

An Approach to Generation of the UML Sequence Diagram from the Two-

Hemisphere Model

Oksana Nikiforova, Konstantins Gusarovs

Riga Technical University

Riga, Latvia

konstantins.gusarovs@rtu.lv,

oksana.nikiforova@rtu.lv

 Anatoly Ressin

SIA AssistUnion

Riga, Latvia

anatoly@assistunion.com

Abstract – Modelling for model-based development of

software concerns the representation of both system

structure and behavior. To this end, in order to satisfy this

requirement Unified Modelling Language (UML) provides

a range of static and dynamic diagram types; of these class

and sequence diagrams are most frequently used. In

contrast to the UML class diagrams, which are well

researched and discussed in the literature, sequence

diagrams are a ‘dark horse’ especially in regard layout and

transformation. This paper proposes an approach to the

generation of UML sequence from two-hemisphere model

with the main attention to a dynamic aspect of the system.

Keywords – two-hemisphere model; UML sequence

diagram, model transformation; finite-state machines;

regular expressions.

I. INTRODUCTION

One of the trends for software developments, namely

Model-Driven Software Development (MDSD) [1], is

being widely introduced in order to support both the

business analysis of the system being built as well as its

implementation. According to MDSD, the development

process is started with the modelling of the problem

domain in order to produce the software domain model

and to achieve once developed system model reuse [2].

The primary benefit of MDSD is an ability to provide

a big-picture view of the architecture of the entire

system. Usage of MDSD requires a common modelling

notation and a system that can be used on all the stages

of the development. Object Management Group (OMG)

proposes its standard – Unified Modelling Language

(UML) [3] that nowadays is being widely adopted. UML

defines a notation for a set of the diagrams used for

modelling the different aspects of the system – both

static and dynamic. According to the research provided

by Scott Ambler [4], the most popular UML diagrams in

software development projects are the UML class and

sequence diagrams. Static modelling is mainly done

using UML class diagram that defines the general

structure of the system and can be used as a basis for the

implementation. The UML sequence diagram serves to

define dynamic aspect presenting object interactions in

the system. The UML sequence diagram includes both

classes inside of the system as well as its environments

represented as a set of the actors. These elements are

exchanging the messages that are being placed on the

lifelines that allow defining both the interaction patterns

as well as the sequence of the interactions.

The UML class diagrams have been quite well studied

in the MDSD-related researches and several methods

exist for producing the UML class diagrams from the

different types of the notations representing the problem

domain. However, situation with the methodological

modelling of the system dynamic is worse – only a few

MDSD approaches focus on this question. As a result,

issues associated with the transformations of the system

dynamics are one of the main reasons why MDSD

adoption is quite slow nowadays.

Since 2004, the research group lead by Oksana

Nikiforova has been working on the applications of two-

hemisphere model for the generation of different sets of

the UML elements. This paper focuses on the UML

sequence diagram, especially, its timing aspect. In this

paper authors propose an approach that allows a way of

transforming a two-hemisphere model into the UML

sequence diagram based on the sequence diagram

topology and using finite state machine (FSM) [5][6] as

an auxiliary model within the series of model

transformations. In addition, authors are going to analyze

current limitations of the notational conventions

proposed for the two-hemisphere model and argue the

ideas of improving it in order to be able to receive results

that are more precise.

The rest of the paper is structured as follows. Section

2 contains a short description of the two-hemisphere

model. Section 3 describes related researches in the

MDSD context providing an insight to similar existing

methods and techniques. Section 4 provides a short

description of the UML sequence diagram that is

selected as a target model for the proposed

transformation. The transformation method itself is

described in the section 5 and a simple example is being

analyzed in the section 6. In Section 7, method

application results, as well as current limitations, are

being analyzed and the possible solutions, in order to lift

these limitations are being offered. Finally, the section 8

contains authors’ conclusions and plans for the future

work in this area.

II. TWO-HEMISPHERE MODEL AT A GLANCE

The two-hemisphere model-driven approach first

published in 2004 [8] introduces an idea of joining

elements both from the static and dynamic presentation

of problem domain in the source model that consists of

two diagram types (see Figure 1):

142Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Process Model Concept Model

Figure 1. Two-hemisphere model for document processing created by BrainTool [7]

1) Concept model describes objects (or data types)

used in the analyzed system presenting those in a form

of concepts. Each concept has its attributes that are

describing its inner structure. An attribute may be of the

primitive type – such as an integer or string as a well as

refer to another concept in the concept model.

