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Abstract—As data centers become increasingly complex and
deliver services of high importance, it is very important that
the quality of the delivered services can be objectively evaluated
and can fulfill the expectations of the customers. In this paper, we
present a novel, general, and formal methodology to determine
and improve the Quality of Services(QoS) delivered by a data
center. We use a formal mathematical model and methodology in
order to calculate the overall indicator of the service quality and
discuss methods of improving the QoS. Since the considerations
were conceived and results have been proved in a formal model,
the considerations and results also hold in a more general case.
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I. INTRODUCTION

A. Motivation and Short Overview

Nowadays, the services of a data center are indispensable
for the good functioning of a company or a research institute.
However, due to the advanced digitalization, data centers are
becoming more and more complex and difficult to manage.
According to a survey of Symantec [1], the main reasons are the
raise of the Cloud Computing and the Virtualization. Basically,
such complex infrastructures are more error-prone and require
more maintenance efforts than simple ones. Thus, it is of
crucial importance to measure the Quality of Services (QoS)
provided by a data center, in order to detect which components /
services are low performers and should be improved. This way,
measuring the QoS also avoids service degradations. Services
which underperform can be detected and measures can be
taken (like relocation of resources) such that these services
will perform better again. An optimized usage of the available
resources does not only improve the QoS and thus, the image
of the service provider, but also helps to save costs.

Furthermore, Butnaru [2] states that “quality has become a
strategic element in companies dealing with services because
it determines competitiveness at its highest level”. Thus, by
measuring and improving the QoS provided by companies
/ research institutes, the service providers can improve their
ranking when compared to the competition.

Estimating the QoS of a data center is a complex endeavor.
On the one hand, there are objectively measurable indicators like
the duration and number of unplanned down times. On the other
hand, the customer satisfaction has very important subjective
components, which should not be neglected. Thus, if a customer
has full confidence in the technical skills, seriousness, and
professionalism of the operating staff, then his attitude is
permissive and indulgent regarding possible malfunctions. For
example, let us consider the scenario that a service has an
unplanned downtime. If the operating staff can predict the time
when the resumption of the service will occur with satisfying
accuracy, the impression of the customer regarding the service
provider will be very good. Otherwise, the customer will assume
that the service provider does not have his processes under
control and a failure of the system will sooner or later occur.

In this paper, we will focus on the perspective from the
data center side. We will define and make use of different
metrics in order to be able to establish objective criteria which
characterize the Quality of Services and the performance of a
data center.

B. Main Challenges and Objectives

If a customer is asked about the quality of the services of
a data center he or she usually will answer: Yes, quality is
good, but it could be better. This answer only describes the
subjective perception of the customer. Our aim is to go further.
Thus, searching for a positive response to the questions “Is the
QoS measurable and if this is the case, how?” is one of the
main challenges, we had to accept and take up.

Establishing and choosing meaningful performance indica-
tors form the basis for improving the QoS.

The challenges described above lead us to the following
main objectives:

1) Receive responses to the question whether the QoS
is quantifiable / metrisable or not, i.e., whether the
QoS can be expressed numerically in a reasonable non
trivial way, such that this number is independent of the
subjective perception of humans.
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2) Establish a general approach on the modalities to
quantify the QoS such that a single indicator (or only
very few) expresses the service quality of the service
provider.

3) Find possibilities to improve the QoS and implicitly
the performance of the service provider.

C. Outline

The remainder of the paper is structured as follows:
Section II gives a short overview of the state of the art and detail
some difference of our approach. Section III introduces the
proposed strategy for measuring the QoS, first in an informal
way, afterwards formalized by introducing a mathematical
model. Different metrics are defined and used in order to
be able to establish objective criteria which characterize the
quality of the services and the performance of a data center.
Section IV introduces the formal queuing model, makes the
connection to the models used in practice, and discusses
modalities to improve the performance of a data center by
using the operation curve. In order to be able to balance
the performance of the services of different departments of
a data center, a formula to calculate the flow factor of the
data center out of the flow factor of each department, is
established. Section V gives some details of a use case and
finally, Section VI concludes this paper and sketches the future
work.

II. RELATED WORK

An important part of the existing approaches for quality
improvement focus merely on the QoS from the user perspective
– established through questionnaires (e.g., SERVQUAL and/or
SERVPERF [3]) – and on the discrepancies between the user
perception and the user expectation of the QoS.

Most approaches concerning the measurement of QoS have
tended to avoid the use of pre-defined objective performance
indicators and focus instead on the relationship between
what consumers expect from a particular service and what
they actually get [4]. The conclusion [3] is that customer
satisfaction with services or perception of QoS can be viewed
as confirmation or disconfirmation of customer expectations
of a service offer. The role of emotions in customer-perceived
service quality is analyzed [5] by widening the scope of
service quality, i.e., by focusing on dimensions beyond cognitive
assessment.

We concentrate our study primarily on the service provider
perspective by using metrics to characterize the QoS and
subsequently establish strategies on how those metrics can
be combined together to generate a unique indicator, which
characterizes the overall performance of the service provider.

Measuring and ranking service quality has been an issue
for study for decades [4], whereby the difficulties lied in the
development of the most suitable method of measurement.
Approaches to the measurement of QoS are based on the
analysis of the relationship between customer expectation of
a service and their perceptions of it’s the quality. Indices
to provide measures of expectation, perceptions, and overall
satisfaction from the customer side are set up and compared [4].

In [6], the authors report the insights obtained in an
extensive exploratory investigation of quality in four business

(retail banking, credit card, security brokerage, and product
repair and maintenance) by developing a model of service
quality. The most important insight obtained from analyzing the
executive responses is the following: “A set of key discrepancies
or gaps exists regarding executive perception of service quality
and the tasks associated with service delivery to consumers.
These gaps can be major hurdles in attempting to deliver a
service which consumers would perceive as being of high
quality”.

