
Survey on Microservice Architecture - Security, Privacy and Standardization on
Cloud Computing Environment

Washington Henrique Carvalho Almeida, Luciano de Aguiar Monteiro, Raphael Rodrigues Hazin, Anderson

Cavalcanti de Lima and Felipe Silva Ferraz
Center of Advanced Studies and Systems of Recife

Recife, Brazil
E-mail: {washington.hc.almeida, lucianoaguiarthe, raphaelhazin, andclima}@gmail.com

E-mail: {fsf}@cesar.org.br

Abstract — Microservices have been adopted as a natural
solution for the replacement of monolithic systems. Some
technologies and standards have been adopted for the
development of microservices in the cloud environment; API
and REST have been adopted on a large scale for their
implementation. The purpose of the present work is to carry
out a bibliographic survey on the microservice architecture
focusing mainly on security, privacy and standardization
aspects on cloud computing environments. This paper presents
a bundle of elements that must be considered for the
construction of solutions based on microservices.

Keywords-Microservice; Cloud; Architecture; API; REST

I. INTRODUCTION
Migration of the monolithic architecture to the cloud has

been a major problem. In this paper a research was carried
out on the topic of microservices that have been adopted as
a natural solution in the replacement of monolithic systems.
The main question lies in how its architecture has been used
and issues of security and privacy keys in a cloud
computing environment. The motivation for this collection
was the fact that more and more microservices have been
found as a solution for applications in the cloud. Cloud
computing provides a centralized pool of configurable
computing resources and computing outsourcing
mechanisms that enable different computing services to
different people in a way similar to utility-based systems,
such as electricity, water, and sewage.

For the recent advances of cloud computing
technologies, the use of microservices on applications has
been more widely addressed due to the rich set of features in
such architecture. These applications can be deployed on
clouds that make users use it at low cost, threshold, and risk.
Therefore, their practical use in business can be expected as
a trend for the next generation of business applications [1].

Scaling monolithic applications is a challenge because
they commonly offer a lot of services. Some of them are
more popular than others. If popular services need to be
scaled because they are highly demanded, the whole set of
services will also be scaled at the same time, which implies
that unpopular services will consume a large amount of
server resources even when they are not going to be used
[2].

The architecture based on microservices has emerged to
simplify this reality and are a natural evolution to
application models.

Microservices are a software oriented entity, which have
the following features [3]:

Isolation from other microservices, as well as from the
execution environment based on a virtualized container;

Autonomy – microservices can be deployed, destroyed,
moved or duplicated independently. Thus, microservices
cannot be bound to any local resource because microservice
environment can create more than one instance of the same
microservice;

Open and standardized interface that describes all
specific goals with effectiveness, efficiency and available
communication methods (either API or GUI);

Microservice is fine-grained – each microservice should
handle its own task.

The microservice architecture is a cloud application
design pattern that implies that the application is divided into
a number of small independent services, each of which is
responsible for implementing a certain feature, as noted in
Figure 1.

Figure 1. Microservice system architecture[3].

199Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Microservices can be considered meta-processes in a
Meta operating system (OS); they are independent, they can
communicate with each other using messages and they can
be duplicated, suspended or moved to any computational
resource and so on [3].

The remainder of this article is structured as follows:
Section II introduces the architecture of implemented
microservices. Section III presents security in the cloud
computing environment and Section IV shows the privacy
model adopted in the cloud applications for microservices. In
Section V, we present the standards of cloud environment
and then conclude and summarize all the results of that
exercise in Section VI.

II. MICROSERVICE ARCHITECTURE
The microservice architecture has become a dominant

architectural style choice in the service oriented software
industry. Microservice is a style of architecture that puts the
emphasis on dividing the system into small and lightweight
services that are purposely built to perform a very cohesive
business function, and is an evolution of the traditional
service oriented architecture style [4].

The idea of splitting an application into a set of smaller
and interconnected services (microservice) is currently
getting many interests from application developers and
service providers (e.g., Amazon [5][6], Netflix [7][8], eBay
[9][10]).

A Microservice based architecture has a pattern for
development of distributed applications, where the
application is composed of a number of smaller
"independent" components; these components are small
applications in themselves [11].

