
Sentiment-aware Analysis of Mobile Apps User Reviews Regarding Particular Updates

Xiaozhou Li, Zheying Zhang, Kostas Stefanidis

Faculty of Natural Sciences, University of Tampere
Tampere, Finland

Email: xiaozhou.li@uta.fi, zheying.zhang@uta.fi, kostas.stefanidis@uta.fi

Abstract—The contemporary online mobile application (app)
market enables users to review the apps they use. These reviews
are important assets reflecting the users needs and complaints
regarding the particular apps, covering multiple aspects of the
mobile apps quality. By investigating the content of such reviews,
the app developers can acquire useful information guiding the
future maintenance and evolution work. Furthermore, together
with the updates of an app, the users reviews deliver particular
complaints and praises regarding the particular updates. Despite
that previous studies on opinion mining in mobile app reviews
have provided various approaches in eliciting such critical in-
formation, limited studies focus on eliciting the user opinions
regarding a particular mobile app update, or the impact the
update imposes. Hence, this study proposes a systematic analysis
method to elicit user opinions regarding a particular mobile app
update by detecting the similar topics before and after this update,
and validates this method via an experiment on an existing mobile
app.

Keywords–Mobile app; review; sentiment analysis; topic model-
ing; topic similarity

I. INTRODUCTION

The increasing number of smart phone users has led to
a continuous increase in the number of mobile apps and
their overall usage. Users browse and download apps via
different digital distribution platforms (e.g., Apple app store,
and Google Play). These platforms also provide an important
channel enabling the users to provide feedback to the app. The
ratings and comments given by the users at a particular time
reflect their opinions regarding the overall app and the specific
version of that app. While the app developers, continuously
or sporadically, update their apps, the retrieved user reviews
reflect not only their overall opinion changes throughout the
evolution time but also their specific complaints and praises re-
garding the specific app version [1]. Such specific complaints,
regarding various aspects [2], shall enable the developers to be
aware of the issues and tackle them accordingly.

Existing studies have proposed different approaches to
identifying change requests from user reviews for mobile app
maintenance. With various opinion mining techniques, such
as Natural Language Processing (NLP), Sentiment Analysis
(SA) and supervised learning, many studies have been con-
ducted regarding the classification of reviews towards different
issue perspectives [3] [4]. Other perspectives, such as user
preferences, app evaluation, user satisfaction, relation between
download and rating, feature extraction, review prioritization
and so on, have also been widely studied [5]–[9]. However,
limited studies focus on the use of such methods in opinion
mining on particular updates of a mobile app and the impact
on the app’s updates in the following releases, despite the

importance of such information. It is unclear how users’
attitude towards a particular issue changes when new updates
are released and how the reviews have impacts on app’s
maintenance and evolution.

In this paper, we investigate the correlation between users’
positive and negative reviews before and after an app’s release.
We consider two dimensions: time and sentiment. Specifically,
we divide user reviews based on major updates, and distinguish
them between those precede and follow the particular updates.
Each group of reviews are further divided into positive and
negative ones using sentiment analysis. We devise an approach
to measuring the similarity of each group of reviews. The
measurement reveals the similarity and changes between dif-
ferent groups of reviews and helps to gain insight into how
to detect users’ opinion changes regarding a particular update.
Furthermore, detecting the users’ update-specific opinions shall
also help the developers be aware of the users opinion on a
particular release and guides them proactively to address the
most important issues early.

The remainder of this paper is organized as follows. Section
II introduces the method with details. Section III presents a
case study using this method. Section IV introduces the related
works when Section V concludes the paper.

II. METHOD DESCRIPTION

In this section, we introduce our method with the main goal
to detect the correlation between the content of app reviews
before and after the app updates done by the app company
through the app maintenance lifecycle. Such correlation shall
show the degree in which the users comments are reflected
in the sequence of updates and such updates are accepted
by the users. The factors that influence and reflect such
correlation include the main topics of the reviews between each
two updates, the sentiment of those reviews, and the topics
similarities before and after each update. Next, we illustrate
how to detect the correlation via investigating these factors.
Accordingly, Subsection A introduces the overall procedure
of the method and brings forth the hypotheses it aims to
verify. Subsection B and C introduce respectively how to
analyze the sentiment and topics of user reviews. Subsection D
introduces how to calculate the similarity between topics, when
Subsection E presents how to identify the matching similar
topics between review sets.