2) Process model describes interactions performed

inside the system. It consists of the processes connected

with the data flows. Processes describe activities in the

system and are divided into internal and external –

external processes are defining system’s interaction

points with its environment and should only produce or

consume the data flows whilst internal processes are

defining activities inside the system and should both

consume and produce the data. Data flows are used for

the process interconnection and are describing the data

migration inside the system. Each data flow is assigned

to a concept of a given type thus linking both models.

A valid two-hemisphere model contains a single

concept diagram as well as several process diagrams

each of which might be describing a single activity

inside the system, for example, it is possible to construct

the process diagram for each of the use cases (or user

stories) defined in the system requirements.

Currently, there exist several methods (and tools) for

converting the two-hemisphere model into the UML

class and sequence diagrams that are described in the

papers [8]-[12]. Similarly to the situation in the MDSD

area, transformations targeting the UML class diagram

are a well-studied area.

III. RELATED WORK

A two-hemisphere model-driven approach can be

described as one of the branches in the UML-DFD

method family tree. UML-DFD methods are based on

the usage of the dataflow diagram (that is being called

process diagram in the two-hemisphere model-driven

approach). Original transformation method that allows

dataflow diagram (DFD) conversion into the UML class

diagram is described in 2004 in the paper [13]. It

involved composite transformation from the system

requirements into the UML class diagram that consists

of the 9 steps:

1. System requirement identification.

2. Use case diagram creation.

3. Composition of the textual scenario for the

each of the use cases.

4. A transformation of the use case diagram into

the initial object diagram.

5. Reducing of the initial object diagram by

analyzing object functional features and

143Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

grouping, dividing and removing some of the

initial objects.

6. Constructing the data flow diagram using

reduced initial object set.

7. Identification of the data flows and data

vocabulary creation.

8. Modelling of the system behavior using the

activity diagram.

9. Data flow transformation into the resulting

UML class diagram.

After the initial publication of the UML-DFD

approach, several ways of improving it have been

offering by the different authors in 2004-2012 [14]-[17].

The main difference between the UML-DFD approach

and the two-hemisphere mode-driven approach is an

initial presentation of the system and a resulting data

model type that has been produced. UML-DFD based

methods create so-called anaemic data model [18][19].

The main principle covered in the anaemic data model

design can be stated with a single phrase: “data are

data”, which means that domain classes should contain

no business logic, which in turn should be contained in

the appropriate services processing the data. Two-

hemisphere model-driven approach in turn, produces so-

called rich data model in which domain classes share the

part of the system functional features. While it may seem

that the anaemic data model breaks the idea of the

Object-Oriented Programming (OOP), in practice it is

widely used [20] due to the fact it well suits the

commonly used Model-View-Controller (MVC) pattern

[21].

UML-DFD family methods are producing an activity

diagram that can be later translated into the UML

sequence diagram. In turn, in 2013, a method for

transforming the two-hemisphere model into the UML

sequence diagram was offered by O. Nikiforova, L.

Kozacenko and D. Ahilcenoka [12][22]. The

transformation used in the proposed approach was

similar to the transformation used for generating the

UML class diagram from the two-hemisphere model

[22].

Figure 2. An example of the UML sequence diagram

The main idea behind the two-hemisphere model-

driven approach was always a responsibility sharing,

which in turn means, that the approach tends to find the

most appropriate class for hosting one of the processes in

process model as a method. As a result, both UML class

and UML sequence diagrams generated from the two-

hemisphere model will utilize the rich data model.

IV. UML SEQUENCE DIAGRAM AT A GLANCE

The UML sequence diagram is one of the well-known

UML artefacts used for the representation of a modeled

system’s dynamical features. It focuses on the definition

of the object interaction in the correct sequence. The

diagram’s vertical axis is used to display the time. It is

being directed downwards with the beginning of the

interaction in the model’s top. It is possible to define the

following components of the UML sequence diagram:

 Object – is an instance of a class that reflects real

system’s object.

