
Considerations for Adapting Real-World Open Source Software Projects within the

Classroom

Hyunju Kim

Department of Mathematics and Computer Science

Wheaton College

Wheaton, IL, USA

e-mail: hyunju.kim@wheaton.edu

Abstract—As Open Source Software (OSS) has become one of

the main approaches for developing new software products,

efforts to incorporate real-world OSS projects into the

computer science classroom have increased. This paper

reviews such efforts and discusses the benefits and challenges

of adapting OSS projects in software development or

engineering courses. It also presents considerations for

selecting and using OSS projects for in-classroom software

development.

Keywords-open source software; OSS; software engineering

education.

I. INTRODUCTION

Open Source Software (OSS) has been widely used in
many areas and has become one of the main approaches for
developing new software products. As a result, efforts to
adapt OSS and its community structures in computer science
education have also increased. Findings from such efforts
show that using OSS to teach various aspects of software
engineering benefits students by providing opportunities for
real-world software development, software reengineering,
and team activities, such as project management and group
communications. These opportunities are rarely available
within the traditional classroom environment; thus, adapting
OSS in software engineering education can be an effective
supplemental teaching approach to prepare students for their
future careers.

Section II of this paper will review previous efforts to use
OSS projects in the computer science classroom, along with
benefits of using OSS components in software engineering
education. Section III will present two different approaches
to utilizing real-world OSS projects for software
development education, and the corresponding challenges
and considerations based on our classroom experience.
Section IV concludes our experience and discusses future
work that will be necessary for better utilizing real-world
OSS projects in the classroom setting.

II. PREVIOUS STUDIES

Several studies have already adapted real-world OSS
projects to the computer science classroom environment. A
study by Hislop et al. [3] identified the effects of adapting
Humanitarian Free and OSS projects in undergraduate
software engineering or OSS development courses at diverse
educational institutions. Findings from the study indicate that

students were motivated by participating in such OSS
projects and learned various aspects of collaborative
software development. Similarly, a study by Stroulia et al.
[8] reported on the Undergraduate Capstone Open-Source
Project, which offered a distributed software engineering
course to students from multiple universities. The course
asked students to work on existing, active OSS projects so
that they could learn and participate in real-world team
activities for developing software. This distributed
environment was helpful for students in learning
communication skills, as well as in learning from others and
through examples. Another study by Krogstie [4] reported
the roles and benefits of a broker between a student
development team and an OSS community in a senior project
course. While working as the gatekeeper, the broker
strengthened the programmer’s authority within the team and
increased the communication credibility of both parties. As a
result, the broker’s role became significant for the student
team in acquiring the necessary development knowledge
from the OSS community.

While most of the previous efforts have introduced OSS
projects to the senior level of computer science studies, a
couple of them have incorporated OSS projects into second
or third year studies [5][6]. Students were asked to contribute
to active OSS projects, so they might learn software
evolution processes, such as reverse engineering and
software maintenance. Students’ feedback from those
courses was positive and reflected their having learned
values of documentation, software development tools, and
communication with real-world developers.

It seems obvious that incorporating real-world OSS
projects into the classroom provides valuable opportunities
for students to learn technical and social aspects of software
development, such as:

 Communication skills

 Project management activities

 Distributed software development tools

 Problem analysis and solution development
according to given constraints

 Learning from others and by example

However, despite these benefits, one of the challenges is

to identify OSS projects that are appropriate for student
development. A study by Smith et al. [7] initially considered
programming language, code size, team development, and
buildability as the criteria when choosing appropriate OSS

95Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

projects to teach software engineering. Later, the study also
considered additional criteria, such as the project’s
application domain, modular design, recent activity, and
documentation quality. Results from this study showed that it
was not easy to find appropriate projects of proper size. In
addition, buildability problems existed among small, single
developer projects; levels of documentation varied; and a
project’s code organization could mislead its code
modularity.

This paper reports findings from adapting two different
types of OSS projects into software development courses.
We will also discuss the pros and cons of the two adaptation
forms so that they can serve as criteria for selecting future
OSS student development projects.

