
Reinforcement Learning for Reliability Optimisation

Prasuna Saka

Advanced Systems Laboratory
DRDO, India

Email: prasunas@asl.drdo.in

Ansuman Banerjee

Indian Statistical Insitute
Kolkata, India

Email: ansuman@isical.ac.in

Abstract—Software Reliability Optimization problem is aimed at
bridging the reliability gap in an optimal way. In an industrial
setting, focussed testing at the component level is the most favored
solution exercised to fill the reliability gap. However, with the
increased complexity in the software systems coupled with limited
testing timing constraints finding an optimal set of test suite
to bridge the reliability gap has become an area of intense
research. Furthermore, the stochastic nature of the reliability
improvement estimates associated with each test suite manifolds
the complexity. Here, we propose Reinforcement Learning (RL),
as a mechanism to find an optimal solution. We have shown how
an interactive learning is used to estimate the true outcome of
the selection and the action selection policy so as to maximise the
long term reward. The estimation methodology and the selection
policy is inspired by Multi-armed bandit solution strategies.
Firstly, we employ a sample average estimation technique for
deriving the true outcomes. Secondly, a variant of simple greedy
algorithm coined as epsilon-greedy algorithm is considered for
action selection policy. These two steps are iteratively exercised
until the selection criteria converges. The efficacy of the proposed
approach is illustrated on a real time case study.

Keywords–Reliability Optimisation; Reinforcement Learning;
Multi-armed bandit.

I. INTRODUCTION
To beat the modern systems software complexity, software
designs are built hierarchically - from the conceptual ar-
chitectural model gradually progressing towards leaf-node
components/blocks. In parallel, architectural based software
reliability analysis [1][2] has gained prominence in recent
years to asses the reliability of the overall system. Intuitively, in
an hierarchical system, overall reliability of a system improves
by improving the reliability of the underlying components.
Often it is found that the existing reliability of the system is
less than the intended reliability - we call this difference as the
reliability gap. Ensuring that the reliability gap is closed is of
a major concern for mission critical software and therefore
has been the forefront of active research over decades. In
general, the reliability of the components can be improved in
the following ways:

• By using more focussed test suites so that more testing
will increase its functional reliability.

• By introducing redundancy for weak functional parts.

We may select any (or a combination) of the above men-
tioned approach. However, improving reliability by focussed
testing is the preferred option over providing software redun-
dancy for two notable reasons i) Redundant software adds
more to the existing complexity ii) Increased foot print size by

incorporating software redundancy leads to undesirable loads
on the memory needs of the system.

Focussed testing looks for testing a sub-set of the software
components so that the reliability is enhanced to the intended
level. As each component testing has different contribution to
the reliability improvement figure, their exists multiple non-
dominating solutions to raise the reliability of the overall
software to the desired level. Each of these solutions acts as a
representative to the problem. Now, the reliability optimization
problem tries to minimize the efforts of testing so that the op-
timized solution maps to any of the non-dominating solutions.

The remainder of the paper is organised as follows. Section
2 emphasises the problem area using a motivating example.
Section 3 presents a brief description of the methodology
adopted in seeking the solution. Section 4 describes a real case
study, and formulates the numericals of the problem. Section
5 presents experimental results considering several indicative
scenarios. Section 6 discusses the related work and Section 7
offers concluding remarks.