A microservice normally comprises three layers as a
typical 3-tiered application [12], consisting of an interface
layer [13], a business logic layer [9] and a data persistence
layer, but within a much smaller bounded context. This sets
a broad scope of the technical capabilities that a
microservice could possess. However, not every
microservice provides all capabilities. This would vary
depending on how the function provided is meant to be
consumed. For example, a microservice used primarily by
providers of API's would have a communications interface
layer, business logic and data persistence layers but not
necessarily have user interfaces [11].

We are considering a reference architecture model of
microservices, demonstrating the main components and
elements of this standard [11]. Table 1 presents a
comparison between monolithic architecture and
microservice architecture

TABLE I. COMPARING MONOLITHIC AND MICROSERVICE
ARCHITECTURE [14]

Category Monolithic
Architecture

Microservice
Architecture

Code
A single code
base for the entire
application.

Multiple code bases. Each
microservice has its own
code base.

Understandability
Often confusing
and hard to
maintain.

Much better readability
and much easier to
maintain.

Category Monolithic
Architecture

Microservice
Architecture

Deployment

Complex
deployments with
maintenance
windows and
schedules
downtimes.

Simple deployment as each
microservice can be
deployed individually, with
minimal if not zero
downtime.

Language

Typically, entirely
developed in one
programing
language.

Each microservice can be
developed in a different
programing language.

Scaling

Requires you to
scale the entire
application even
though
bottlenecks are
localized.

Enables you to scale bottle-
necked services without
scaling the entire
application.

In this paper, we will cover the following main

elements:
A. API Proxy

 To "de-couple" the microservice from its
consumers, this proxy pattern is applied at the
microservice interface level, regardless of the "API
proxy" component. Organizations will provide
API's to different consumers, some of whom are
within and others outside the enterprise. These
microservices would differ in service level
agreements (SLA), security requirements, access
levels, etc [11].

B. Enterprise API Registry
The "discovery" requirements of the microservices
are met through the use of the API registry service.
Its purpose is to make the interfaces exposed by the
microservice visible to consumers of the services
both within and outside the enterprise. An
"Enterprise API registry" is a shared component
across the enterprise, whose location must be well
known and accessible. Its information content is
published in a standard format, information should
be in consistent and human readable format, and
must have controlled access. It must have search
and retrieval capabilities to allow users to look up
details on available API specifications at design
time [11].

C. Enterprise Microservice Repository
The "enterprise microservice repository" would be a
shared repository for storing information about
microservices. It provides information such as
microservice lifecycle status, versions, business and
development ownership, detailed information like
its purpose, how it achieves the purpose, tools,
technologies, architecture, the service it provides,
any API's it consumes, data persisted and queried
and any specific non-functional requirements. In the
absence of well-defined repository standards, the
enterprise must define its own standard specification
artefacts for microservices [5].

200Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

These elements are fundamental to the organized
implementation of microservices and have been considered
in this survey.

III. SECURITY ON CLOUD COMPUTING
Switching from a monolithic or centralized architecture

to a decentralized architecture requires some care. In the
past, security was focused on a single point [15],
responsible for receiving all service requests. In the
microservice-based architecture, the resources are offered
through several points of access that interconnect each
other, forming a unique solution.

Monolithic security services are relatively easier to
implement than microservices. Monolithic services have a
clear boundary and encapsulate their intercommunications.
This will obscure security vulnerabilities [16][17] within the
inner layers of the system. A microservice also encapsulates
its communications. Both microservices and services are
based upon clear requirements.

In a microservice-based system a simple routine
completion requires the microservices to communicate with
each other over network, for example. This will expose
more data and information (endpoints) about the system and
thus it expands the attack surface [8]. Some care must be
taken in the communication between other services in the
same network, and this is one of the major challenges
[13][15][18] in this approach.

The organization of teams for the development of a
system based on microservices are generally subdivided into
teams and services, and these teams are generally
responsible for the implementation and delivery of services.
For this type of implementation, the teams have to be
aligned in the purposes of the microservices and the
interconnection between them, thus also synchronizing the
protocol [19] used to carry out the communication, thus
respecting a standard for access protection or improper
interception. Defining the way services are interconnected
and interacting is the key point of security [20].