Metrics in order to establish the QoS have been used for
example by the Systemwalker [7], which supports “Information
Technology Infrastructure Library” (ITIL) based IT service
management. The focus in [7] is on the service delivery area,
such as capacity, availability, and service level management. The
composition of metrics is outside the scope of the Systemwalker.

In [8], a framework for the evaluation of QoS for Web
Services within the OPTIMACS project is presented, such that
Service Level Agreements (SLAs) are established in order
to calculate / guarantee the QoS, then the properties are
normalized by using statistical functions. The goal is to obtain
a final Quality grade, that allows to rank the services. Finally,
aggregation is performed using weighted sum of the different
quality items.

As a final note, the studies regarding the normalization and
composition of metrics considered for QoS for Web Services
are straightforward and are based on statistics (min, max, mean
value, standard deviation, Z-score) [8], the committed SLA time
provides the QoS level. The metrics used to measure the QoS
of a data center are so diverse that a case-by-case approach
is necessary to determine the normalization and composition
strategy. Moreover, statistical values as above are generally not
a priori known for unconverted metrics such as “cycle time”,
etc.

III. MEASURING THE QOS

We describe the general strategy how to measure the QoS in
an informal way in Subsection III-A and formalize this strategy
in Subsection III-B.

A. Description of the Strategy

According to ITIL [9] (and similar), the (incomplete) list
of processes comprises the following managements:

• “incident management”,

• “problem management”,

• “information security management”,

• “service level management”,

• “change management”,

• “project management”, and

• “release and deployment management”.

A list of metrics is specified for each process according to
ITIL [9] and / or to the “Key Performance Indicator (KPI)
Library"(KPI Library) [10], see [11] regarding developing,
implementing and using KPIs. Some of the most important
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metrics for the ITIL process “incident management” are given
in the following:

• “Total number of incidents”,

• “Number of repeated incidents, with known resolution
methods”,

• “Number of incidents escalated which were not resolved
in the intended resolution time”,

• “Average cycle time associated to the subsequent re-
sponses”, i.e., including the average cycle time to resolve
the incident,

• “Average waiting time from user side associated to the
subsequent responses”,

• “Average work effort for resolving the incident associ-
ated to the subsequent responses”,

• “Average time between the occurrence of an incident
and its resolution”,

• “Total number of incidents resolved within service level
agreement (SLA) time divided by the total number of
incidents”.

In order to establish objective criteria for measuring the QoS, it
is not sufficient to consider simply one metric. Indeed, different
metrics have to be combined. The following example illustrates
this issue.

The metric “Total number of incidents” is a revealing metric
regarding the performance of a service provider. Of course, this
metric is important for reporting per se, as a non anticipated
sharply increasing trend can be the cause for major concerns.
Another important metric is "the average cycle time to solve an
incident". If the metric “Total number of incidents” is increasing,
but in the mean time the “Average cycle time to solve an
incident” is decreasing, the balance is restored and the service
provider will not face a total collapse of the service.

Hence, composition rules for metrics are needed, such
that indicators that characterize the health of the services,
can be established. Since we cannot directly compare the
different metrics, we transform / normalize the metrics using
relative values. By dividing the “Total number of incidents”
by an artificially generated “Maximum number of incidents
supported”, we receive a relative value between 0 and 1.
Unfortunately, the value 1 is the worst value you can ever
get. In order to circumvent this impediment, we subtract 1 and
change the sign. Using the same considerations (by defining
the “Minimum average cycle time”) analogue relative value
for the cycle time can be established. In this case, this new
indicator is directed in the sense, that the best cycle time is
achieved when this value is equal to 1. This example is just to
illustrate the technique. One may argue that an increase of the
indicator value “Average waiting time of the incidents during
processing” also indicates a congestion.

Thus, in order to combine different metrics, we will
normalize them to the range [0; 1] in such a way that the lowest
value correspond to the poorest quality, the highest value to
the best quality. Once, all the relevant metrics of a process are
normalized, we can proceed with the composition such that for
each process a single, composed metric is established.

The composed metric should also take values between 0 and
1, such that a greater value implies a better QoS. An example
of a straightforward composing strategy is to establish weights
for each metric, such that the sum of all weights is equal to 1
and important metrics have bigger weights. Hence, the decisive
metrics are much better considered. Of course for practical
purposes, we can define groups of incidents having the same
importance and accordingly appropriate distribution functions
(linear, exponential, etc.). The calculation of the associated
weights is then immediate.

Normally, explicitly defining importance grouping and
distribution functions is not always necessary. We can set up
priority strategies regarding the QoS. As an example, under
some circumstances, a fast but not necessarily very detailed
answer is more helpful for IT professionals, who can elaborate
the details themselves. In other cases, detailed and very accurate
answers are necessary, especially for customers with little or
no experience. Then, customers could return the ticket of the
incident (if the answer is not accurate enough, e.g.) and ask
for more information and assistance.

Hence, the development of an appropriate strategy for the
quality improvement is essential, in some cases this strategy
can be even customer dependent. For example, we can improve
the quality:

• by improving only the accuracy of the responses, or

• by reducing only the response times, or

• by minimizing a metric which takes both accuracy and
the response time into account.

In accordance with the improvement strategy, the grouping of
metrics regarding their performance is more or less straightfor-
ward and easy to follow.

In effect, we can establish for each process a unique
(abstract) indicator, which characterizes the quality of the
process such that a greater value means better quality of the
process according to the improvement strategy as above. The
absolute value of this indicator has no particular interpretation,
only the increment or decrement of this value in time is
significant.