II. MOTIVATING EXAMPLE AND PROBLEM
FORMULATION

We introduce a small instructive example to disclose the
intricacies involved with the problem. For illustration purpose,
let us consider a software having 6 basic components swc1,
swc2,.... swc6 and each component is provided with a test suite
tc1, tc2,.... tc6. As each component has its own contribution to
the overall software reliability, reliability improvement figures
Rii’s which can be obtained by testing the component with its
associated test suite would be different. Column 2 of Table
I represents Rii’s, and column 3 corresponds to test suite
execution times. Assume the current reliability Rcurr as 0.6
and target reliability Rd be 0.95. Now, our objective is to find
an optimal set of test suites such that the reliability gap of
0.35 is closed. In general, one can figure out the solution sets
informally by treating it as a combinatorial problem and make
different combinations of test suites until the reliability gap is
filled or one can attempt on a formal note using heuristic search
based algorithms. For this simple case, one can informally
derive the solution sets using pen and paper. Multiple solution
forms to fill the reliability gap are presented in Table II.
Among the various solutions sets, the set represented by S2 is
the optimal. Note that these solution sets are not complete and
hence there is a possibility of having a better selection set than
S2. It is worthy to note that, both pen and paper and heuristic
search based methods become intractable with the increase in
the test suite collection.
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TABLE I. AN EXAMPLE SHOWING THE RELIABILITY
IMPROVEMENT FIGURES Rii’s and EXECUTION TIMES OF

EACH TEST SUITE.

Test suite Rii ti(man hours)
tc1 0.05 7
tc2 0.1 5
tc3 0.15 5.5
tc4 0.125 6
tc5 0.195 9
tc6 0.23 8

TABLE II. SOLUTION SETS.

Id Solution set ti(man hours)
S1 {tc6 , tc5} 17
S2 {tc2 , tc3 , tc4} 16.5
S3 {tc6 , tc2 , tc3} 18.5
S4 {tc1 , tc2 , tc3 , tc4} 23.5

Now, we introduce another element which manifolds the
problem scenario - the scenario when the Rii’s represented
are just estimates not actual values. In this consequence, it
is a natural choice to associate a confidence figure for each
estimate. These figures represent the certainty (indirectly, the
uncertainty factor) element involved with the estimates made.
It is to note that, the estimates made would be certain if
and only if the testing data is adequate enough to construct
a Software Reliability Growth Model (SRGM). However, in
case, where test history is not available or limited, estimates are
made using subjective guess method. For these estimates to be
more effective, one can associate a confidence/certainty factor
with each estimate. Now, we try to look for an optimal solution
for the same problem illustrated in the previous paragraph with
the certainty factors in picture. Table III represents this case,
here the numbers in column 3 (Pi) denotes the confidence
values. Though, tc6 has the highest improvement value, as
the probability figure associated with it is comparatively much
lesser than the confidence figure of tc5 and also its reliability
figure is not much lesser than tc6 we should favour tc5 over
tc6. Evidently, with the increase in the number of components,
neither pen and paper methods nor heuristics based methods
can address this scenario. Also, to the best of our knowledge
none of the existing works are fit to handle the software relia-
bility optimisation problem with uncertainty elements in play.
The literature review presented in the Section VI strengthens
our statement. Now, we proceed ahead with a formal definition
of the problem and the solution methodology adopted.

TABLE III. AN EXAMPLE WITH CONFIDENCE VALUES.

Test suite Rii Pi ti
tc1 0.05 0.7 7
tc2 0.1 0.63 5
tc3 0.15 0.5 5.5
tc4 0.125 0.95 6
tc5 0.195 0.9 8
tc6 0.23 0.75 8

• Problem Formulation
Given:
◦ A set of software components, swc1, swc2 ......

swcn.

◦ A set of test suites, one test suite for each
component, tc1, tc2,.... tcn along with their
execution times t1, t2,.... tn.

◦ Reliability improvement estimates for each test
suite, Ri1, Ri2,.... Rin.

◦ Probability/Confidence figure for each esti-
mate, P1, P2, ..... Pn.

◦ The desired reliability of the system as Rd, and
current reliability as Rcurr.

Assumptions:
◦ Test suite is either tested fully or not executed

at all (0-1).
◦ Time tn indicates the total time taken to sim-

ulate/execute the test suite tcn and
◦ Testing will improve the reliability of compo-

nents.
Output:
Selection of a optimal set of test suites such that
the reliability of the system meets the target/desired
reliability Rd, having a minimum test execution time.

III. METHODOLOGY OVERVIEW
This section talks in detail about the solution methodology
proposed to find an optimal set of test components to be
targeted in attaining the desired reliability.