III. UTILIZING OSS PROJECTS WITHIN THE CLASSROOM

According to Black Duck’s 2015 Future of Open Source
Survey [1], over 65% of the companies surveyed took an
OSS-first approach in developing or using software for daily
business. The 2016 survey revealed that about 65% of the
companies contributed to OSS projects to influence OSS
markets, and 59% of respondents participated in OSS
projects to gain competency [2]. Computer Science
education must not only respond to these trends and needs,
but also integrate learning opportunities that will prepare
students for the contemporary corporate environment. OSS
projects provide such opportunities in the following areas:

 Community activities: OSS projects require
participants to take on diverse roles, such as end-
users, project managers, programmers, and testers.
Thus, all levels of computer science students can
participate in the community activities, which
provide a learning area for students according to
their interests and knowledge levels. As members of
the community, they can learn from others, including
real-world professionals. Students will also learn
how to effectively work and communicate with
others and how to follow community rules and
standards.

 Project management: OSS projects are continuously
evolving. Thus, students can witness and participate
in ongoing activities for forking and merging
projects, release planning, code repository
management, risk management, and quality
management.

 Software reengineering or reverse engineering:
Traditional software engineering courses usually
focus more on forward engineering. On the other
hand, OSS projects require students to understand
existing code, including algorithms, software
architectures, data structures, and documentation.
The code may include good and bad coding
practices, and thus students can learn through
examples. This will also be a practical teaching
resource for software reengineering.

 Communication and development tools: Although
traditional computer science labs provide hands-on
exercises with tools, they are usually limited in terms

of type and scope. Real-world OSS projects can
expose students to diverse and cutting-edge
documentation, builds, version controls, and testing
tools.

A. Adapting Two Types of OSS Projects

Wheaton College is a liberal arts college, and its
undergraduate enrollment is about 2,400. In 2017, the
computer science program at Wheaton offered a software
development course to sophomores and juniors and an OSS
development course to juniors and seniors. Both courses
were offered to computer science majors and minors. The
software development course was required for computer
science majors, and the OSS development course was
offered as an elective, project course. The sizes of the classes
were twelve and three respectively.

Students in each course worked on OSS projects of their
choice. Those in the software development course worked on
projects that were forked from an existing OSS project, and
each of the three students in the OSS development course
participated in a different, active OSS project. This paper
presents preliminary findings based on the student course
evaluations and the instructor’s observations. The course
evaluations included survey questions about their
experiences on OSS projects. Because of the small class
sizes, the instructor was also able to closely observe
students’ project activities and their interactions with the
existing projects.

As mentioned, there were two different types of student
OSS projects. Students either joined active OSS projects or
initiated their own OSS projects by forking existing ones.
The former type provides the various learning opportunities
outlined above, while benefits of the latter type were
identified as follows:

 Students have full control over the projects. They
can execute the projects according to their own pace
and set their own rules and standards for project
activities.

 Students can become involved in various
management activities. First-time OSS participants,
especially student participants, can hardly contribute
to management tasks in a large, active OSS project
due to their lack of reputation, knowledge, and
experience. However, this type of OSS project
allows students to practice the full set of
management tasks.

 Students can better exercise reengineering activities.
This type of OSS project is relatively small, and thus
students can understand the existing code better and
more quickly. Consequently, the quality of the
outputs from refactoring and documenting the code
can be improved.

Despite these benefits, initiating a new OSS project may

not provide the full benefits of joining preexisting OSS
projects because, in a new project, students’ interactions are
limited to themselves. Thus, it is necessary to consider the
pros and cons of both project adaptation types according to
students’ needs and constraints.

96Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

B. Considerations for Using OSS Projects

As previously discussed, one of the challenges in
utilizing OSS projects is identifying appropriate OSS
projects for students. Feedback from our two courses shows
that the following criteria should be considered when
selecting OSS projects:

 Personal interest: Students indicated that a
significant factor motivating them the most was their
personal interest. Students were interested in
particular applications, technologies, systems,
subjects, or programming languages. They preferred
choosing OSS projects freely rather than choosing
ones from a list of pre-selected OSS projects.
Maintaining their interest while working on the
projects was considered one of the keys to having
successful projects.

 Community-related aspects: Project popularity and
status (i.e., active or inactive) should be considered.
These aspects can be measured by considering the
number of developers, weekly downloads, and the
organization of project websites.

 Software product-related aspects: Depending on
course requirements and students’ interests,
programming language, lines of code, platform or
system, development tools, code modularity, and
documentation can be used to screen projects for
students.