Same considerations using the indicators established for the
processes lead to a unique indicator of the QoS for the whole
service provider, i.e., the data center. By evaluating the time
behavior of this indicator and / or the component indicators
we can have a good overview which process and / or metrics
performed better or worse.

This unique indicator can be deployed for example on daily
bases, such that the performance of the service provider can
be easily followed and appropriate measures can be taken
if performance degradation occurs. Moreover, even if the
overall unique indicator has improved in value, there can
be some components, whose performance has degraded. By
setting up appropriate Graphical User Interfaces (GUIs), and
appropriate colors (for example red for degradation and green
for improvement) the deviation with respect to the previous
day can be visualized.

The only process through which the customers interact
with the data center as the service provider is through the
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“incident management”, the performance of the other processes
is practically hidden for the regular customer. In order to
improve the “incident management” we will analyze the impact
of some important processes on the “incident management”.

An important direct impact on the “incident management”
has the “problem management” in the sense that by a very
efficient “problem management” the number of repetitive
incidents or the time to solve the repetitive incidents can
be dramatically reduced. For this, each incident should be
correctly assigned to the appropriate issue, have a correct and
exhaustive root analysis, such that the causes of the incident are
unambiguously elucidated. It seems a bit of common sense that
all the detailed information regarding the incident including
good ways of searching, finding, and retrieving the information
should be stored in an appropriate knowledge database. Next,
the probability of recurring should be estimated and if necessary,
appropriate measures should be taken in order to avoid the next
occurrence of the same incident.

Proactive methods are very efficient to avoid the occurrence
of incidents, e.g., improving “change management”, “release
and deployment management”, etc. By significantly reducing
the impact of new releases on the services, the peaks on the
QoS can be significantly reduced.

B. Formalization of the Strategy

We will formalize the strategy proposed in Subsection III-A
by introducing a mathematical model in order to use the
advantages of the rigor of a formal approach over the inaccuracy
and the incompleteness of natural languages.

Let A be an arbitrary set. We notate by 2A the power set
of A, i.e., the set of all subsets of A, including the empty set
and A itself, and the cardinality of A by card(A).

We use a calligraphic font to denote index sets. We denote
by S := {Si | i ∈ S and Si is a service} the finite set
of the services. Analogously, we denote by P := {Pi |
i ∈ P and Pi is a process} the finite set of processes and by
T := {[t1; t2] | t1 and t2 are points in time, such that t1 ≤
t2} time intervals.

A metric M is a measurement that monitors progress
towards achieving the targeted objectives. We denote by
M := {Mi | i ∈ M and Mi is a metric} the finite set of
metrics. Generally speaking, a metric M is defined for an
environment containing subsets of S and P .

For example, let us define the ratio between the "total
number of incidents with known resolution method" and
the "total number of incidents". Depending on the strategic
orientation of the company, different goals can be pursued.
On the one hand, having for most of the incidents corrective
measures in place can be a targeted objective, one the other
hand, avoiding repetitive incidents is crucial for the economic
success of companies like fabs running 24x7 continuous
manufacturing operations. A mixed strategy (for example 10%
known errors) can be also targeted. Hence, the scope of a
metric is most of the time business oriented.

In order to be able to compare and compose different metrics
in a reasonable way, we introduce the value of a metric such
that it is greater or equal 0 and lower or equal 1. A greater

value of the metric means a closer value to the targeted business
objectives. Formally, the range of values of the possible business
values, including the targeted ones is 2R. Hence, the progress
towards achieving the targeted Business Objectives (BO) can
be represented as a function.

BO :M×P × S → BusinessObjectives,

(M,P, S) 7→ BO(M,P, S).

Analogously, the value (V ) of a metric is represented as:

V :M×P × S × T → [0; 1],

(M,P, S, [t1; t2]) 7→ V (M,P, S, [t1; t2]).

A greater value for V (M,P, S, [t1; t2]) means a closer value to
the targeted business objectives for (M,P, S). The definition
above highlights the fact that the same metric can have different
business objectives and definition (values) depending on the
environment (services and/or processes) it is used.

We illustrate the above considerations based on a simple
example and consider the "average cycle time" of the incidents.
The business demands short cycle times for all departments.
In order to be able to compare the cycle times of different
departments, we determine the minimal cycle time (i.e., the
theoretical cycle time needed if there are no unplanned down
times, etc.) and assign the ratio of minimal cycle time to the
cycle time as the value of the metric. Hence, the performance
of the different departments regarding the same metric (i.e.,
cycle time) can be easily compared, on the assumption that the
respective minimal cycle time has been evaluated correctly.

Our aim is to establish a single indicator for the service
performance (i.e., the QoS) of the service provider. In order to
evaluate the performance of the different metrics of the same
process (for example ITIL process), we set up a methodology
to compose the different metrics in a reasonable way, such
that the new metric (indicator) outlines the performance of the
investigated process.

In order to simplify the notation, we will notate in the
following the value of a metric M by V (M), meaning that the
metrics involved are defined on the same environment and the
same time interval.

Definition III.1 (Composition of metrics) Let
M := {Mi| i ∈ {i1, i2, . . . , ik} ⊆ M } a subset of M.
We define

COMP : 2M →M,

M 7→ COMP(M),

such that there is an aggregation function AGG

AGG : 2M → [0; 1],

V (COMP(M)) 7→ AGG(V (Mi1), V (Mi2), . . . , V (Mik))

and

v1i1 ≤ v
2
i1 , v

1
i1 ≤ v

2
i1 , . . . , v

1
ik
≤ v2ik

⇒ AGG(v1i1 , v
1
i2 , . . . , v

1
ik

) ≤ AGG(v2i1 , v
2
i2 , . . . , v

2
ik

)

Except for the case of trivial aggregations, the composition
generates a new metric out of known ones.
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In order to keep our notation simple and straightforward,
we will not make any distinction in the formal representation of
the initial metrics and those obtained by consolidation. Hence,
M contains the initial metrics as well as the consolidated ones.
Therefore, a consolidated metric can be finally set up for the
entire service. We note:

Lemma III.2 (Composition properties) Let M := {Mi| i ∈
{i1, i2, . . . , ik} ⊆ M } a subset of M arbitrarily chosen. Then,
COMP(M) is a metric, i.e., fulfills the following properties:

a) 0 ≤ V (COMP(M)) ≤ 1,

b) A greater value for V (COMP(M)) means a closer
value to the targeted business objectives for this metric.