The problem ahead of us can be treated as a class of
optimal testing-resource allocation problem concerned with
allocating resources among several alternative (competing)
options. The options are to be favored keeping the objective
function in mind. Here, the objective function involves the cost
factor together with reliability, which means that we have mul-
tiple objectives in terms of both maximizing system reliability
and minimizing testing cost. If there is no uncertainty element
involved in the problem domain, we can consider this problem
as a multi-objective optimization problem whose solution is
trivial: we would always select the test-suites having the
maximum outcome, i.e., more reliability improvement in less
time. The important point to note here is that, the environment
before us now is not a deterministsic environment rather it
is a probabilistic environment. It is a well known fact from
the history of statistics that, the probabilistic environments are
efficiently handled by learning and exploration is a necessary
prerequisite of probability learning. The uncertainty about
parameters drives learning and it is by exploration and by
interactive interaction one can learn the behaviour of the
system. Here, we summarise that some learning mechanism
is indeed required to address the scenario.

Looking forward for the kind of learning theories that
can be considered for, we see that learning under uncertainty
can be well handled by Reinforcement Learning [3]. RL is
a goal directed learning which gathers knowledge about the
environment through interaction. Every interaction produces a
wealth of information about the consequences of actions, and
about what to do in order to achieve goals. The information
gain over a number of interactions thus can be used to weed
out the uncertainty element involved in and one can come up
with a definite average consequence of chosing a particular
option.

This is to say until we explore the selections a number
of times, it is not trivial to know the true outcomes of each
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selection. True outcomes of selecting an option can be made by
observing the outcome in each trail and refining the expected
outcome. It is worthy to note that exploration gives us a
opportunity to learn more about the system, but, it may not
result in high current rewards. Also, exploring all the time
is not a good idea as it cannot give us a quick solution. In
order to have a quick solution, it is always better to exploit
the current knowledge on the estimates made. Exploitation is
the right thing to do to maximize the expected reward on one
step, but exploration may produce greater total reward in the
long run. Whether we select an action either by exploration or
by exploitation, the estimates of the selection are to be refined
for every run so that they guide us our future action section
policy. In any specific case, whether it is better to explore or
exploit depends in a complex way on the precise values of the
estimates, uncertainties, and the number of remaining steps.
Such problems are paradigms of a fundamental conflict be-
tween making decisions that yield high current rewards, versus
making decisions that sacrifice current gains with the prospect
of better future rewards. However, exploration and exploitation
approach will definitely result in a optimal solution.

We now discuss about how exploration and exploitation
can be taken up after we introduce some related terminology.

1) Action list, A - The set of available choices represent
the action list. Here, set of test suites tc1, tc2,.... tcn
represent the set of actions available.

2) Reward, R - The outcome of selecting a particular
action. As our aim is to have more reliability gain in
minimum time, we define the reward of selecting an
action a as

R(a) =
ReliabilityImprovement(Ria)

TestExecutiontime(ta)

3) Estimated Reward, Qn(a) - The estimate of the
reward of an action a after n trials.

4) True Reward, q∗(a) - The true value of selecting an
action a.

On a broader view, there are two basic steps needed:

• Estimation (the outcome of each action): Whether
we explore or exploit, after the selection of every
action, we need to refine the outcome of the action.
In a simplistic way, action values are estimated/refined
using sample-average method. Here, each estimate is
an average of the sample of relevant rewards. By the
law of large numbers, as the number of iterations
increases, estimates converges to real values, i.e.,
Qt(a) converges to q*(a).

• Action selection policy: Once the estimates are made,
now comes the question of policy to be adopted to
choose an action. One natural solution is to select the
action having the highest estimated value, expressed
as

At := argmaxQt(a)

If we maintain estimates of the action values, then
at any time step there is at least one action whose
estimated value is greatest. We call these the greedy
actions. When we select one of these greedy actions,
we say that we are exploiting our current knowledge
of the values of the actions. If instead, we select

one of the non-greedy actions, then we say we are
exploring, because this enables us to improve our
estimate of the non-greedy action’s value. Greedy
action selection always exploits current knowledge
to maximize immediate reward; it spends no time at
all in sampling apparently inferior actions to see if
they might really be better. A simple alternative is
to behave greedily most of the time, but every once
in a while, say with small probability epsilon (ε),
instead select randomly from among all the actions
with equal probability, independently of the action-
value estimates. These methods are coined as ε-greedy
methods. An advantage of these methods is that, in the
limit as the number of steps increases, every action
will be sampled an infinite number of times, thus
ensuring that all the Qt(a) converge to q*(a).