 Lifeline – represents the time of object existence and

the participation in the interactions with the other

diagram elements.

 Actor – is a specific type of object. It is not the part of

the analyzed system; however, it interacts with it and

represents the part of the system’s environment.

 Message – represents a single communication fact

between actors/objects. Message connects its sender and

its receiver and can have additional arguments.

 Fragment – is used to combine several messages into

the block. Fragments can represent different multi-

message interaction patterns: parallel interaction,

alternate interaction as well as loop (repeated)

interaction etc.

An example of the simple UML sequence diagram is

given in Figure 2. It consists of “user” actor, objects A,

B and C and their appropriate lifelines, messages 1, 2

and 3 and a loop fragment that contains the third

message.

V. PROPOSED TRANSFORMATION METHOD

The two-hemisphere model uses the process diagram

that should contain performers for the external processes

(ones that determine system’s integration with its

environment). These performers are then transformed

into the actors of the UML sequence diagram. Another

diagram that is a part of the two-hemisphere model is a

concept diagram holding the concepts that are

transformed into objects of the UML sequence diagram.

As a result, all of the actors and the objects of a target

UML sequence diagram are created. Next part of the

transformation method involves the creation of the

messages and the identification of the fragments in order

to finalize the UML sequence diagram creation. This can

be achieved by representing the process diagram in a

different way and applying a transformation to a

changed process diagram.

144Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

It is possible to transform the process model into a

FSM [5][6] by transforming both the processes and the

data flows into the transitions and inserting the state

nodes between them. During this transformation, an

additional change applies to the diagram’s topology.

The first change involves the creation of an initial node

that is connected to all the external processes that only

produce data flows and do not consume them. The

second topology change is the creation of the final node

that is connected to all the external processes that only

consume and do not produce any of the data flows. In

this case, the connection is made via special empty

transition that is not in any way connected to the

original model and is only used for the processing of an

intermediate model. Former transformation can be

described using the following pseudocode:

let de = Process Diagram Element

let parents = {de → [de]}

let children = {de → [de]}

let fsm = new Finite-State Machine

for each data flow d in data flows:

 let t = d.target

 let s = d.source

 children += {d → t}

 children += {s → d}

 parents += {t → d}

 parents += {d → s}

let initialProcesses = []

for each process p in processes:

 if not parents contains p:

 initialProcesses += p

let stateId = 1

let is = new State with stateId

let ts = new State with maximal

allowed id

let nodeMap = {de → State}

fsm.addState(initialState)

fsm.addState(terminalState)

for each process p in initialProcesses:

 let n = new State with stateId

 nodeMap += {p → n}

 fsm.addState(n)

 let e = new Transition with p

 fsm.addTransition(e, is → n)

 stateId += 1

let open = [initialProcesses]

let closed = []

while open is not empty:

 let next = first entry from open

 let childs = children[next]

 let node = nodeMap[next]

 if childs is empty:

 let edge = fsm.findTransition(

 node → ts)

 if edge == null:

 let e = new Empty Transition

 fsm.addTransition(e, node → ts)

 for each child in children:

 let n = nodeMap[child]

 if n == null:

 n = new State with stateId

 stateId += 1

 nodeMap += {child → n}

 fsm.addState(n)

 let e = new Transition with child

 fsm.addTransition(e, node → n)

 if not closed contains child:

 open += child

 closed += next

In order to demonstrate the process model to the FSM

transformation, a simple example is provided in Figure 3

and Figure 4. In this example, a process model

containing two external and one internal processes

interconnected with two data flows is transformed into

the FSM .