A. Preliminaries
Let R be a collection of user reviews for a particular mobile

app A, covering a particular time period. Therein, each review
ri ∈ R is associated with a particular time point, at which

99Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

the review ri is published. Let also U be the set of updates
released by the app developers within the time period with
each update ui is released at a particular time point as well.
Therefore, we consider each review ri, which is published after
the release time of update ui and before that of the next update
ui+1, as a review regarding the update ui. Hence, for the n
updates {ui|i ∈ N, k ≤ i < k + n} where k ≥ 1 and n > 0
for the app A within a time period, the review set R can be
divided into n + 1 subset where each Ri ⊆ R is the set of
reviews commenting on the according ui. R0 is the review set
correlated with the last update before u1 or the first version
of A if u1 is the first update of A. For each review rj ∈
Ri, a sentiment score shall be calculated and assigned to rj ,
whose the sentiment is either positive or negative. In this
way, by identifying the sentiment of each individual review
in Ri, we can divide Ri positive review set R+

i and negative
review set R+

i , where R+
i ∪R

−
i = Ri and R+

i ∩R
−
i = ∅ with

an acceptable accuracy.
We further investigate the main topics for each of the pos-

itive and negative review sentence sets. We assign T+
i and T−i

as the topic set for the positive and negative reviews. Therefore,
we investigate the merits and issues of a particular update ui

by comparing the similarities and changes between T+
i−1, T−i−1,

T+
i , and T−i . Specifically, the following hypotheses shall be

verified.

• H1. The topic similarities between T+
i−1 and T+

i reflect
the merits regarding the app A in general.
• H2. The topic similarities between T+

i−1 and T−i reflect
the uncomfortable changes in the update ui.
• H3. The topic similarities between T−i−1 and T+

i reflect
the improvement in the update ui.
• H4. The topic similarities between T−i−1 and T−i reflect

the remaining issues regarding the app A.

Figure 1. Relationship between hypotheses and updates.

Thus, the results obtained from these hypotheses for up-
dating ui provide the following information: 1) the merits and
issues for the app A in general, 2) the merit and issues specific
to the update ui, and 3) the improvements and drawbacks of ui

compared with ui−1. The merits and issues for app A and those
for each ui ∈ U shall be recorded as the evolution status of app
A throughout period T , which can be used as the reference to

guide planning the following updates. Figure 1 visually depicts
the focus of our hypotheses for updating ui.

B. Sentiment Classification
The aim of sentiment classification in this method is to

classify each review set Ri into two subsets, i.e., R+
i and R−i .

Herein, R+
i denotes the set of positive reviews from Ri, and

R−i denotes the set of negative reviews. Therefore, each rj in
Ri shall be determined whether it is positive or negative.

To do so, we assign a sentiment score to each review
by exploiting a robust tool for sentiment strength detection
on social web data [10]. As each rj can be seen as a list
of words Wj , we first select a lexicon that will determine
the sentiment score of each word wz in Wj . The lexicon for
sentiment analysis is a list of words used in English language,
each of which is assigned with a sentiment value in terms of its
sentiment valence (intensity) and polarity (positive/negative).
To determine the sentiment of words, we assign a rational value
within a range to a word. For example, if the word “okay” has
a positive valence value of 0.9, the word “good” must have
a higher positive value, e.g., 1.9, and the word “great” has
even higher value, e.g., 3.1. Furthermore, the lexicon set shall
include social media terms, such as Western-style emoticons
(e.g., :-)), sentiment-related acronyms and initialisms (e.g.,
LOL, WTF), and commonly used slang with sentiment value
(e.g., nah, meh).

Figure 2. Algorithm for Sentiment Classification

With the well-established lexicon, and a selected set of
proper grammatical and syntactical heuristics, we shall then
be able to determine the overall sentiment score of a review.
Namely, the sentiment score of a review rj is equal to Sj ,
where Sj ∈ (−1, 1). The grammatical and syntactical heuris-
tics are seen as the cues to change the sentiment of word sets.
Therein, punctuation, capitalization, degree modifier, and con-
trastive conjunctions are all taken into account. For example,
the sentiment of “The book is EXTREMELY AWESOME!!!”
is stronger than “The book is extremely awesome”, which is

100Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

stronger than “The book is very good.”. With both the lexicon
value for each word of the review, and the calculation based on
the grammatical and syntactical heuristics, we can then assign
unique sentiment values to each review. That is, each review
rj is classified into positive, neutral or negative, as following:

rj is

{ positive, if 0 < Sj < 1,
neutral, if Sj = 0,
negative, if − 1 < Sj < 0.

Overall, each review set Ri is divided into R+
i , R0

i , and
R−i , denoting the positive, neutral and negative review sets. To
further investigate the information in R0

i , after experimentally
observing that typically includes a big number of reviews,
we classify it into positive and negative using the Naive
Bayes Classifier with the training data from R+

i and R−i . This
way, R0

i is classified into R0+
i and R0−

i , which in turn, are
added to R+

i and R−i , respectively. The reason to perform
supervised classification after sentiment analysis instead of
directly applying classification is twofold. Firstly, manually
creating training data is time-consuming and less accurate than
using existing sentiment analysis methods. Secondly, training
the sentiment classified reviews will provide domain specific
and reliable results. The process is described in Figure 2.