A. Implementation and Performance Aspects

As discussed earlier, rewards are estimated using sample
average method. Let Ri denote the reward received after the
ith selection of an action a, and let Qn denote the estimate
of its action value after it has been selected n - 1 times, which
we can write simply as

Qn :=
R1 +R2 + ....+Rn−1

n− 1
(1)

The above equation can be devised as an incremental
formula so that the averages can be updated with minimum
computational costs. In other terms, the above equation can be
expressed as

Qn+1 := Qn +
[Rn −Qn]

n
(2)

Pseudocode for a complete algorithm using incrementally
computed sample averages and ε-greedy action selection policy
is shown in Algorithm 1. In the Algorithm 1, the function ban-
dit(A) is assumed to take an action and return a corresponding
reward.

Algorithm 1 epsilonGreedy

1: Initialise:
2: for a =1 to k do
3: Q(a)← 0
4: N(a)← 10
5: end for
6: while (1) do
7: A = argmaxQ(a) with probability 1- ε

or
8: A = a random action, with probability ε
9: R← bandit(A)

10: N(A)← N(A) + 1
11: Q(A) = Q(A) + 1

N(A) (R−Q(A))
12: end while

The algorithm presented has been inspired by the multi-
armed bandit solution strategies which is a simplistic form of
reinforcement learning. To the best of our knowledge, we say
this is the first effort to apply machine learning approach for
software reliability optimisation.
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IV. DEMONSTRATION USING REAL CASE STUDY

In this section, we present a real case scenario which forms
the basis for our motivation to pursue this investigation. As an
illustrative example, a relatively simple redundant system is
considered, the configuration of which is depicted in Figure
1. The system is a heterogeneous dual redundant system
comprising of a main system and a standby system. Each
system houses two packages and each package in turn holds
3 sensors. Both Main and Standby systems acquires real
time data from these sensors. The dynamics of main system
and standby system are heterogeneous in nature. The main
system is highly accurate, with less acceptable operational
time, whereas the standby system is less accurate with longer
operational time.

For the missions, whose working duration is of the order
of the performance of main system, it is naturally good to
consider the data of the main system so long it is healthy.
As the data provided by this system is crucial from mission
perspective, the redundancy management is employed at the
component (sensor) level. If multiple component failure occurs
then system level reconfiguration is considered. Component
level redundancy management adds more to the complexity
of the software logics coded. Thus, the functional correctness
of redundancy management software logics play a significant
role in determining the overall reliability of the system. The
software architecture of such logics should be failure resilent
and robust enough. From the verification perspective, it is of
paramount interest to ensure the reliability of these logics. The
section below details the software architecture considered for
realising the component level redundancy.

Ms1

Ms4

Ms5

Ms6

Ss1

Ms2

Ms3

Ss2

Ss3

Ss4

Ss5

Ss6

Main Standby

Figure 1. System Configuration.

A. Software Architecture

Redundancy management software core has 3 basic mod-
ules viz., i) Fault detection module ii) Fault Diagnosis module
iii) Reconfiguration module. Fault detection logic recognizes
that something unexpected has occurred in the system. To
do so, it monitors the behavioral parameters of a compo-
nent/system to asses the health of it. Once a fault is detected,
the next step is to identify the faulty component (failure
location), and also the nature of the fault (whether the fault
is transient nature or permanent). Finally, a remedial action
to be performed based on the decision logics of the system.
This phase leads to reconfiguration of the system either at the
component level or system level. Successful reconfiguration
requires robust and flexible software architecture and the
associated reconfiguration schemes.