We found that prompt and helpful responses from the

OSS project’s existing developers highly encouraged
students to become deeply involved in the project’s
activities. Those students in the OSS development course
started to collaborate with the real-world developers, and
their contributions to the projects were reviewed by the
developers and adapted by the projects. Such collaborative
activities encouraged the students to keep working on the
projects even after the semester ended. Thus, the criteria to
measure community activities should be thoroughly
considered. Among the product-related aspects, code
modularity and documentation are essential factors for
estimating software quality. Yet, it is difficult to
automatically measure modularity and documentation levels.
Students should be guided to carefully examine these two
aspects while investigating potential OSS projects.

Another challenge is the steep learning curve during the
early phase of an OSS project. Students need to handle
development and/or build tools and set up the specific
environment that the development requires. Those tools may
be completely new to students, and the project may not
provide full instructions for building and configuring the
system. Software tools that are frequently involved in the
early phase include IDE, version control systems, build tools,
automatic testing tools, and bug/issue trackers.

For instructors, assessing students’ contributions to the
OSS project is a challenging task as well. When real-world
projects are brought to the classroom, the traditional methods
for evaluating student performance may not work properly.
Instructors then need to utilize information and data from the

project’s version control system and communication tools to
evaluate the students’ performances. At the same time, the
types, scopes, and difficulties of tasks should be considered.
Therefore, developing and presenting a rubric for code
commits, documentation, and communication activities will
be helpful in establishing course expectations.

IV. CONCLUSION

This paper presents the considerations, benefits, and
challenges of adapting real-world OSS projects to software
development courses. The use of OSS projects within the
classroom can be a good supplement to traditional
approaches for teaching software development. Despite the
aforementioned challenges, OSS projects provide various
opportunities for computer science students to explore and
learn new technologies according to their own interests. OSS
projects also allow students to take their knowledge from the
classroom and apply it to real-world experiences.

Student feedback from our courses shows that
participants gained a significant amount of knowledge from
different projects and people. Working on an OSS project
helped them build a comprehensive understanding of
software development, and contributing to real-world
projects was highly rewarding for them.

However, to better utilize real-world OSS projects in the
classroom, the following future work should be done:

 Criteria must be carefully considered to select
appropriate OSS projects according to course
requirements and student interests.

 Instructors should formulate guidelines to help
students cope with technical difficulties involved in
real-world development activities.

 Student performance evaluation criteria and
procedures must be specifically developed for non-
traditional, real-world, interactive activities.

We will keep utilizing OSS projects as supplementary

teaching tools for the software development course as well as
other related courses. Student feedback and data form the
courses will be used for the future work.

As another approach to better exploit OSS projects
within computer science courses, OSS components can be
introduced during the early stages of computer science
studies. This will encourage students to continuously work
on OSS projects according to their interests and knowledge
levels, and contributions to the projects will become a great
portfolio of their software development activities.

REFERENCES

[1] Black Duck, 2015 Future of Open Source Survey Results
[Online]. Availave from
https://info.blackducksoftware.com/web-future-of-open-
source-LP.html, 2018.08.07

[2] Black Duck, Future of Open Source Survey 2016 Results
[Online]. Available from
https://www.brighttalk.com/webcast/13983/199027,
2018.08.07

[3] G. Hislop, et al., “A Multi-institutional Study of Learning via
Student Involvement in Humanitarian Free and Open Source
Software Projects”, Proc. ICER 2015, 2015, pp. 199-206.

97Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

[4] B. R. Krogstie, “Power through Brokering: Open Source
Community Participation in Software Engineering Student
Projects”, Proc. ICSE 2008, 2008, pp. 791-800.

[5] R. Marmorstein, “Open Source Contribution as an Effective
Software Engineering Class Project”, Proc. ITICSE 2011,
2011, pp. 268-272.

[6] R. McCartney, S. Gokhale, and T. Smith, “Evaluating an
Early Software Engineering Course with Projects and Tools

from Open Source Software”, Proc. ICER 2012, 2012, pp. 5-
10.

[7] T. Smith, R. McCartney, S. Gokhale, and L. Kaczmarczyk,
“Selecting Open Source Software Projects to Teach Software
Engineering”, Proc. SIGCSE 2014, 2014, pp. 397-402.

[8] E. Stroulia, K. Bauer, M. Craig, K. Reid, and G. Wilson,
“Teaching Distributed Software Engineering with UCOSP:
The Undergraduate Capstone Open-Source Project”, Proc.
CTGDSD 2011, 2011, pp. 20-25.

98Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