C. Topic Analysis

After dividing the review sets Ri and Ri−1, i.e., the review
sets related to update ui, into R+

i , R−i , R+
i−1 and R−i−1 based

on the sentiment classification method, we elicit the main
topics from each of the classified review sets by exploiting
the Latent Dirichlet Allocation (LDA) method [11]. First, we
consider each review sentence rj in a particular set of reviews
as a list of words Wj , where the sequence of the words is
not recorded. The number of topics in this review set is set
as t. Presumably, there is a distribution for the probability of
a particular word appears in a particular topic, when there is
also one for that of a particular review in a topic. We build
the set of Review − Topic, where each word of each review
is assigned with a topic out of the t topics. As preparation, we
define Review−topic−numbers, Topic−words−numbers,
and Topic− numbers denoting the number of occurrence of
each topic in each review, the number of occurrence of each
word in each topic, and the number of words in each topic,
respectively. For example, Review− topic− numbers(rj , k)
denotes the number of occurrences of topic k in review rj .
Then, we randomly assign each word wz of each review rj
with a topic tk. Accordingly, the Review− topic−numbers,
Topic − words − numbers, and Topic − numbers will
be updated as the referencing weight of the distribution the
words for each topic. Then iteratively, for each word, we
assign a new topic based on such weight of distribution
and adjust the weight with the Review − topic − numbers,
Topic − words − numbers, and Topic − numbers for the
next iteration. After a given number of iteration, t topics will
be determined by the Topic − words − numbers, which is
the number of occurrences of the words in each topic. Each
tk is then denoted by the most common keywords used in this
topic. Then, the set of topics T are returned as result. For the
review sets R+

i , R−i , R+
i−1 and R−i−1, we will have the topics

sets T+
i , T−i , T+

i−1 and T−i−1 accordingly.

D. Calculating Topics Similarities
Based on the topic sets T+

i , T−i , T+
i−1 and T−i−1 elicited

from the review sets R+
i , R−i , R+

i−1 and R−i−1, we further
analyze the similarities between the individual topics between
each pair of the topic sets. As the result from the previous
topic analysis, each topic set T encompasses k topics, each of
which is represented by the list of the most possible appearing
keywords. Thus, each topic set T with k topics each of which
is represented by w keywords, can be denoted as:

T =

[
kw1,1 kw1,2 ... kw1,w

...
kwk,1 kwk,2 ... kwk,w

]
with each ti ∈ T can be denoted as [kwi,1, kwi,2, ...kwi,k]. To
compare the similarity between two topic sets, each consisting
of t topics, we compare all pairs of topics. Due to the fact that
each topic is represented as a set of keywords, the similarity
of two topics shall be denoted by the common keywords of
these topics. Hence, an easy way for calculating the similarity
between any two topics ti and tj is by using the Jaccard
similarity. This similarity function reflects the percentage of
the common keywords of the two sets in the whole keywords
set of the two: J(ti, tj) =

|ti∩tj |
|ti∪tj | .

However, by using the Jaccard Similarity, we consider two
given topics are similar only when they contain a particular
number of common keywords, regardless of the probability
of them. The meaning of each topic ti ∈ T , denoted as
[kwi,1, kwi,2, ...kwi,k], shall be more likely reflected by the
high-probability keywords of ti. Furthermore, the subset of
only low-probability keywords may reflect different meanings.
For example, a topic is denoted as {’update’: 0.143, ’problem’:
0.096, ’fix’: 0.064, ’install’: 0.03, ’uninstall’: 0.029, ’open’:
0.027, ’stop’: 0.025, ’plea’: 0.025, ’get’: 0.022, ’reinstall’:
0.019, ’bug’: 0.019, ’start’: 0.019, ’need’: 0.014, ’applica-
tion’: 0.014, ’issue’: 0.011, ’battery’: 0.011, ’help’: 0.01,
’face’: 0.009, ’frustrate’: 0.009, ’day’: 0.008}. From the high-
probability keywords of this topic, we can summarize that the
topic is regarding the problems of updating, which requires
being fixed. However, the low-probability keywords hardly
reflect the topic, e.g., a keyword subset, {’reinstall’, ’bug’,
’start’, ’need’, ’application’, ’issue’, ’battery’}, reflects a very
different issue regarding bugs and batteries.

Hence, when comparing the similarity of two given top-
ics, the probability of the common keywords shall be taken
into account. Considering that Jaccard coefficient is the nor-
malized inner product [12], we herein adopt the similarity
measure method incorporating also the inner product, the
Kumar-Hassebrook (KH) similarity [13]. Provided between
topic ti and tj , the c common keywords are denoted as
[kwij,1, kwij,2, ...kwij,c], with the according probability list
in ti and tj is [pi,1, pi,2, ...pi,c] and [pj,1, pj,2, ...pj,c]. The
similarity of the two given topics are calculated as follows.