Software realization for the system is depicted in Figure 2.
In total, there are 12 modules labelled as swci. Each module
is associated with a test suite (tci) and its execution time (ti).

Figure 2. Software Architecture.

As stated earlier, each software component has its own
contribution to the overall software reliability. The reliability
improvement figure Ri upon testing different components is
different. For the illustrated system, the Ri for each compo-
nent is assigned based on the complexity and the functional
criticality of the logic associated with it. In the Table IV,
the 2nd row shows the Ri that can be obtained by testing a
software component swci with its test suite tci. We see there is
a variation in the Ri’s. For example, software logics identified
by swc2 corresponds to package validity checks of the second
package. For the system which is described above, the design
elements for package2 are more in number when compared to
package1, hence the logics are complex, as a result, the Ri is
more for swc2 when compared to swc1. Similarly, swc10 deals
with identifying permanent faults. As permanent faults lead
to reconfiguration of the system, the decisions are made after
observation of the fault for a persistent amount of time. Hence,
this logic is obviously the most complex of all the components,
hence the Ri awarded to it is the highest. 3rd row of the table
refers the test suite execution times ti. As our aim is to find an
optimal test suite with minimum execution time, the reward R
for each test component is

Rn =
Rin
tn

which are placed in 4th row. 5th row corresponds to the uncer-
tainties associated with this reward estimates. The uncertainties
are assigned using subjective guess method. When there are
more elements of uncertainty in the logics, the probabilities are
assigned less. For example, the software logics for package
validity checks, which are meant to asses the health of the
sensor, depend on operational environmental conditions. The
physical quantities like temperature of the chamber, number
of operational hours, misalignment factors, calibration state
of the package play a role in the sensor behaviour. As per
the system design, package2 is highly sensitive and more
dependent on the external factors. Hence, it is very difficult to
ascertain Ri with great confidence, so the probability associated
to it is on the lower side. On the other hand, there is no
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TABLE IV. SOFTWARE COMPONENT NUMERICALS.

Parameter tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8 tc9 tc10 tc11 tc12
Reliability Improvement (Rii ) 9 11.5 6 6 6 8 8 8 7.5 13 10 7

Execution Time (ti) 7 8 5 5 5 5 5 5 6 10 9 7
Reward (R) 1.285 1.4375 1.2 1.2 1.2 1.6 1.6 1.6 1.25 1.3 1.11 1.0

Probability (Pi) 0.75 0.65 0.65 0.65 0.6 0.6 0.6 0.6 0.9 0.85 0.9 0.9

involvement of external factors on the reconfiguration logics
of the system. Only the design criteria as per system needs are
to be coded, hence, the uncertainty factor associated to it is
less. All components are assigned values following the same
analogy.

V. EXPERIMENTAL RESULTS
This section demonstrates the evaluation results of the pro-
posed algorithm to the case study illustrated in the previous
section. In essence, two aspects are considered during eval-
uation. Firstly, the applicability of the bandit algorithm in
arriving at an optimal solution is studied. To demonstrate this,
4 case studies each depicting an indicative practical scenario is
taken up. Secondly, the aspect of exploration and exploitation
tradeoff for the given task at hand is studied. Here, various
exploration fractions are considered to arrive at a suitable
exploration probability for the illustrated example. Also, on
an explorative note, a simple variant of ε greedy algorithm
termed as ε decaying strategy is applied. Here, rather than
using a fixed value for ε, it is started with a high value initially,
and decreased gradually over time. This way, we can favor
exploration initially, and then favor exploitation later on. The
following subsections elucidates the experimental results on a
detailed note.