After the initial FSM has been created from the

process diagram, it is possible to minimize it and convert

into the regular expression. In order to perform those

operations, authors define the following formulas for the

transition manipulation:

 conj – combines two transitions a and b, if

transition b follows transition a (Formula 1):

 disj – combines two transitions a and b, if

transition a is an alternative for transition b

(Formula 2):

 star – marks a repeating transition a

(Formula 3):

Figure 3. A source process diagram

(2)

(3)

(1)

145Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Figure 4. A finite state machine for the source process

diagram

Using these formulas, it is possible to perform the

FSM minimization using the following rules (where ie

is incoming transition, oe is outgoing transition and

c1…cn are circles in a FSM graph):

 If a state has only one incoming and only one

outgoing transition, it is possible to eliminate

this state and merge those transitions into the

single one (Formula 4):

 If there are several transitions between two

states, it is possible to merge these transitions

into a single one (Formula 5):

 If a state has only one incoming and only one

outgoing transition and also has circles from

itself to itself, it is possible to remove this state

and create a new transition (Formula 6):

After the minimization of the initial FSM is done,

resulting the minimized FSM can be converted into the

regular expression using the transitive closure method

[23]:

let m = Finite-State Machine state count

for i = 0 to m - 1:

 for j = 0 to m - 1:

 if i == j:

 R[i, j, 0] = ε

 else:

 R[i, j, 0] = ∅

 for a in transitions:

 if a is transition from i to j:

 R[i, j, 0] = disj(R[i, j, 0],

a)

for k = 1 to m - 1:

 for i = 0 to m - 1:

 for j = 0 to m:

 let s = star(R[k][k][k - 1])

 let c1 = conj(s, R[k, j, k - 1])

 let c2 = conj(R[i, k, k - 1], c1)

 R[i, j, k] = disj(R[i, j, k - 1],

c2)

let regex = ∅
for i = 0 to m - 1:

 if i is final state:

 regex = disj(regex, R[0, i, m - 1])

After the FSM has been transformed into the regular

expression, all the empty transitions (ε) are being

removed from it. Resulting regular expression in turn

can be transformed into the UML sequence diagram by

performing its tokenization and tokens one by one using

the following algorithm:

let ci = null

let sequenceModel = new Sequence Model

let lastConcept = null

function checkCurrentInteraction(token):

 if token == null:

 return

 if token is not data flow:

 return

 if ci != null:

 let df = token.dataFlow

 ci += Receiver(df.concept)

 sequenceModel += ci

 ci = null

while there are tokens to process:

 let token = next token to process

 let nextToken = token after token

 match token:

 case '(':

 checkCurrentInteraction(

nextToken)

 ci = null

 open new interaction fragment

 case ')':

 checkCurrentInteraction(

lastConcept)

 ci = null

 close last opened

interaction fragment

 case '*':

 mark last closed interaction

 fragment as 'repeat'

 case 'Θ':

 mark last closed interaction

 fragment as 'alternate'

 and attach next opened

 interaction fragment to it

 as a part of alternate execution

 case DataFlow df:

 checkCurrentInteraction(

df.concept)

 ci = Sender(df.concept)

 lastConcept = df.concept

 case ExternalProcess with only

outgoing data flows p:

 ci = Sender(p.performer) +

Message(p)

 case ExternalProcess with only

incoming data flows p:

(4)

(5)

(6)

146Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

 ci += Message(p) +

Receiver(p.performer)

 sequenceModel += ci

 ci = null

 case InternalProcess p:

 ci += Message(p)

As a result, the UML sequence diagram, which

corresponds to the appropriate process model, is

generated. The resulting diagram contains actors, objects

and messages as well as parallel and loop interaction

fragments.

VI. AN EXAMPLE FOR A TRANSFORMATION

In order to demonstrate the proposed transformation

execution, authors have created a simple two-hemisphere

model for an abstract use case describing document

processing (shown in Figure 1). The user inputs a list of

documents to be processed, the system in turn splits the

document into the accepted and the rejected thus

forming a processed document list that later is being

outputted on the screen. The model itself consists of a

three concepts: Document, Document List, and

Processed Document List as well as two external

processes that are responsible for the document input

and the processing result output, four internal processes:

Check Document, Add to Accepted List, Add to

Rejected List and Save Document. Former processes are

interconnected with data flows carrying the necessary

information.

In order to be able to present both the FSM and the

regular expression for the given two-hemisphere model,

its elements are being marked with numbers that are

presented in Table 1 and will be used in later

descriptions.