KH(ti, tj) =

∑c
x=1 pi,x · pj,x∑k

x=1 p
2
i,x +

∑k
x=1 p

2
j,x −

∑c
x=1 pi,x · pj,x

The probability for each keyword of any topic belongs
to (0,1). Hence, for this formula, when ti and tj contain
more common keywords, the numerator increases monotoni-
cally, and the denominator decreases monotonically. Therefore,
KH(ti, tj) increases when ti and tj have more keywords in

101Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

common. In addition, when the probability of the common
keywords increases,

∑c
x=1 pi,x · pj,x increases. Because the

denominator is greater than the numerator, and both are greater
than 0, KH(ti, tj) increases when the probabilities of the
common keywords of ti and tj increase.

In this way, for two given topics ti and tj , when each
keyword of these two topics is assigned the average value of
the probability value set, then KH(ti, tj) = J(ti, tj). Consid-
ering the monotonical increasing of the KH Similarity formula,
it means that for ti and tj , when KH(ti, tj) <J(ti, tj),
the common keywords of these two topics hardly reflect the
meaning of them. For example, two topics, denoted as the
following set of keywords with the according probability of
each keywords, are listed in Table I.

TABLE I. EXAMPLE TOPICS WITH KEYWORDS AND PROBABILITY

Topic 1 {’problem’: 0.145, ’fix’: 0.081, ’download’: 0.051, ’please’:
0.032, ’use’: 0.025, ’reason’: 0.021, ’service’: 0.02, ’user’:
0.015, ’issue’: 0.015, ’data’: 0.014}

Topic 2 {’version’: 0.197, ’please’: 0.121, ’go’: 0.069, ’use’: 0.043,
’option’: 0.036, ’one’: 0.028, ’lot’: 0.027, ’revert’: 0.021,
’way’: 0.018, ’download’: 0.018}

The Jaccard Similarity of these two topic is 0.176 when
the KH Similarity is 0.064. We can observe that the common
keywords, {’download’, ’please’, ’use’}, are of low probability
in Topic 1 and keywords {’please’, ’use’} in Topic 2, while
neither topic is reflected by the common keywords. Topic 1
can be seen regarding the requests of fixing problems/bugs
when Topic 2 is more related to keyword ’version’ instead of
’download’. Thus, these two given topics cannot be considered
as similar despite the high Jaccard Similarity.

E. Identifying Matching Topics

After computing similarities between pairs of review topics
with KH similarity, we shall identify which are the matching
topics when cross-comparing the topics of the topics sets T+

i ,
T−i , T+

i−1 and T−i−1. Hence, to identify the matching topics
between two review topic sets Ta and Tb, the aim is to identify
all the topic pairs (tai, tbj), tai ∈ Ta and tbj ∈ Tb, that have
the high similarity. Starting from the pair of topics with highest
similarity values,

We firstly use the Jaccard Similarity value of two particular
topics as the threshold for their KH similarity. According to the
formula of KH similarity given previous, we set the probability
of each keyword in each topic equal to the average. Then

KH(tai, tbj) =

∑c
x=1 p

2∑k
x=1 p

2 +
∑k

x=1 p
2 −

∑c
x=1 p

2

=
c

k + k − c
= J(tai, tbj)

Therefore, we select the topic pairs, whose KH similarity
value greater than their Jaccard similarity value, as similar
topics. Furthermore, from the topic pairs with the highest
KH similarity value, we select the top n pairs of topics
to investigate the changes and similarities of users opinion
regarding the app.

Figure 3. Algorithm for Matching Topic Identification

The aim of the algorithm (shown in Figure 3) is to select
the similar topic pairs with the highest similarity value. When
a particular topic pair is selected, the other pairs, which either
of these two selected topics is also pairing with and have also
high similarity, will be considered as references to interpret
the users opinions. Each particular topic generated by the LDA
model contains a number of perspectives that can be interpreted
by the keywords. Thus, it is possible that one particular topic
have the similar similarity value to multiple topics, when they
are similar regarding different perspectives which represented
by their different common keywords.

TABLE II. EXAMPLE TOPICS WITH KEYWORDS AND PROBABILITY

Topic 1 {’time’: 0.12, ’friend’: 0.091, ’talk’: 0.081, ’way’: 0.069,
’see’: 0.048, ’people’: 0.045, ’communication’: 0.038,
’want’: 0.03, ’face’: 0.023, ’world’: 0.02 }

Topic 2 {’friend’: 0.111, ’bring’: 0.07, ’connect’: 0.068, ’talk’: 0.06,
’keep’: 0.059, ’family’: 0.054, ’application’: 0.037, ’way’:
0.021, ’touch’: 0.017, ’contact’: 0.016 }

Topic 3 {’see’: 0.077, ’use’: 0.056, ’people’: 0.046, ’want’: 0.044,
’contact’: 0.034, ’thing’: 0.031, ’year’: 0.027, ’find’: 0.023,
’know’: 0.023, ’number’: 0.019 }

For example, in Table II Topic 1 has the same Jaccard sim-
ilarity value to both Topic 2 and 3. The two pairs of common
keywords are {’friend’, ’talk’, ’way’} and {’people’, ’see’,
’want’}. Their KH similarity values are different but both high
(0.276 and 0.137). From Topic 1, we could summarize that it
is regarding using the app enabling people to communicate
with friends any time they want and can see their faces as
well. Despite it is considered similar to both Topic 2 and 3,
Topic 2 focuses on the perspective of enabling communication
between families and friends, when Topic 3 focus more on
the perspective of contacting people with phone numbers and
seeing them. Thus, by identifying both similar topic pairs, we
shall have more thorough understanding of the users’ opinions
regarding the app.