A. Application of Bandit Algorithm
To illustrate the application of bandit algorithm for finding

an optimal test suite, four different scenarios/cases considering
the different possibilities of having rewards and probability
structures are taken. Each scenario results are illustrated using
two graphs. The first graph depicts the preferred action choices
and the second graph elucidates the reward history. The details
of which are stated below:

• Case1: This case corresponds to the state where the
rewards and probability figures of the case study are
kept unchanged. The rewards and confidence figures
depicted in Table IV are considered as it is. By
intuition we can make some guess on the optimal test
suite selection, but it may not be the possible best
solution. By running the algorithm designed, we see
the order of preference of test suite is as tc9, tc10,
tc11, tc1, tc6, tc12, tc7, tc2, tc8, tc3/tc4/tc5. The Ri’s of
tc6, tc7, tc8 are the highest(1.6), but the probabilities
associated with them are less. Though the Ri of tc9
is lesser than tc6, since the associated probability of it
is much more than tc6, tc9 is given preference. Also,
we see the reward of tc10 is higher than the reward
of tc9 , but in long run tc9 is given preference as the
certainity factor of it is higher than tc10. Similarly, all
other test suites are preferred. The results shown in
Figure 3 after running the epsilon greedy algorithm
depict the optimal test suite selection for this case.

• Case2: This considers the scenario where the esti-
mates made are certain, means there is no element
of uncertainty. Thus, all the estimates are assigned a
probability of 1 (equal probability distribution). In this
case, the test suite having the highest initial estimate
should be given preference. For our case, tc6, tc7, tc8
are to be favored first. The graphs illustrated in Figure
4 confirm the expected notion.

• Case3: Here, we consider the case where the rewards
obtained by selecting each action is equal, but each
reward is having its own uncertainty factor. Naturally,
the one having the highest probability of occurence
should be given preference over the other. For illus-
tration purpose, the initial rewards of all the test suites
is set to a value of 1. Here, the test suites tc9, tc11,
tc12 with the highest probability are to be favored. The
graphs depicted in Figure 5 stand to this opinion.

• Case4: This case pertains to the scenario where there
is no uncertainty in the estimates made and all com-
ponents have equal reward. Ideally, in this case all
actions are to be chosen with equal importance. The
graphs presented in Figure 6 confirm the analogy.

Figure 3. Case 1 Results.

Figure 4. Case 2 Results.

The true reward of selecting a particular test suite besides
the uncertainty factor in place can be concluded by considering
the long term rewards. Table V summarizes the long term
rewards Rl of every test suite obtained after running the
proposed algorithm for the 4 different scenarios explained in
the previous paragraph. For every case, row 1 corresponds to
confidence figures, row 2 represents initial reward estimates
and row 3 represents the true rewards of each test suite. We
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Figure 5. Case 3 Results.

Figure 6. Case 4 Results.

see the long term rewards Rl’s for each test suite entirely
depends on the initial estimates on the probability of occurence
of that estimate. The results depicted in Table V are found to be
intuitive. Once the true rewards are known for each test suite,
choosing an optimal set of test suites to fill the reliability gap
is trivial.

B. Exploration-Exploitation Tradeoff
Now we look into the aspect of Exploration and Exploita-

tion trade off by running the algoritm over various exploitation
factors. Figure 7 compares a greedy method with three ε-
greedy methods (ε = 0.01, ε = 0.1, ε = 0.5). All the methods
formed their action-value estimates using the sample average
technique. The greedy method improved slightly faster than
the other methods at the very beginning, but then leveled
of at a lower level. It achieved a reward-per-step of only
about 1.21, compared with the best possible of about 1.26 on
this testbed. The greedy method performed significantly worse
in the long run because it often got stuck performing sub-
optimal actions.The ε-greedy methods eventually performed
better because they continued to explore and to improve their
chances of recognizing the optimal action. The ε = 0.1 method
explored more, and usually found the optimal action earlier,
but it never selected that action more than 91% of the time.
The ε = 0.01 method improved more slowly, but eventually
would perform better than the ε = 0.1 method. As seen from
the figures, exploring more often (ε = 0.5) is also not good.
We say that this exploration-exploitation trade-off varies from
problem to problem. For the given case study exploration rate
of 0.01 is relatively effective in long run, but this needs more
number of iteration to achieve sub-optimal rewards. Hence a
choice can be made between exploration rate of 0.1 or 0.01.