The security challenge brought by such network
complexity is the ever-increasing difficulty in debugging,
monitoring, auditing and forensic analysis of the entire
application [21]. Since microservices are often deployed in a
cloud that the application owners do not control, it is
difficult for them to construct a global view of the entire
application [10].

In microservice architecture, an application is essentially
a collection of workflows. These workflows can compose
many levels of services, each processing and modifying the
data before its final destination. What we need is a way to
certify the metadata related to a data stream and manage its
validity during time and re-elaboration [22].

Security is a major challenge that must be carefully
thought of in microservices architecture. Services
communicate with each other in various ways creating a
trust relationship. For some systems, it is vital that a user is
identified in all the chains of a service communication

happening between microservices. OAuth and OAuth2 are
well-known solutions that are employed by designers to
handle security challenges [4].

Although the microservices are independent and do not
cause dependencies among the modules, the biggest
challenge nowadays is to guarantee availability [23]. The
DevOps movement (set of practices to integrate the software
development to IT operations) is currently collaborating
with cloud environments and microservice architecture,
providing continuous integration from the code compilation
to the availability of the test and production environment,
making it a facilitator for systems implementation utilizing
microservices.

Ensuring the availability of services is presented as a
security requirement facilitated by the use of the
microservice architecture. This approach usually works by
fragmenting the entire solution in smaller pieces [24].
Considering that these fragments are parts of the code with
specific functions (microservices), in the event of a
fragment failure, it would not result in the unavailability of
all system resources. Availability has some critical points as
they are bound to be observed such as: implementing
software versions, software crash recovery, invasions,
unavailability of infra features beyond points.

In a microservice architecture, it is typical for many
instances of a particular service to be running at any one
time and for these instances to stop and start over time [25].
The problem of service discovery is to enable service
consumers to locate service providers in real time to
facilitate communication [26]. Docker Containers have been
gaining a lot of hard work because of their agility and ease
of making new services available [23]. The containers allow
the microservices to be packaged [27] and available next to
their dependencies in a single image, thus facilitating the
availability of the service in a timely manner, minimizing
downtime. This mode is called code portability [28]. In the
context of microservices, the use of docker containers for
service delivery has resulted in benefits under various
aspects, such as: automation, independence, portability and
security, especially when considering ease of management,
creation and continuous integration of environments
systems offered by the docker platform. In Docker, each
container consists of only the application and the
dependencies that the application needs to run, ideally no
more and no less [28].

IV. PRIVACY MODEL
Privacy has been a barrier to adoption of cloud

computing [24][29]. The migration to microservices has
helped overcome this obstacle due to the scale gains
proposed in this architecture.

In general, privacy refers the condition or state of hiding
the presence or view [30]. There is a need to attain this state
in the places where confidential things are used such as data
and files. In cloud data storage privacy is needed to attain
the data, user identity and controls [31]

201Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

The exchange of sensitive data is intense in large-scale
scenarios of cloud computing, with several federations,
where multiple Identity Providers (IdP) and Service
Providers (SP) work together to provide services. Therefore,
identity management should provide models and privacy
mechanisms in order to manage the sensitive data of its
users [15].

Cloud service provides various options to the business
customers to choose the level of protection needed for their
data. The most common of these approaches is encryption.
The customer chooses the type of encryption that they prefer
and store the encryption key in a safe place under their
control [19].

To ensure privacy, a well referenced model is used. This
model is presented in Figure 2.

Figure 2. Cloud security and privacy model [29].

According to the proposed model in [29], a secure and
private cloud model is divided into five layers: Physical and
Environmental Security, Cloud Infrastructure Security,
Network Security, Data and Access Control and Privilege
Management.

1. Physical and Environmental Security
Layer of policies adopted with the objective of
protecting physical access to the cloud provider [5].

2. Cloud Infrastructure Security
Addresses issues with cloud infrastructure security, but
specifically with the virtualization environment [32].