III. CASE STUDY

A. Preprocessing
Before starting the experiment with the proposed method,

preprocessing on the raw review data is required. The whole

102Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

preprocessing work can be divided into three individual steps
as follows.
Filtering non-English reviews. The raw review data may
contain a number of review items that are not written in
English, which needs to be filtered out. Also, similar to social
media text, user reviews usually contain many commonly
used slurs that are not regular English vocabularies. Our
goal is to not filter out these words, as they likely contain
sentiment related information, without which shall influence
our experiment results. Overall, we screen out the non-English
review sentences using Langdetect [14], a convenient language
detecting package for Python language. Compared with PyEn-
chant [15], another language detecting package, Langdetect
enables determining the language of text on sentence level. It
shall remain the review data containing such English slurs.
Focusing on sentence-level granularity. Due to the fact that
each user review can contain more than one sentence, a multi-
sentence review can contain multiple meanings, one for each
sentence. Thus, we divide each review from a review set Ri

into individual sentences. Hereafter, we use rj to denote a
review sentence in Ri. We use the sentence tokenizer feature
from the NLTK [16] python package, with a further checking
on the legitimacy of the sentences.
Filtering stop-words and lemmatization. In addition, the
collected English review sentences are also transformed into
lower cases, screened with stop-words, and lemmatized before
topic modeling. In order to obtain more meaningful topic
modeling results, we add the words that connect to only
general information but have significant appearing rate in the
reviews to the list of stop words. For example, the name
of the app and the word app are of neither help towards
topic modeling nor towards sentiment analysis. In addition,
considering the fact that the sentiment of each review item is
identified, we eliminate all adjectives from the obtained tokens
and select only nouns and verbs as tokens via the pos tag
function of NLTK.
Sentiment Classification with VADER. To perform sentiment
analysis on the collected app reviews, we select the Valence
Aware Dictionary for sEntiment Reasoning (VADER) approach
[10]. Compared with other sentiment analysis tools, VADER
has a number of advantages regarding this study. Firstly, the
classification accuracy of VADER on sentiment towards posi-
tive, negative and neutral classes is even higher than individual
human raters in social media domain. In addition, its overall
classification accuracies on product reviews from Amazon,
movie reviews, and editorials from NYTimes also outperform
other sentiment analysis approaches, such as SenticNet [17],
SentiWordNet [18], Affective Norms for English Words [19],
and Word-Sense Disambiguation [20], and run closely with
the accuracy of individual human. On the other hand, VADER
approach is integrated in the NLTK package, which can be
easily imported and performed using Python.

B. Dataset
Our study relies on real data. In particular, we focus on

reviews submitted for 1-year period of Skype on the Android
platform. We collected 153,128 user reviews submitted from
1.9.2016 to 31.8.2017. The reviews are tokenized into 234,064
individual sentences. After filtering the non-English review
sentences, the number is reduced to 174,559.

We investigate the merits and issues concerning the major
update of Skype released on Android platform on 1.6.2017

(ui = version-1.6.2017). Within this period from 1.9.2016 to
31.8.2017, 76 updates were released. On average, the app has
been updated nearly every five days. By observing the content
of each update from the given information of Google Play,
we find that some consecutive updates contain exact same
content based on their descriptions. Therefore, we consider
the first update of a set of updates which contain same
descriptions as a major update, when the rest of the update set
as minor update. Amongst the major updates of Skype during
this period, the update ui provide significant changes in UI
design and user experiences. By classifying all selected review
sentences into positive and negative using sentiment analysis
and supervised classification with Naive Bayes Classifier, the
number of review sentences in each segment is listed in Table
III. Accordingly, the review sets R+

i−1, R−i−1, R+
i , and R−i ,

for this study, consists of 65580, 29970, 36703, and 42306
reviews.

TABLE III. POSITIVE AND NEGATIVE REVIEWS AROUND A
PARTICULAR APP UPDATE

Positive reviews Negative reviews Total
Before 1.6.2017 65,580 29,970 95,550
After 1.6.2017 36,703 42,306 79,009

Total 102,283 72,276 174,559

Overall, the total number of positive reviews around the
particular update is bigger than the number of negative reviews.
Meanwhile, the monthly review number increased sharply after
this particular major update. Opposite to the situation before
the update, we observe that after the update more negative
reviews are given by the users than the positive ones, meaning
that many users are not satisfied with this particular update or
the app overall.