One issue with the epsilon-greedy strategy is how to set the
value of ε, and how we continue exploring suboptimal choices
at that rate even after the algorithm identifies the optimal
choice. Rather than using a fixed value for ε , we can start with
a high value that decreases over time. This way, we can favor
exploration initially, and then favor exploitation later on. This
strategy is known as ε decaying strategy. Figure 8 and Figure

9 illustrates this strategy. The initial ε is set to 0.1. Figure 8
illustrates the case where the exploration factor is decreased
to 0.01 after half the trials are over. We see that there is no
performance degradation upon decreasing exploration rate as
by half of the trials all the actions rewards might have reached
very close to their optimal values, hence little exploration is
enough. Figure 9 decreases the exploration factor by a large
factor (to 0.001) which is not an advisable scenario for our case
study. The initial choice of exploration rate and the decaying
factor varies from problem to problem.

ε = 0.1
ε = 0.01
ε = 1
ε = 0.5

Figure 7. Exploration-Exploitation tradeoff.

Non-decaying 
Decaying 

Figure 8. Epsilon Decreasing Strategy-1.

Decaying 

Non-decaying 

Figure 9. Epsilon Decreasing Strategy-2.

VI. RELATED WORK
A lot of work in the past considered the optimal allocation of
the reliabilities to minimize a cost function, related to the de-
sign or the verification phase costs. Much initial research dealt
with hardware systems (e.g., the series-parallel redundancy-
allocation problem has been widely studied [4]-[5]); software
systems received attention more recently. For a software ap-
plication, the objective of the optimization will depend on
the phase of the software life cycle. During the design phase
[6], structural optimisation of the software architecture is paid
attention with two leading objectives i) reliability constrained
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TABLE V. OVERALL RESULTS.

Case No. Parameter tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8 tc9 tc10 tc11 tc12

1
Pi 0.75 0.65 0.65 0.65 0.6 0.6 0.6 0.6 0.9 0.85 0.9 0.9
Rii 1.285 1.437 1.2 1.2 1.2 1.6 1.6 1.6 1.25 1.3 1.11 1.0
Rli 0.96 0.93 0.78 0.78 0.78 0.95 0.95 0.95 1.11 1.09 0.99 0.90

2
Pi 1 1 1 1 1 1 1 1 1 1 1 1
Rii 1.285 1.437 1.2 1.2 1.2 1.6 1.6 1.6 1.25 1.3 1.11 1.0
Rli 1.28 1.43 1.2 1.2 1.2 1.59 1.59 1.59 1.25 1.3 1.11 1.0

3
Pi 0.75 0.65 0.65 0.65 0.6 0.6 0.6 0.6 0.9 0.85 0.9 0.9
Rii 1 1 1 1 1 1 1 1 1 1 1 1
Rli 0.75 0.65 0.65 0.65 0.65 0.6 0.58 0.58 0.88 0.84 0.88 0.88

4
Pi 1 1 1 1 1 1 1 1 1 1 1 1
Rii 1 1 1 1 1 1 1 1 1 1 1 1
Rli 1.0 1.0 1.0 1.0 1.0 0.99 1 1 1 1 0.99 1

cost minimization ii) cost constrained reliability maximization.
During the testing phase, the objective of the optimization is
to determine the allocation of testing effort so that the desired
reliability objective is achieved [7][8]. During the operational
phase, optimization is used to explore alternative configura-
tions and to determine an optimal allocation of components to
various nodes in a distributed network to achieve the desired
performance and reliability.

At the software front, we see much of the research work
in the community is biased on design phase optimisation side
[9][10]. This work, however, does not consider testing-time of
software components and the growth of their reliability. Not
many papers considered the problem in the software verifica-
tion phase, where the issue is either to allocate reliabilities that
components need to achieve during their testing or to determine
the allocation of testing effort so that the desired reliability
objective is reached. Looking at the work in this direction,
chronologically, the very initial work by Okumoto and Goel
[11] investigated the optimal software release problem by using
a software reliability growth model based on NonHomoge-
neous Poisson Process (NHPP) by considering the cost and
software reliability as two different independent criterion. This
work was carry forwarded by Shigeru Yamada et al. [12] who
consider both cost and reliability criteria.