TABLE I. EXAMPLE MODEL ELEMENT IDENTIFIERS

Identifier Element

1 Input Documents (External Process)

2 Documents To Process (Data Flow)

3 Check Document (Internal Process)

4 Rejected Document (Data Flow)

5 Add to Rejected List (Internal Process)

6 Processing Result (Data Flow)

7 Save Document (Internal Process)

8 Accepted Document (Data Flow)

9 Add to Accepted List (Internal Process)

10 Processing Result (Data Flow)

11 Documents Left To Process (Data Flow)

12 Processing Result (Data Flow)

13 Print Document Processing Report

(External Process)

The first constructed FSM for the given model is not

shown here due to its size; however, Figure 5 presents its

minimized form before applying the transitive closure

algorithm.

 Figure 5. A minimized finite-state machine

The resulting regular expression that is obtained from

this finite state machine is:

1 2 3 (4 5 6 7)Θ(8 9 10 7)(11 3 (4 5

6 7)Θ(8 9 10 7))* 12 13

This regular expression in turn can be transformed

into the UML sequence diagram presented in Figure 6.

Figure 6. Resulting UML sequence diagram

VII. ANALYSIS OF PROPOSAL

The proposed transformation method allows the

generation of the UML sequence diagram from the two-

hemisphere model by using finite-state machines that in

turn are being converted into the regular expressions.

However, authors would like to note some limitations of

this approach that will become the main targets for the

further improvements:

1. While resulting regular expression is correctly

representing the source process model, it could be

redundant. In the example shown in the previous section,

it is not necessary to have the part marked with the red

rectangle – since it will be repeated within the following

loop frame. The post processing of the regular

expression after applying the transitive closure is one of

the further research directions that authors are planning

to work on.

2. Currently, only the alternate interaction fragments

are being generated. In the example above, it is fine

147Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

since the document processing in the source model has

the alternative meaning – the document can only be

added to the accepted or to the rejected list. However,

there could be models where the several outgoing data

flows are actually being sent in the parallel. It is

necessary to improve the two-hemisphere model’s

process diagram notation in order to be able to

distinguish between those cases.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, a method of generating the UML

sequence diagram from the two-hemisphere model is

described. Authors have studied the related work and

have proposed the transformation algorithm that uses the

finite-state machines and regular expressions in order to

achieve the result.

The proposed transformation is able to generate the

UML sequence diagram that is correctly representing the

source process model in terms of interaction. However

there are still some issues that require additional work

and are described in the previous section. These

improvements mark the first direction of the future work

to be done by the paper authors.

Another direction of future research is the

development of a produced regular expression

interpretation algorithm that will allow to generate the

UML sequence diagram for the anaemic data model

based system. As it was mentioned before, the anaemic

data model approach is currently being widely used in

the industry and its adoption in terms of the two-

hemisphere model could help in introducing the two-

hemisphere model-driven approach to the target

audience, i.e., enterprise system developers.

Finally, the last direction of future research is a study

of different applications of the generated regular

expression, e.g., using it directly for the code generation

or producing UML diagrams.

ACKNOWLEDGEMENTS

The research presented in the paper is partly supported

by Grant of Latvian Council of Science No. 12.0342

"Development of Models and Methods Based on

Distributed Artificial Intelligence, Knowledge

Management and Advanced Web Technologies for

Applied Intelligent Software".

REFERENCES

[1] D. C. Schmidt, Model-Driven Engineering,

http://www.cs.wustl.edu/~schmidt/PDF/GEI.pdf [retrieved
03/2016]

[2] A. Kleppe, J. Warmer and W. Ba, MDA Explained: The Model

Driven Architecture™: Practice and Promise USA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

[3] Unified Modelling Language superstructure v.2.2, OMG
Available: http://www.omg.org/spec/UML/2.2/Superstructure

[retrieved 02/2016]

[4] Ambler, S. Modeling and Documentation 2013 Mini-Survey
Results, Ambysoft,

2013,http://www.ambysoft.com/surveys/modelingDocumentation
2013.html [retrieved 03/2016]

[5] D. R. Wright, “Finite State Machines” (CSC215 Class Notes),

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

[retrieved 03/2016]

[6] S. S. Skiena, The Algorithm Design Manual, Springer, 1988,
ISBN 978-0387948607

[7] O. Nikiforova et al., “BrainTool for Software Modeling in

UML”, Scientific Journal of RTU: Applied Computer Systems,
Grundspenkis J. et al. (Eds), Vol.16, pp. 33-42, 2014.