TABLE IV. NUMBER OF REVIEWS PER TOPIC

t+
(i−1)1

t+
(i−1)2

t+
(i−1)3

t+
(i−1)4

t+
(i−1)5

13627 3104 3168 6283 4725
t−
(i−1)1

t−
(i−1)2

t−
(i−1)3

t−
(i−1)4

t−
(i−1)5

8692 6016 4122 6105 9738

t+i1 t+i2 t+i3 t+i4 t+i5
3519 2892 4204 1895 3433
t−i1 t−i2 t−i3 t−i4 t−i5

2409 2700 2794 2408 3716

t+
(i−1)6

t+
(i−1)7

t+
(i−1)8

t+
(i−1)9

t+
(i−1)10

7768 2796 3134 3186 3391
t−
(i−1)6

t−
(i−1)7

t−
(i−1)8

t−
(i−1)9

t−
(i−1)10

4810 3399 3244 2798 2177

t+i6 t+i7 t+i8 t+i9 t+i10
4818 4132 4463 3237 4635
t−i6 t−i7 t−i8 t−i9 t−i10

3139 3893 3229 6252 4508

After sentiment analysis and classification, we perform the
LDA topic analysis to identify the topics of the review set
R+

i−1, R−i−1, R+
i , and R−i , in order to investigate the users

opinions concerning the update and further verify the previ-
ously proposed hypothesis. To train the LDA topic models, we
need to set the number of topics k. Based on an experimentally
study regarding the quality of the topics produced for different
k values, and select k = 10.

Overall, for the collected 174,559 review sentences on
Skype, we perform an LDA topic analysis on the review set
R+

i−1, R−i−1, R+
i , and R−i . For each of the 4 sets of review data,

103Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

we use the Gensim topic modeling toolbox to train the 10-topic
LDA models. For the 4 LDA models, each individual topic
is represented by 20 keywords. Then, we assign each review
sentence in the LDA models to the topic to which it has the
highest probability to belong. The numbers of reviews for each
topic of the 4 data sets appear in Table IV (t+in represents the
nth topic of R+

i). In general, reviews are divided into topics
smoothly and, in most cases, each topic consists of around
4000 review sentences.

C. Topics Similarity Analysis
With the 40 identified topics, each of which is represented

by 20 keywords, we compare the similarity between each topic
from the 20 topics before the update and each one from the
20 topics after the update, which provides 400 topics pairs.
The Jaccard similarity values for those 400 pairs range from 0
to 0.429 (i.e., 0 - 12 common keywords between two topics).
Meanwhile, the KH similarity values range from 0 to 0.676.
Therein, we identify the potential similar topics from the high-
est KH similarity value and eliminate the results where the KH
similarity value is lower than the according Jaccard similarity
value. In this way, we guarantee the common keywords of
each identified topic pairs contain the overall probability value
greater than average. We select the seven topic pairs with the
highest KH similarity values for each comparison set. For
each topic pair, we analyze the similarity of the two topics
by observing their common keywords. Furthermore, from the
unique keywords of each topic from one particular topic pair,
we could also see the topic changes. The seven topic pairs
with the highest KH similarity value are depicted in Table V.

TABLE V. PAIRS OF SIMILAR TOPICS

T+
i−1 - T+

i (t+
(i−1)8

, t+i5) (t+
(i−1)6

, t+i6) (t+
(i−1)7

, t+i9) (t+
(i−1)6

, t+i1)
(t+

(i−1)6
, t+i5) (t+

(i−1)1
, t+i7) (t+

(i−1)8
, t+i3)

T+
i−1 - T−

i (t+
(i−1)6

, t−i10) (t+
(i−1)6

, t−i5) (t+
(i−1)8

, t−i7) (t+
(i−1)5

,
t−i6) (t+

(i−1)7
, t−i8) (t+

(i−1)8
, t+i10) (t+

(i−1)2
, t+i3)

T−
i−1 - T+

i (t−
(i−1)3

, t+i6) (t−
(i−1)7

, t+i3) (t−
(i−1)5

, t+i1) (t−
(i−1)3

, t+i5)
(t−

(i−1)10
, t+i8) (t+

(i−1)1
, t+i4) (t+

(i−1)6
, t+i9)

T−
i−1 - T−

i (t−
(i−1)3

, t−i10) (t−
(i−1)10

, t−i3) (t−
(i−1)6

, t−i8) (t−
(i−1)7

,
t−i9) (t+

(i−1)7
, t+i6) (t+

(i−1)8
, t+i6) (t−

(i−1)8
, t−i9)