3. Network Security
Specifies the medium to which the end user connects to
the cloud, comprising browsers and their connection [9].

4. Data
Layer covers data privacy, integrity, confidentiality, and
geographic location [22].

5. Access Control and Privilege Management
Policies and processes used by cloud services provider
to ensure that only the users granted appropriate
privileges can use or modify data. It includes
identification, authentication [33] and authorization
issues [29].

V. MICROSERVICE STANDARDS AND SOLUTIONS
In the centralized structure, the standardization becomes

almost a natural way, but in the implementation of
microservices this philosophy changes.

Teams building microservices prefer a different
approach to standards too. Rather than using a set of defined
standards, written down somewhere on paper, they prefer
the idea of producing useful tools that other developers can
use to solve similar problems to the ones they are facing.
These tools are usually harvested from implementations and
shared with a wider group, sometimes, but not exclusively,
using a git and github has become the de facto version
control system of choice. Open source practices are
becoming more and more common in-house [34].

A microservice is an application on its own to perform
the functions required. It evolves independently and can
choose its own architecture, technology, platform, and can
be managed, deployed and scaled independently with its
own release lifecycle and development methodology. This
approach takes away the construct of the SOA and ESB and
the accompanying challenges by making "smart endpoints"
and treating the intermediate layers as network resources
whose function is that of data transfer [11].

The applications that expose interfaces that can be used
by other applications to interact with are defined as
"application programming interfaces" (API) [5].
Microservice API's which are built using internet
communication protocols like HTTP, adhere to open
standards like REST [35][36] and SOAP [2] and use data
exchange technologies like XML [18] and JSON [5].

Applications developed in a monolithic architecture
perform multiple functions such as providing address
validation, product catalogue, customer credit check, etc.
When using the microservice based architecture pattern,
applications are created for specific functions, such as
address validation, customer credit check and online
ordering; these applications are cobbled together to provide
the entire capability for the proposed service. The approach
to application development based on microservice
architecture addresses the challenges of "monolithic"
application and services [11].

In the research undertaken in this paper, the
microservices are implemented and documented as follows:

A. Architectural views/diagrams [4]
● UML
● Standard modeling languages, e.g. RAML and

YAML.
● Specifically designed modeling languages, e.g.

CAMLE.
● Standard specification languages, e.g.

Javascript (Node.js), JSON and Ruby.
● Specifically designed specification languages,

e.g. Jolie.
● Pseudocode for algorithms.

B. REST
REpresentational State Transfer (REST) consisting
of a set of architectural principles that, when
followed, allows a well-defined interface design to
be created. Applications that use REST principles
are called RESTFul. REST [10][18][36][37] is
often applied to provide services to other services
(web services) and to the same full use of messages.
To better understand the architectural style, it is

202Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

important to highlight three important concepts: (i)
feature; (ii) operations and (iii) representations.
Resource is any information that is made available
to customers through a unique identifier (URI). We
can also define resource as being the source of
representations. The representations are a set of data
that explains the state of the requested resource.
URIs must have a notation pattern, be descriptive,
and have a previously defined hierarchy. The same
resource can be identified by one or more URIs, but
a URI [38] [39] identifies only one resource.

C. API
Application Program Interface (API) are (a) basic
authentication, including API user registration with
strong password protection, (b) modern security
mechanisms such as message level security, web
signature and web encryption, and (c) security
mechanism within API and its backend services as a
third security factor such as token based API for
backend authentication, public key infrastructure
and transport layer handshake protocol [13].

REST APIs [7] are developed in many technologies and
microservices developed using different types of
programing languages (Java, .NET, PHP, Ruby, Phyton,
Scala, NodeJs,etc.) and persistent technologies (SQL, No-
SQL, etc.) [2][28]. They can be managed and exposed to
web clients, who can then access the microservices and
receive their responses through a “livequery” mechanism
whereby updates to database data are instantly
communicated to subscribing clients [18]. Figure 3 best
presents categories of practices for designing REST-based
web services.

Figure 3. Categories of best practices for designing REST-based web

services [40].