Hint These properties are a direct consequence of Defini-
tion III.1.

Next, we give a small example to illustrate the aggregation
strategies. Let M := {Mi1 ,Mi2 , . . . ,Mik} be a subset of M.
We suppose, that the value of the new characteristic COMP(M)
is a linear combination of the values of the components, i.e.,

V (COMP(M)) :=

ik∑
i=i1

αi · V (Mi)

with weights αi > 0 ∀i ∈ {i1, i2, . . . , ik} and
∑ik

i=i1
αi = 1. If

the value of αi is high, then the metric Mi within COMP(M)
is important. In practice, it suffices to build weight groups
{Gi| i ∈ {i1, i2, . . . , il}} out of M such that each M ∈ M
belongs to a group Gi and all Mj ∈ Gi are equally weighted.
Furthermore, a weighting function W can be set up, such that
all αi can be explicitly determined, for example set

ki :=
αi

αi+1
for all i ∈ {i1, i2, . . . , il−1}.

The values ki can be regarded as the “ratio of relevancy” of
the corresponding metrics.

IV. IMPROVING THE QOS

In the last section, we proposed a strategy how to measure
the QoS of a data center. In this section, we will establish
metrics controlling the performance of a data center. Thus,
we can determine in which cases the service of a data center
collapses or the QoS substantially degrades.

A. Queuing Model and Basic Metrics

We model the processing line of a data center by introducing
a queuing model and give some basic definitions related to it.
In order to keep the presentation accessible and avoid technical
complications, we will maintain our model as simple as possible.
It is the task of the practitioners to map the real world onto
this model according to their needs. We will analyze the entire
processing line as well as subsystems of it.

A queuing system consists of discrete objects, termed units
or items that arrive at some rate to the system. Within the
system, the units may form one or more queues and eventually
be processed. After being processed, the units leave the queue.

The finest granularity in our model is unit, step, time stamp,
section and classification. For example, in practice, the unit

can be a ticket, the section can be an employee of the service
center, a group of employees having the same profile or a
specific section of the service center, etc. The classification
is the finest attribute which characterizes the unit (like bug,
disturbance, project, etc.) and it can be distinguished in the
processing phase.

In our model the unit enters the system (service center), is
processed according to the specifications and leaves the system.
The step is the finest abstraction level of processing which
is tracked by the reporting system. When the material unit
u enters the system, it is assigned to a classification c. This
assignment remains valid till the unit u leaves the system. We
will analyze the entire processing line as well as subsystems
of it.

We denote by S the set of all steps of the processing line,
by U the set of the units that entered the system, and by T the
(ordered and discrete) points in time when events may occur in
the system. Since we are merely interested in daily calculations,
we will set D as the set of all points in time belonging to a
specific day D, i.e., D := {t ∈ T | t belongs to day D}.

Let s ∈ S and u ∈ U . We denote by TrInT s(u) the track
in time of u, i.e., the point in time when the processing of unit
u is started at step s. Analogously, TrOutT s(u) is the track
out time of u, i.e., the point in time when the processing of
unit u has been finished at the step s.

We assume that for a step s, the function succs(u), which
identifies the succeeding step of s for the unit u is well defined.
Analogously, we assume that the history of the production
process is tracked, so the predecessor function preds(u) of each
step s is well defined. For formal reasons we set succs(u) := s
for the last step on the route and preds(u) := s for the first
step on the route.

By cycle time (CT ), we generally denote the time interval
a unit or a group of material units spent in the system /
subsystem [12]. We do not make any restrictions on the time
unit we use, but are merely interested on daily calculations.
For formal reasons, – in order to be able to calculate average
values – we denote by 24h the cardinality of an arbitrary day
D. For t ∈ T we denote by t± 24h the point in time t shifted
forward or backwards by 24 hours.

We assume that events in the system are repeated on a daily
basis, i.e.,

∀u ∈ U and ∀s ∈ S : TrInT s(u) = t

=⇒ ∃v ∈ U : TrInT s(v) = t+ 24h and
TrOutT s(v) = TrOutT s(u) + 24h

and

∀u ∈ U and ∀s ∈ S : TrInT s(u) = t

=⇒ ∃w ∈ U : TrInT s(w) = t− 24h and
TrOutT s(w) = TrOutT s(u)− 24h.

Under a stable system we mean a system according to the
conditions above.

In practice, systems pass through a ramp up phase such that
the above conditions are eventually reached, i.e., ∃tb ∈ T such
that the above conditions are satisfied for all t > tb. For our
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investigations, it is sufficient that the systems reach the stable
state after some time (eventually stable systems). For reasons
of a simple notation, we will use the term stable system or
system in a stable state. However, the statements of this work
are also valid for eventually stable systems.

The raw process time / service time of unit u ∈ U related
to step s inS is the minimum processing time to complete
the step s without considering waiting times or down times.
We denote the raw process time of unit u related to step s by
RPT s(u).

Let u ∈ U , let {s1, s2, . . . , sn} ⊂ S be the complete list
of steps according to the processing history to process unit u.
Let RPT si(u) be the raw process times of unit u related to
step si for all i = 1, 2, . . . , n. Then the raw process time of
unit u can be represented as follows:

RPT (u) =

n∑
i=1

RPT si(u).