By further analyzing the common keywords in the obtained
similar topic pairs, we verify the hypothesis H1 - H4 as
follows.
H1. The topic similarities between T+

i−1 and T+
i reflect

the merits regarding the app A in general. The common
keywords of the seven topics pairs with the highest KH
similarity value appear in Table VI. For example, the common
keywords of topics (t+(i−1)8, t+i5) reflects the acknowledgement
from the users before and after the update. Because, the
common keywords ’work’ and ’call’ indicate that the core
function of the app works properly. The common keywords
of topics (t+(i−1)6, t+i6) reflect the users acknowledge also the
benefits brought by the app, e.g., enabling people to chat
in groups, with video or by calling, so that people can see
and hear from their friends. On the other hand, topic pair
(t+(i−1)7, t+i9) contains the common keywords that reflect the
users needs in adding features and fixing bugs. Considering
the overall positive sentiment of the review sets, it is also
possible the users reflect their satisfaction towards the work
done by the developers regarding such matters. Topic pair

(t+(i−1)6, t+i5) reflects the users satisfied with the video and
audio quality of the app. As topic t+i5 is also similar to t+(i−1)8,
both topic pairs reflect similar information. Topic pair (t+(i−1)1,
t+i7) reflects the contribution of the app to the society in a bigger
picture, regarding the communication between friends and
family and helping people keep in touch. Topic pair (t+(i−1)6,
t+i1) contain few common keywords; however, as t+(i−1)6 is also
similar to topic t+i6 and t+i5, all these topic pairs reflect similar
information.

TABLE VI. COMMON KEYOWRDS IN POSITIVE-POSITIVE REVIEWS

Topic Pairs Common Keywords
(t+

(i−1)8
, t+i5) [’call’, ’phone’, ’sound’, ’work’]

(t+
(i−1)6

, t+i6) [’call’, ’chat’, ’friend’, ’group’, ’hear’, ’make’, ’people’,
’person’, ’phone’, ’see’, ’video’]

(t+
(i−1)7

, t+i9) [’add’, ’bug’, ’everything’, ’fix’, ’hope’, ’issue’, ’make’,
’need’, ’please’]

(t+
(i−1)6

, t+i1) [’people’, ’use’, ’year’]

(t+
(i−1)6

, t+i5) [’call’, ’make’, ’phone’, ’quality’, ’video’, ’voice’]

(t+
(i−1)1

, t+i7) [’application’, ’communicate’, ’connect’, ’family’, ’friend’,
’get’, ’help’, ’touch’, ’way’]

(t+
(i−1)8

, t+i3) [’connection’, ’internet’, ’keep’, ’nothing’, ’work’]

H2. The topic similarities between T+
i−1 and T−i reflect

the uncomfortable changes in the update ui. The common
keywords of the selected similar topic pairs are shown in Table
VII. The common keywords of topics (t+(i−1)6, t−i10) reflects
negative user reviews regarding the apps core feature exist,
despite the positive feedback before this update. According to
t−i10, the aspects which users complain about include calling
in general, the user interface, video and sound quality, and
connections. Meanwhile, t−i10 is also considered similar to
t+(i−1)8. Topic t+(i−1)8 indicates that before the update many
users like the internet connection of this app with wifi on
computer and tablet. Topic pair (t+(i−1)5, t−i6) reflects that issues
concerning the user accounts, including logging in, signing up,
passwords emerge after the update, where the users complain
quite often. Furthermore, the topic pair (t+(i−1)7, t−i8) indicates
that many users complain about the developers fixing problems
negatively, despite many others reflect the issue with positive
sentiment (see topic pair (t+(i−1)7, t+i9)).

TABLE VII. COMMON KEYOWRDS IN POSITIVE-NEGATIVE
REVIEWS

Topic Pairs Common Keywords
(t+

(i−1)6
, t−i10) [’call’, ’connect’, ’hear’, ’make’, ’person’, ’phone’, ’qual-

ity’, ’video’, ’voice’]
(t+

(i−1)6
, t−i5) [’make’, ’use’, ’year’]

(t+
(i−1)8

, t−i7) [’need’, ’work’]

(t+
(i−1)5

, t−i6) [’account’, ’go’, ’keep’, ’let’, ’log’, ’password’, ’sign’, ’try’,
’win’]

(t+
(i−1)7

, t−i8) [’fix’, ’please’, ’problem’, ’thing’]

(t+
(i−1)8

, t−i10) [’call’, ’connection’, ’drop’, ’phone’, ’sound’, ’work’]

(t+
(i−1)2

, t−i3) [’conversation’, ’get’, ’take’, ’time’, ’type’]

H3. The topic similarities between T−i−1 and T+
i reflect the

improvement in the update ui. The common keywords of
the selected similar topic pairs are shown in Table VIII. The
common keywords of topics (t−(i−1)3, t+i6) reflect that before the
update, many users have complaint regarding using the app for
phone calls in general. After the update, a number of positive

104Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

reviews towards this matter appear. Considering the topic pair
(t−(i−1)3, t+i5), users also switch the attitude regarding the video
and sound quality to positive after the update. Topic pair
(t−(i−1)7, t+i3) reflects the general positive acknowledgement of
the update. Topic pair (t−(i−1)10, t+i8) reflects the users attitude
towards the message notification feature has changed into
positive. (t−(i−1)1, t+i4) reflects the general positive feedback
regarding the new version while (t−(i−1)6, t+i9) reflects the
positive feedback on having some bugs fixed in this version.