NoSQL database are used in these implementations
[18][41][42][43]. The NoSQL nature of the database is
essential for providing the scaling, sharding and replication
functionality expected from modern architectures, as well as
to better support hierarchical data required for collaborative
document editing [18].

The popularity of the architecture based on
microservices is evident from the report by the popular jobs
portal indeed.com, in which the number of job openings on
microservices-related technologies, such as JSON
[10][20][39] and REST [2][18][36] has grown more than
100 times in the last six years, whereas jobs in similar
technology areas like SOAP and XML have remained
nearly identical [10].

Solutions for microservices seek to implement simple
algorithms that meet specific needs with the elements
presented in this section.

VI. CONCLUSIONS AND FUTURE WORK
Microservice-based architecture has been a growing

choice as an architectural style for software development. In
this architectural style, the services provided by software
solutions are divided into smaller parts and focused on the
specific service of some functionalities. The approach of
developing microservices with the construction of smaller
software components has a number of advantages over the
traditional monolithic architecture, such as increasing the
resilience of the software implemented as a microservice
and the ease of scaling the solution implemented through the
microservices.

The development of software using the microservice-
based architecture comprises important aspects that must be
observed in order to obtain good results. The objective of
this article is to present the elements that should be
considered for the development of solutions based on
microservices, describing how the architecture based on
microservices is defined, identifying the elements related to
their implementation in the cloud computing environment,
explaining the privacy model applicable and relating the
elements that integrate the standards and solutions linked to
the architecture based on microservices.

Future work can be developed to present case studies
demonstrating the implementation of the microservice
architecture in a cloud computing environment with the use
of docker containers for its construction.

REFERENCES
[1] J. Lin, L. Chaoyu, and S. Huang, “Migrating Web Applications

to Clouds with Microservices Architectures,” Int. Conf. Appl.
Syst. Innov., pp. 1–4, 2016.

[2] M. Villamizar and et al, “Evaluating the Monolithic and the
Microservice Architecture Pattern to Deploy Web Applications in
the Cloud Evaluando el Patrón de Arquitectura Monolítica y de
Micro Servicios Para Desplegar Aplicaciones en la Nube,” 10th
Comput. Colomb. Conf., pp. 583–590, 2015.

[3] D. I. Savchenko, G. I. Radchenko, and O. Taipale,
“Microservices validation: Mjolnirr platform case study,” 2015
38th Int. Conv. Inf. Commun. Technol. Electron. Microelectron.
MIPRO 2015 - Proc., no. May, pp. 235–240, 2015.

[4] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping
study in microservice architecture,” Proc. - 2016 IEEE 9th Int.
Conf. Serv. Comput. Appl. SOCA 2016, pp. 44–51, 2016.

[5] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a Smart City
Internet of Things Platform with Microservice Architecture,”
Proc. - 2015 Int. Conf. Futur. Internet Things Cloud, FiCloud
2015 2015 Int. Conf. Open Big Data, OBD 2015, pp. 25–30,
2015.

203Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

[6] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu,
“Efficiency analysis of provisioning microservices,” Proc. Int.
Conf. Cloud Comput. Technol. Sci. CloudCom, pp. 261–268,
2017.

[7] R. Heinrich et al., “Performance Engineering for Microservices:
Research Challenges and Directions,” Proc. 8th ACM/SPEC Int.
Conf. Perform. Eng. Companion, pp. 223–226, 2017.

[8] M. Ahmadvand and A. Ibrahim, “Requirements reconciliation for
scalable and secure microservice (de)composition,” Proc. - 2016
IEEE 24th Int. Requir. Eng. Conf. Work. REW 2016, pp. 68–73,
2017.

[9] T. Q. Thanh, S. Covaci, T. Magedanz, P. Gouvas, and A.
Zafeiropoulos, “Embedding security and privacy into the
development and operation of cloud applications and services,”
2016 17th Int. Telecommun. Netw. Strateg. Plan. Symp., pp. 31–
36, 2016.

[10] Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-service for
microservices-based cloud applications,” Proc. - IEEE 7th Int.
Conf. Cloud Comput. Technol. Sci. CloudCom 2015, pp. 50–57,
2016.