The work in progress is defined as the inventory at time
t ∈ T and will be denoted by WIP(t). If the work in process
is used in connection with Little’s Theorem then it denotes the
average inventory for a given period of time. We use the notation
avgWIP instead of WIP to denote the average inventory.

We denote by Th the throughput of the material units by.
Usually, we consider the daily throughput and refer to it as
ThD for a specific day D.

The cycle time of a unit u ∈ U spent at a step s ∈ S in
the system can be represented as:

CT s(u) := TrOutT s(u)− TrOutT preds(u)
(u).

Let {u1, u2, . . . , un} be the set of units that were processed
at step s on a specific day D ⊂ T i.e., ∀i ∈ {1, 2, . . . , n} ∃ti ∈
D such that TrOutT s(ui) = ti. Then, the average cycle time
avgCTD

s the units ui spent in the system at step s on a specific
day D can be represented as:

avgCTD
s =

1

n
·

n∑
i=1

CT s(ui).

For t ∈ T , u ∈ U we define the indicator function 1s at a
process step s ∈ S as follows:

1s : U × T → {0, 1},

(u, t) 7→ 1s(u, t) :=


1 if t ≥ TrOutT pred(s)(u) and

t < TrOutT s(u),

0 otherwise.

Throughout this work we assume that T is discrete, i.e.,
units arrive and depart only at specific points in time, since
the time is usually measured in seconds or milliseconds.

Lemma IV.1 (Representation of average inventory) The
average inventory avgWIPD

s for a process step s ∈ S on a
specific day D can be represented as follows:

avgWIPD
s =

1

card(D)
·
∑
t∈D

∑
u∈U

1s(u, t) (1)

= avgCTD
s · Th

D
s . (2)

By interchanging the order of summation, we receive an
expression for WIPD

s , which is much easier to calculate in
practice.

Hint Let Un,D := {u1, u2, . . . , un} be the set of units that
left the step s on a specific day D ⊂ T , i.e., ∀i ∈
{1, 2, . . . , n} ∃ti ∈ D such that TrOutT s(ui) = ti. Then,
in stable systems the following relation holds:

avgWIPD
s =

1

card(D)
·
∑
t∈D

∑
u∈U

1s(u, t)

=
1

card(D)
·
∑
t∈T

∑
u∈Un,D

1s(u, t).

By interchanging the order of summation and considering that
for i ∈ {1, 2, . . . , n} the average cycle time (measured in days)
of the material unit ui at step s is given by:

avgCT s(ui)

:=
1

card(D)
·
(
TrOutT s(ui)− TrOutT pred(s)(ui)

)
=

1

card(D)
·
∑
t∈T

1s(ui, t).

Thus, we get:

avgWIPD
s = avgCTD

s · Th
D
s .

Since in stable systems the variables above do not depend on
the day chosen for their calculation, Little’s Theorem follows.
The consideration above do not hold in steady state systems
used by Stidham and Sigman (see [13] or [14]). �

Remark IV.3 (Case: Set of points in time is continuous)
Actually, in theoretical models it is not necessary to consider
a discrete set T in order to be able to calculate avgWIPD

s .
Let ΣU be the discrete σ-algebra on U (i.e., the power
set 2U of U ). Let µ be the counting measure on ΣU , i.e.,
µ(U) := |U| for U ∈ ΣU . Then, (U,ΣU , µ) is a measure
space. For T ⊂ R+ let ΣT be the σ-algebra of all Lebesgue
measurable sets on T and let λ the usual Lebesgue measure
on T . Analogously (T,ΣT , λ) is also a measurable space.
Since both spaces are σ-finite, the product measure µ ⊗ λ
is well defined and for U ⊂ U and T ⊂ T the equality
µ ⊗ λ(U × T ) = µ(U) · λ(T ) holds. Since 1s is a simple
function (i.e., a finite linear combination of indicator functions
of measurable sets) it is ΣU × ΣT measurable. Then, as
expected card(D) =

∫
D

dλ(t) = 24h and the theorem of

Fubini-Tonelli gives:

avgWIPD
s =

1

card(D)
·
∫
D

∫
U

1s(u, t)dµ(u)dλ(t)

=
1

card(D)
·
∫

U×D

1s(u, t)d(µ⊗ λ)(u, t)

=
1

card(D)
·
∫
U

∫
D

1s(u, t)dλ(t)dµ(u).

The last integral is much easier to evaluate.

In stable systems the value avgWIPD
s does not depend on the

specific day D that was considered for the calculation.
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B. Expected Inventory

Next, we define one of the relevant metric for bottleneck
control and present formulas to calculate them.

WIP24 s,c(t) denotes the inventory which is expected in
the next 24 hours at a specific step s ∈ S, classification c and
t ∈ T . Usually, WIP24 s,c(t) at midnight is considered. In this
case, we will omit the time constraint and use the notation
WIP24 s,c.

Let us suppose {s1, s2, . . . , sn} is the planned (ordered) list
of steps as provided by the route for the classification c. There
are of course different strategies to estimate WIP24 sl,c

(t) for
a specific l ∈ {1, 2, . . . , n}. One alternative supposes that
the units moves across the line as planned by the route. Let
refCT si,c be the target cycle time to process the unit at the
step si ∈ S, let WIPsi,c(t) be the inventory at the step si
for the classification c and time t ∈ T . For l determine j :=
min(k : k ≤ l) such that

∑
k≤i≤l

refCT si,c ≤ 24h. Then the

expected inventory can be written as follows:

WIP24 sl,c
(t) =

∑
j≤i≤l

WIPsi,c(t).