[8] O. Nikiforova and M. Kirikova, “Two-hemisphere model Driven
Approach: Engineering Based Software Development”, Scientific

Proceedings of CAiSE 2004 (the 16th International Conference

on Advanced Information Systems Engineering), pp. 219-233,
2004.

[9] O. Nikiforova and N. Pavlova, “Development of the Tool for
Generation of UML Class Diagram from Two-hemisphere

model”, Proceedings of The Third International Conference on

Software Engineering Advances (ICSEA), International
Workshop on Enterprise Information Systems (ENTISY).

Mannaert H., Dini C., Ohta T., Pellerin R. (Eds.), Published by
IEEE Computer Society, Conference Proceedings Services

(CPS), pp. 105-112, 2008.

[10] O Nikiforova and N. Pavlova, “Open Work of Two-Hemisphere
Model Transformation Definition into UML Class Diagram in the

Context of MDA” In: Software Engineering Techniques: Lecture
Notes in Computer Science. Vol.4980. Berlin: Springer Berlin

Heidelberg, pp.118-130, 2011. ISBN 9783642223853

[11] O. Nikiforova, K. Gusarovs, O. Gorbiks and N. Pavlova,
“BrainTool. A Tool for Generation of the UML Class Diagrams”,

Proceedings of the Seventh International Conference on Software
Engineering Advances, Mannaert H. et 26 al. (Eds), IARIA ©,

Lisbon, Portugal, November 18-23, pp. 60-69 (Scopus), 2012.

[12] O. Nikiforova, L. Kozacenko and D. Ahilcenoka, “UML
Sequence Diagram: Transformation from the Two-Hemisphere

Model and Layout”, Applied Computer Systems. Vol.14, pp.31-
41, 2013.

[13] D. Truscan, J. M. Fernandes and J. Lilius, “Tool Support for

DFD-UML based transformation.” In: Proceedings of the IEEE
International Conference and workshop on the engineering of

Computer-Based Systems (ECBS’04) (Brno, Czech Republic,
May 24-27, 2004), pp 378-397, 2004. IEEE Press, New York.

[14] T. N. Tran, K. M. Khan and Y. C. Lan, “A framework for

transforming artifacts from Data Flow Diagrams to UML”. In:
Proceedings of the 2004 IASTED International Conference on

Software Engineering (Innsbruck, Austria, Feb. 17-19, 2004).
ACTA Press, Calgary, AB,

[15] F. Meng, D. Chu and D. Zhan, “Transformation from Data Flow

Diagram to UML2.0 Activity Diagram”,1/10, 2010 IEEE Journal.
[16] A. A. Jilani, M. Usman, A. Nadeem, I. M. Zafar and M. Halim,

“Comparitive Study on DFD to UML diagrams
Transformations”, journal of WCSIT, vol. 1,no. 1,10-16,2011.

[17] K. Tiwari, A. Tripathi, S. Sharma and V. Dubey, “Merging of

Data Flow Diagram with Unified Modeling Language.”
International Journal of Scientific and Research Publications,

Volume 2, Issue 8, August 2012, ISSN 2250-3153
[18] E. Evans, Domain-driven design: tackling complexity in the heart

of software. Addison-Wesley Professional, 2004.

[19] M. Fowler, Anaemic Domain Model,
http://www.martinfowler.com/bliki/AnemicDomainModel.html

[retrieved 03/2016]
[20] The Anaemic Domain Model is no Anti-Pattern, it's a SOLID

design | SAPM: Course Blog,

https://blog.inf.ed.ac.uk/sapm/2014/02/04/the-anaemic-domain-
model-is-no-anti-pattern-its-a-solid-design/ [retrieved 03/2016]

[21] Trygve MVC, http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-
index.html [retrieved 03/2016]

[22] O. Nikiforova, L. Kozacenko, and D. Ahilcenoka, “Two-

Hemisphere Model Based Approach to Modelling of Object
Interaction”, ICSEA 2013 : The Eighth International Conference

on Software Engineering Advances, pp. 605-611, 2013.
[23] T. Koshy, Discrete Mathematics With Applications, Academic

Press, 2004, ISBN 0-12-421180-1

148Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