[11] Yale Yu, H. Silveira, and M. Sundaram, “A microservice based
reference architecture model in the context of enterprise
architecture,” 2016 IEEE Adv. Inf. Manag. Commun. Electron.
Autom. Control Conf., pp. 1856–1860, 2016.

[12] J. Rufino, M. Alam, J. Ferreira, A. Rehman, and K. F. Tsang,
“Orchestration of Containerized Microservices for IIoT using
Docker,” pp. 1532–1536, 2017.

[13] M. B. Mollah, M. A. K. Azad, and A. Vasilakos, “Security and
privacy challenges in mobile cloud computing: Survey and way
ahead,” J. Netw. Comput. Appl., vol. 84, pp. 38–54, 2017.

[14] K. Bakshi, “Microservices-based software architecture and
approaches,” IEEE Aerosp. Conf. Proc., 2017.

[15] J. Werner, C. M. Westphall, and C. B. Westphall, “Cloud identity
management: A survey on privacy strategies,” Comput.
Networks, vol. 122, pp. 29–42, 2017.

[16] I. Khalil, A. Khreishah, and M. Azeem, “Cloud Computing
Security: A Survey,” Computers, vol. 3, no. 1, pp. 1–35, 2014.

[17] C. Saravanakumar and C. Arun, “Survey on interoperability,
security, trust, privacy standardization of cloud computing,”
Proc. 2014 Int. Conf. Contemp. Comput. Informatics, IC3I 2014,
pp. 977–982, 2014.

[18] C. Gadea, M. Trifan, D. Ionescu, and B. Ionescu, “A reference
architecture for real-time microservice API consumption,” Proc.
3rd Work. CrossCloud Infrastructures Platforms - CrossCloud
’16, pp. 1–6, 2016.

[19] S. Srinivasan, “Data privacy concerns involving cloud,” 2016
11th Int. Conf. Internet Technol. Secur. Trans. ICITST 2016, pp.
53–56, 2017.

[20] A. Ciuffoletti, “Automated Deployment of a Microservice-based
Monitoring Infrastructure,” Procedia Comput. Sci., vol. 68, pp.
163–172, 2015.

[21] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari,
“Open Issues in Scheduling Microservices in the Cloud,” IEEE
Cloud Comput., vol. 3, no. 5, pp. 81–88, 2016.

[22] F. Callegati, S. Giallorenzo, A. Melis, and M. Prandini, “Data
security issues in MaaS-enabling platforms,” 2016 IEEE 2nd Int.
Forum Res. Technol. Soc. Ind. Leveraging a Better Tomorrow,
RTSI 2016, pp. 0–4, 2016.

[23] H. Kang, M. Le, and S. Tao, “Container and microservice driven
design for cloud infrastructure DevOps,” Proc. - 2016 IEEE Int.
Conf. Cloud Eng. IC2E 2016 Co-located with 1st IEEE Int. Conf.
Internet-of-Things Des. Implementation, IoTDI 2016, pp. 202–
211, 2016.

[24] K. Bao, I. Mauser, S. Kochanneck, H. Xu, and H. Schmeck, “A
Microservice Architecture for the Intranet of Things and Energy
in Smart Buildings,” Proc. 1st Int. Work. Mashups Things APIs -

MOTA ’16, pp. 1–6, 2016.
[25] D. Escobar et al., “Towards the understanding and evolution of

monolithic applications as microservices,” Proc. 2016 42nd Lat.
Am. Comput. Conf. CLEI 2016, 2017.

[26] J. Stubbs, W. Moreira, and R. Dooley, “Distributed Systems of
Microservices Using Docker and Serfnode,” Proc. - 7th Int.
Work. Sci. Gateways, IWSG 2015, pp. 34–39, 2015.

[27] R. Roostaei and Z. Movahedi, “Mobility and Context-Aware
Offloading in Mobile Cloud Computing,” Proc. - 13th IEEE Int.
Conf. Ubiquitous Intell. Comput. 13th IEEE Int. Conf. Adv. Trust.
Comput. 16th IEEE Int. Conf. Scalable Comput. Commun. IEEE
Int., pp. 1144–1148, 2017.