Most of the time, the unit is not processed according to
the specifications (route), reworks or alternative processing
strategies are necessary. In this case, the formula as above does
not hold, and other more complex approaches are necessary.

C. Little’s Theorem

In the following, we will introduce Little’s Theorem [15]
[16]. Little’s Theorem which is mostly called Little’s Law is a
mathematical theorem giving a rather simple relation between
the average cycle time, the throughput, and the average work
in process in the system. It will be used later on for calculating
the flow factor and thus, controlling the performance of the
data center. The relation of Little’s Theorem is valid if some
convergence criteria are fulfilled and if the underlying system
is in steady state and non-preemptive. The latter means that
the properties of the system are unchanging in time, there are
no interrupts and later resumes. In many systems, steady state
is not achieved until some time has elapsed after the system is
started or initiated. In stochastic systems, the probabilities that
some events occur in the system are constant. The result is
entirely independent of the probability distribution involved and
hence it requires no assumption whether the units are processed
in the order they arrive or the time distribution they enter or
leave the system.

We give now a formal definition for Little’s formula. Our
explanation is based on [14] slightly modified to use our
notations. We consider the queuing system above where –
unlimited but countable – units arrive, spend some time in
the system, and then leave. Material units enter at most once
the system, i.e., units that left do not enter the system again.
Let T := {ti| i ∈ N} be the countable set of points in time
when those events occur. At any point in time t ∈ T at most a
finite number of units enter or leave the system. Let un denote
the unit which enters the system at the time ten. Upon entering
the system, un spends CTn time units in the system (the cycle
time of un) and then leaves the system at time tdn = tn +CTn.
The departure times are not necessary ordered in the same

way as the enter times. This means that we do not require that
the units leave the system in the same order as they arrived.
Let 1eui

(t) := 1 if ti ≤ t and 0 else. We denote by Ne(t) the
number of units which entered the system until time t, i.e.,

Ne(t) =

∞∑
i=1

1eui
(t).

Analogously, we denote by N l(t) the number of units which
have left until time t. Let L(t) be the total number of the units
in the system by time t. A unit un is in the system at time t if
and only if tn ≤ t < tn +CTn. Hence L(t) = Ne(t)−N l(t).
Let be (if the limit exists)

Th := lim
t→∞

Ne(t)

t

the arrival rate into the system,

avgCT := lim
n→∞

( 1

n
·

n∑
j=1

CT j

)
the average cycle time the unit spends in the system,

avgWIP := lim
t→∞

(1

t
·

t∫
0

L(s)ds
)

the average number of units in the system.

Theorem IV.4 (Little’s theorem) If both the arrival rate Th
and the average cycle time avgCT exist and are finite, then the
above limit in the definition of the average inventory avgWIP
exists and it holds:

avgWIP = avgCT · Th. (3)

Corollary IV.5 If both Th and avgCT exist and are finite,
then the departure rate exists and equals the arrival rate:

lim
t→∞

N l(t)

t
= Th.

Little used a stochastic framework to define and prove of what
is known as Little’s Law, the approach we are presenting makes
no stochastic assumptions, i.e., the quantities and processes are
deterministic. There are other versions of Little’s Theorem that
allow batch arrivals, see section 6.2 of [14].

D. Calculation of the Flow Factor

Next, we establish a formula for the calculation of the
flow factor for the processing line. For this, we restrict to
the following queuing model: The adapted queuing model is
based on the one given in Subsection IV-A with the following
modifications:

• Units can enter and leave the system only through a
finite number of gates.

• Each gate on the entering side has its correspondence
on the exit side.

• The entering and the corresponding exit gate are
connected by a lane.

• Once, the person entered the system, he can move
forward only on the lane set up by the entering gate.
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He cannot switch the lane or leave the system except
the exit gates.

• Each lane contains a number of clerks, not defined in
detail, such that before each clerk an internal queue is
formed and the clerk does not necessarily process the
requests instantly.

• The sum of the time the clerks process the requests of
a person during his voyage through a given lane (i.e.,
the raw process time) does not depend on the particular
person involved. Hence, the system has a predefined
raw process time (RPT l) for each lane, i.e., the sum
of the time the clerks process the requests of a person
during his voyage through the lane.

Table I illustrates the queuing model.

Table I. ILLUSTRATION OF A QUEUING SYSTEM WITH 5 LANES
l1, l2, . . . , l5 AND 8 PROCESSING STEPS.

l1 ⇒ ⇒
l2 ⇒ ⇒
l3 ⇒ ⇒
l4 ⇒ ⇒
l5 ⇒ ⇒

We will denote by L the set of the lanes and by Th l the
throughput at lane l ∈ L.

Definition IV.6 (Flow factor) Let {u1, u2, u3, . . .} be the or-
dered list of units which enter the system, such that ui enters
the system at time ti and i < j ⇒ ti ≤ tj . The cycle time
CT i a unit ui ∈ U spent in the system can be split into the
waiting time (WT i) and raw process time RPT i such that
CT i = WT i + RPT i. If the limit exists, then the (average)
flow factor avgFF is defined as:

avgFF := lim
n→∞

n∑
i=1

CT i

n∑
i=1

RPT i

. (4)

Remark IV.7 If CT := limn→∞
(
1
n ·

n∑
i=1

CT i

)
and RPT :=

limn→∞
(
1
n ·

n∑
i=1

RPT i

)
exists (and are finite), then the above

limit exists and it holds:

avgFF =
CT

RPT
.

Corollary IV.8 (Representation of raw process time) Let
Ne

l (t) be the number of units which entered the lane l ∈ L
until time t ∈ T . Let n := Ne(tn) :=

∑
l∈L

Ne
l (tn). Then, the

average raw process time RPT of the whole processing line
can be represented as follows:

RPT := lim
n→∞

( 1

n
·

n∑
i=1

RPT i

)
=
∑
l∈L

Th l

Th
· RPT l. (5)

Hint We obtain:

1

n
·

n∑
i=1

RPT i =
1

n
·
∑
l∈L

n∑
il=1

RPT l
i =

∑
l∈L

Ne
l (tn)

Ne(tn)
· RPT l.