Also, authors in [7][13] proposed an optimization model
with the cost function based on well known reliability growth
models. They also include the use of a coverage factor for
each component, to take into account the possibility that a
failure in a component could be tolerated (but fault tolerance
mechanisms are not explicitly taken into account, and the
coverage factor is assumed to be known). The authors in [14]
also try to allocate optimal testing times to the components
in a software system (here, the reliability growth model is
limited to the Hypergeometric (S-shaped) Model). Some of the
cited papers [7][14][15] also consider the solution for multiple
applications, i.e., they aim to satisfy reliability requirements for
a set of applications.

In recent times, traditional reliability growth modelling
techniques are replaced by machine learning techniques to
improve the prediction accuracy of the constructed SRGM.
A number of machine learning strategies such as artificial
neural networks (ANN), support vector machine (SVM) and
genetic programming (GP), are in practice in recent times for
reliability modeling. Gene Expression Programming (GEP),
a new evolutionary algorithm based on Genetic algorithm
(GA) and GP, has been acknowledged as a powerful ML for

reliability modelling[16]. We infer from the literature survey
that the application of AI in software engineering domain [17]
is also concentrated on software relaibility modelling.

Though, SRGM is probably one of the most successful
techniques in the literature for software reliability modelling,
with more than 100 models existing in one form or another,
through hundreds of publications, in practice, however, they
encounter major challenges. First of all, software testers sel-
dom follow the operational profile to test the software, so
what is observed during software testing may not be directly
extensible for operational use. Secondly, when the number
of failures collected in a project is limited, it is hard to
make statistically meaningful reliability predictions. Thirdly,
some of the assumptions of SRGM are not realistic, e.g., the
assumptions that the faults are independent of each other, that
each fault has the same chance to be detected in one class, and
that correction of a fault never introduces new faults. These
limitations impediments the use of SRGM based methods. In
such cases, subjective knowledge of the system can be taken
as an aid in making the reliability estimates. Estimates can
be made subject to some criteria like - complexity, functional
criticality etc. Since these are just estimates, one can assign
confidence factor for the estimates made and can address the
optimal selection issue.To the best of our knowledge, no work
addresses this scenario and hence motivated us to consider a
learning strategy and frame a solution methodology.

VII. CONCLUSIONS
In this paper, we have proposed a learning based paradigm
for addressing the software reliability optimisation problem.
We have shown how an interactive learning can address the
problem of finding an optimal test suite whose rewards are
stochastic in nature. In the proposed solution, every interaction
is used to learn about the system and in a way the rewards are
refined. As a result, over a period of time, the stochastic reward
values are converted into true rewards. Once the true rewards
are computed, the problem at hand becomes as simple as a
multi-objectuive optimisation problem. The learning strategy
employed here is inspired by a well known multi-armed bandit
solution strategies. The application of the proposed solution
strategy to the real case study demonstrates the potential of
Reinforcement Learning in addressing the problem stated.

In future, we intend to enhance our existing algorithm by
considering various practical scenarios. The random action
selection policy considered during exploration phase in ε-
greedy solution can be improved using Upper-Confidence-
Bound strategy. The ε greedy action selection forces the
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non-greedy actions to be tried, but indiscriminately, with no
preference for those that are nearly greedy or particularly
uncertain. It would be better to select among the non-greedy
actions according to their potential for actually being optimal,
taking into account both how close their estimates are to being
maximal and the uncertainties in those estimates. We find
there is a proper mathematical basis to work out this idea.
Using this refined startegy, we guess that global optimum
can be obtained in a fewer iterations. Furthermore, based on
some numerical preference Gradient Bandit Algorithms can be
considered to improve further. Furthermore, contextual bandits
can be explored for associative search policies. In summary, we
see a good potential in the application of RL for optimisation
domain.
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