Softex, 2007.

[28] Software Engineering Institute (SEI). CMMI for Software
Development, version 1.3, staged representation, Pittsburgh, PA, 2010.
Available from: www.sei.cmu.edu/reports/10tr033.pdf, CMU/SEI-
2010-TR-033, retrieved: July, 2016.

[29] TAP, Testing Assessment Program (TAP), Software Futures Ltd and
IE Testing Consultancy LTD, 1995.

[30] TMM, Test Maturity Model, Illinois Institute of Technology. ,
Available from http://science.iit.edu/computer-
science/research/testing-maturity-model-tmm 2014.08.11 retrieved:
July 2016.

[31] TMMI, Test Maturity Model Integration, Release 1.0, TMMi
Foundation, Ireland, 2012, Available from
http://www.tmmi.org/pdf/TMMi.Framework.pdf 2014.08.11,
retrieved: July 2016.

[32] TOM apud R. Swinkels, A Comparison of TMM and Other Test
Process Improvement Models, Project Report 12-3-1-FP, 2000.

[33] K. Wiklund, S. Eldh, D. Sundmark and K. Lundqvist , “Technical debt
in test automation”, in 2012 IEEE Fith International Conference on
Software Testing, Verification and Validation (ICST), Montreal, pp.
887-892, April 2012.

85Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6220303
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6220303
http://en.wikipedia.org/wiki/Illinois_Institute_of_Technology