Since

lim
n→∞

Ne
l (tn)

tn
· tn
Ne(tn)

=
Th l

Th
∀l ∈ L

it follows that

RPT := lim
n→∞

( 1

n
·

n∑
i=1

RPT i

)
=
∑
l∈L

Th l

Th
· RPT l.

Corollary IV.10 (Representation of flow factor) Assumed
that the conditions of Little’s Theorem are satisfied. Then, the
flow factor can be represented as follows:

1

avgFF
=
∑
l∈L

WIP l

WIP
· 1

FF l
. (6)

Hint Easy calculations using Little’s Theorem for each lane
l ∈ L yields to the relationship between the flow factor for the
whole system and the flow factors of its components / lanes as
given in (6).

We can calculate the average number of units in the system
first by considering the whole system and secondly considering
the reduced system with one lane. Little’s formula is valid in
both cases. Since units cannot switch to another lane, it follows
that

WIP =
∑
l∈L

WIP l.

Using Little’s formula and the definition of the average cycle
time it follows that:

lim
n→∞

( 1

n
·

n∑
i=1

CT i

)
= CT =

∑
l∈L

Th l

Th
· CT l.

Hence, as expected:

avgFF =

∑
l∈L

Thl

Th · CT
l

∑
l∈L

Thl

Th · RPT
l

=
CT

RPT
.

Let us suppose that the service center has different departments,
such as for “incidents”, “problems”, “projects”, “releases”, etc.,
which operate independently. By abstracting those departments
as lanes and calculating for each department the flow factor, the
flow factor of the service center can be established as in (6).

Moreover, Equation (6) determines the correlation between
the flow factors of each department and the flow factor of the
data center. Thus, the flow factor of the data center can be
improved within an existing budget, for example by resource
reallocation, if the flow factor of some departments will be
improved and the flow factor of some other departments will
be degraded, see also the discussion regarding the operating
curve.

A formula of the type given in (6) was proposed by
Hilsenbeck in [17, p. 36]:

avgFF =
∑
l∈L

Th l

Th
· FF l. (7)
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Figure 1. Graph of function g given in (10) (Operating curve). Throughput
Th versus cycle time CT for four different values of α.

It seems that the formula (7) is empirical. In particular, no
proof of the formula was given.

The flow factor plays an important role in the operating
curve management. The operation curve follows from King-
man’s equation [18]. One of the representation of the operating
curve is based on the following formula (see [19, pp. 55, 58],
[17, pp. 41, 44], [20] [21]).

avgFF = f(U) := α · U

1− U
+ 1. (8)

U is the utilization, i.e., the percentage of the capacity Capa of
a tool or production segment (see [22] for a definition and [19,
p. 57] for calculation). Introducing avgFF and U in (8), the
value for the coefficient α (variability) follows.

The operating curve as a function avgFF (U) can be drawn.
However, this relation is rather abstract. Since it holds

U =
Th

Capa
, (9)

the flow factor in terms of a function avgFF = f(U) can be
easily transformed into a function of the type CT = g(Th)
(see [19, p. 40]):

CT = g(Th) := α · Th

Capa − Th
· RPT + RPT . (10)

This relation is more practical as it shows how the throughput
directly influences the cycle time. The self-generated graph
of the function g is depicted in Figure 1. It is assumed that
the average minimal cycle time RPT is 1 hour and that the
maximal capacity is Capa = 1000. If Th is close to Capa ,
then the graph of g grows asymptotically. Hence, a point at
the graph (named operating point) has to be chosen, such that
a minimal increase of the number of items does not lead to
dramatically increased cycle time. The operating curve has
been used by Qimonda to improve overall fab performance.

V. USE CASE: AN EXCERPT

We illustrate the principles of improving the QoS of a data
center by means of a simplified example. Let us consider the

department which provides the e-mail service of a data center.
Firstly, we establish the conditions such that the providing
the service is at all possible. Secondly, we set up metrics and
compose them in order to be able to track the evolution of
QoS.

One of the most sensible indicators whose value has to be
estimated is the raw process time RPT which is the (average)
minimal cycle time to process an incident. It contains only
the effective time to process the incident, for example not
including coffee breaks, private telephone calls, etc. Let us
suppose that RPT is equal to 1 hour. In real systems (see [19,
pp. 46, 48]) the cycle time CT corresponding to a specific
throughput, denoted by Th is measured. Let us suppose that
by considering the raw process time the maximum capacity
Capa is 1000 incidents per month.

Introducing CT and Th in (10), the value 0.4 for the
coefficient α (variability) follows. As shown in Figure 1 we
can easily follow that a slightly increase of the throughput (after
leaving the linear part of the graph) considerably increase the
cycle time. In order to avoid the flooding of the departments
with tickets, the natural reaction of the employees is to reduce
the raw process time and consequently reduce the QoS of the
department. Hence, in our example, if the throughput exceeds
800 incidents per month appropriate measures should be taken
in order to avoid the collapse of the service. On the contrary, if
the throughput is equal to 400 tickets per month (being on the
linear part of the graph), a part of the staff can be relocated
to assist other services. The relation (6) shows the correlation
between the flow factor of the individual departments and
the data center and can be used to balance the individual
departments.

In order to establish normalized / composite metrics, we
consider those presented in Subsection III-A.