[28] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging
microservices architecture by using Docker technology,” Conf.
Proc. - IEEE SOUTHEASTCON, vol. 2016–July, pp. 0–4, 2016.

[29] K. El Makkaoui, A. Ezzati, A. Beni-Hssane, and C. Motamed,
“Data confidentiality in the world of cloud,” J. Theor. Appl. Inf.
Technol., vol. 84, no. 3, pp. 305–314, 2016.

[30] C. Perra and S. Member, “A Framework for the Development of
Sustainable Urban Mobility Applications,” 2016.

[31] M. Thangavel, P. Varalakshmi, and S. Sridhar, “An analysis of
privacy preservation schemes in cloud computing,” Proc. 2nd
IEEE Int. Conf. Eng. Technol. ICETECH 2016, no. March, pp.
146–151, 2016.

[32] H. Gebre-amlak, S. Lee, A. M. A. Jabbari, Y. Chen, and B. Choi,
“MIST : Mobility-Inspired SofTware-Defined Fog System,”
2017.

[33] R. H. Steinegger, D. Deckers, P. Giessler, and S. Abeck, “Risk-
based authenticator for web applications,” Proc. 21st Eur. Conf.
Pattern Lang. Programs - Eur. ’16, no. February 2017, pp. 1–11,
2016.

[34] J. Fowler, Marthin; Lewis, “Microservices: a definition of this
new architectural term,” Microservices:a definition of this new
architectural term, 2014. [Online]. Available:
https://martinfowler.com/articles/microservices.ml. [Accessed:
07-May-2017].

[35] S. Yamamoto, S. Matsumoto, and M. Nakamura, “Using cloud
technologies for large-scale house data in smart city,” CloudCom
2012 - Proc. 2012 4th IEEE Int. Conf. Cloud Comput. Technol.
Sci., pp. 141–148, 2012.

[36] J. Bogner and A. Zimmermann, “Towards Integrating
Microservices with Adaptable Enterprise Architecture,” Proc. -
IEEE Int. Enterp. Distrib. Object Comput. Work. EDOCW, vol.
2016–Septe, pp. 158–163, 2016.

[37] D. Guo, W. Wang, G. Zeng, and Z. Wei, “Microservices
architecture based cloudware deployment platform for service
computing,” Proc. - 2016 IEEE Symp. Serv. Syst. Eng. SOSE
2016, pp. 358–364, 2016.

[38] P. Marchetta, E. Natale, A. Pescape, A. Salvi, and S. Santini, “A
map-based platform for smart mobility services,” Proc. - IEEE
Symp. Comput. Commun., vol. 2016–Febru, pp. 19–24, 2016.

[39] A. de Camargo, I. Salvadori, R. dos S. Mello, and F. Siqueira,
“An architecture to automate performance tests on
microservices,” Proc. 18th Int. Conf. Inf. Integr. Web-based
Appl. Serv. - iiWAS ’16, pp. 422–429, 2016.

[40] P. Giessler, R. Steinegger, S. Abeck, and M. Gebhart, “Checklist
for the API Design of Web Services based on REST,” vol. 9, no.
3, pp. 41–51, 2016.

[41] A. Gueidi, H. Gharsellaoui, and S. Ben Ahmed, “A NoSQL-
based Approach for Real-Time Managing of Embedded Data
Bases,” Proc. - 2016 World Symp. Comput. Appl. Res. WSCAR
2016, pp. 110–115, 2016.

[42] T. I. Damaiyanti, A. Imawan, and J. Kwon, “Extracting trends of
traffic congestion using a NoSQL database,” Proc. - 4th IEEE
Int. Conf. Big Data Cloud Comput. BDCloud 2014 with 7th IEEE
Int. Conf. Soc. Comput. Networking, Soc. 2014 4th Int. Conf.

204Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Sustain. Comput. C, pp. 209–213, 2015.
[43] R. Simmonds, P. Watson, and J. Halliday, “Antares: A Scalable,

Real-Time, Fault Tolerant Data Store for Spatial Analysis,” Proc.

- 2015 IEEE World Congr. Serv. Serv. 2015, pp. 105–112, 2015.

205Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