We describe below some of the metrics used in incident
management, normalized and directed as described in Sub-
section III-B, i.e., each metric takes values in the closed
interval [0; 1] and a greater value for the metric implies a
better accomplishment of the business requirements.

m01 :=
1

“Total No. of incidents”

m02 := 1− “No. of repeated incidents”
“Total No. of incidents”

m03 := 1− “No. of repeated incidents with known solution”
“No. of repeated incidents”

Unfortunately, the “Maximum No. of incidents” is not a priori
known. Hence, generally speaking, it cannot be used in the
formula. Furthermore, the business requires that corresponding
measures are taken, such that repeated incidents are avoided.
Therefore, “No. of repeated incidents” should be kept low.
Further metrics, which are considered (SLA refers to Service
Level Agreement):

m04 :=
“No. of escalated incidents”

Total No. of incidents”

m05 :=
1

“Average cycle time to resolve the incident”
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m06 :=
1

“Average waiting time from user side”

m07 :=
1

“Average working time on the incident”

m08 :=
“Total No. of incidents resolved within SLA time”

“Total No. of SLA relevant incidents”

m09 :=
1

“First reaction time to repair the incident”

m10 :=
1

“No. of responses from service center side”
Unfortunately, defining metrics fulfilling the conditions as
above, is not always straightforward. Let us consider Incidout

as the total number of incidents closed and Incid in as the total
number of incidents opened in the time frame considered. In
order to avoid the flooding of the data center with incidents the
metric k := Incidout/Incid in could be tracked. Unfortunately,
this metric does not fulfill our requirements, since it can take
values outside the interval [0; 1]. In order to avoid this impedi-
ment, we define kin := Incid in/“Total No. of incidents” and
kout := Incidout/“Total No. of incidents” and set

m11 :=
1 + kout − kin

2
.

Then, m11 is normalized and satisfies the above conditions
imposed for metrics. Generally speaking, the effective minimal
and maximal value of a metric is not known, nor is the
distribution a priori known. Thus, for example, a metric m1

takes values in the interval [0.5; 0.6] and another metric m2 in
the interval [0.2; 0.7] with nearly uniform distribution. Hence,
the metric m2 varies more widely than m1 and this should be
considered – for example using the standard deviation – when
setting up the groupings for the composition of the metrics,
such that metrics having a low standard deviation should be
assigned to more important groups.

Now, let us consider in our use case five composition groups,
G0, G1, . . . , G4, such that G1 is the most relevant group. Let
us associate the weight wi to group Gi and let us consider the
weighting according to an exponential function, such that k0 :=
1 and ki := wi−1/wi for i > 0. This yields to the relation:
wi = w0/

∏l=i
l=0 kl. In our example k1 := e1, k2 := e0.75,

k3 := e0.5, etc. The values for ki are illustrated in Figure 2.
Let us assign the above metrics to the composition groups,
such that index set of the metrics assigned to the group Gl

is equal to Il and let nl the number of metrics in the group

Gl. Then, according to the composition rules:
4∑

i=0

ni · wi = 1.

Hence, the weight values follow. The value of the composition
metric M is:

V (M) :=

4∑
i=0

wi ·
∑
l∈Ii

V (ml).

Examples of services at the ZIH of the Technische Univer-
sität Dresden (TU Dresden) are: “E-Mail Service”, “Backup and
Archive Service”, “Data Exchange Service”, “Access to High
Performance Computing Resources”, etc. [23] We conclude this
section by presenting the assistance system for a data center
in Figure 4 and by summarizing the composition strategy via
the flow diagram given in Figure 3.

Figure 2. Graphical construction of values ki such that metrics are weighted
according to an exponential function, depicted for f(x) = ex.

Start

Establish all metrics
for each department, for each process, for each service, etc.

Normalize the metrics,
such that a greater value fulfills better the business requirements.

Establish grouping of indicators.

Establish the grouping strategy
and set up a unique indicator for the data center.

End

Figure 3. Simplified flow diagram regarding the composition strategy.

VI. CONCLUSION AND FUTURE WORK

We set up a formal, mathematical model and analyzed the
QoS and the modalities to enhance it within this model. In that
way, the QoS provided by the TU Dresden can be improved,
which implicitly leads to a good ranking of the TU Dresden
between the universities in Germany and world wide.

The main result of our research is that from a service
provider perspective QoS can be characterized in mathematical
terms pretty accurately, such that the improvement / degradation
of the overall service or part of it can be tracked in IT systems
and can be visualized through GUIs. According to Definition of
ITU-T Rec. E.800 [24]: QoS is the “Collective effect of service
performances which determine the degree of satisfaction of a
user of a service”. The long term experience of the first author,
working in the semiconductor industry is very similar to the
definition above, such that it does not suffice to consider only
the service provider perspective, but the user’s perception of the
QoS should also be considered. Further research is necessary to
establish the correlation (or lack of it) between the objectively

70Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances



Figure 4. Hierarchical assistance system for a data center consisting of different
departments, services, and metrics as levels. Changes will be depicted in green,
white or red depending on the indicator’s values of today and yesterday.

improved service and the subjective perception of the customer.

The composition strategy of various metrics to form an
overall indicator can be a very complex endeavor. If all the
metrics improve or degrade, then the overall indicator will
improve or degrade accordingly. The question is in which
direction will the overall QoS indicator swing if some metrics
improve, some other degrade in time. We are not aware of
any research in this direction. Similarly, how can the overall
QoS be enhanced within the limited budget by improving some
components and degrading others by resource reallocation.

The study has been accomplished for the data center of the
ZIH, TU Dresden, but it can be used to improve the QoS by
any service provider in the event that the real world can be
mapped to the formal model used in this approach.

The similitude between a data center and a semiconductor
fab regarding performance improvement cannot be denied. It
would be then advantageous to identify the major differences,
such that the theory developed to improve the performance of
a semiconductor fab could be adapted for data centers. This
work is a little step in this direction.
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