TABLE VIII. COMMON KEYOWRDS IN NEGATIVE-POSITIVE
REVIEWS

Topic Pairs Common Keywords
(t−

(i−1)3
, t+i6) [’call’, ’get’, ’hear’, ’make’, ’people’, ’person’, ’phone’,

’see’, ’talk’, ’time’, ’video’]
(t−

(i−1)7
, t+i3) [’get’, ’update’, ’win’, ’work’]

(t−
(i−1)5

, t+i1) [’get’, ’try’, ’use’, ’year’]

(t−
(i−1)3

, t+i5) [’call’, ’make’, ’phone’, ’quality’, ’sound’, ’time’, ’video’,
’voice’]

(t−
(i−1)10

, t+i8) [’message’, ’notification’, ’open’, ’see’, ’send’, ’show’,
’take’]

(t−
(i−1)1

, t+i4) [’version’]

(t−
(i−1)6

, t+i9) [’bug’, ’fix’, ’get’, ’lot’, ’please’]

H4. The topic similarities between T−i−1 and T−i reflect
the remaining issues regarding the app A. The common
keywords of the selected similar topic pairs are shown in Table
IX. For example, the common keywords of topics (t−(i−1)3,
t−i10) reflects the users complaint regarding the general quality
of the app remains after the update, specifically concerning
connections, calling, audio and video quality, etc. On the
other hand, topic pair (t−(i−1)10, t−i3) reflects the problem with
sending and receiving messages with notifications still exist.
Furthermore, crashing is also a persisting issue that many users
complained about based on topic pair (t−(i−1)6, t−i8). Topic
pair (t−(i−1)7, t−i9), despite having only one common keyword,
reflects the users general negativity towards the update. Topic
pair (t−(i−1)7, t−i6) and (t−(i−1)8, t−i6) reflect the issues regarding
logging in and signing up with Microsoft account. Topic pair
(t−(i−1)8, t−i9) reflects the issues regarding user contact list when
specially t−i9 reflects the users’ complaints regarding contact
list syncing and status.

TABLE IX. COMMON KEYOWRDS IN NEGATIVE-NEGATIVE
REVIEWS.

Topic Pairs Common Keywords
(t−

(i−1)3
, t−i10) [’call’, ’connect’, ’drop’, ’hear’, ’make’, ’person’, ’phone’,

’quality’, ’sound’, ’time’, ’video’, ’voice’]
(t−

(i−1)10
, t−i3) [’get’, ’message’, ’notification’, ’open’, ’see’, ’send’, ’show’,

’take’, ’time’]
(t−

(i−1)6
, t−i8) [’crash’, ’fix’, ’give’, ’keep’, ’please’, ’problem’, ’star’,

’think’, ’time’]
(t−

(i−1)7
, t−i9) [’update’]

(t−
(i−1)7

, t−i6) [’let’, ’login’, ’microsoft’, ’time’, ’try’, ’turn’, ’update’,
’win’]

(t−
(i−1)8

, t−i6) [’account’, ’keep’, ’make’, ’sign’]

(t−
(i−1)8

, t−i9) [’add’, ’contact’, ’list’, ’sync’]

Conclusively, we could summarize the users’ opinion
before and after the particular update (version 1.6.2017) as
follows:

The merits in general:

1) (t+(i−1)8, t+i5): calling feature works.
2) (t+(i−1)6, t+i6), (t+(i−1)1, t+i7): people can chat in group with

video and calls, connecting with family and friends.
3) (t+(i−1)7, t+i9): added features and bugs fixed.
4) (t+(i−1)6, t+i5): the video and sound quality.

The uncomfortable changes:
1) (t+(i−1)6, t−i10): user interface, connection, and calling

quality in general.
2) (t+(i−1)5, t−i6): the user accounts, including logging in,

signing up, passwords.
3) (t+(i−1)7, t−i8): bugs fixes.

The improvement:
1) (t−(i−1)7, t+i3): update in general.
2) (t−(i−1)10, t+i8): message notification.
3) (t−(i−1)3, t+i6), ((t−(i−1)3, t+i5): calling in general, video and

sound quality.

The remaining issues:
1) (t−(i−1)3, t−i10): update in general.
2) (t−(i−1)10, t−i3): sending and receiving messages with no-

tifications.
3) (t−(i−1)6, t−i8): crashing.
4) (t−(i−1)7, t−i9): the new version
5) (t−(i−1)7, t−i6), (t−(i−1)8, t−i6): login and signup with Mi-

crosoft accounts.
6) (t−(i−1)8, t−i9): contact list syncing and status update.

Interestingly, these points are verified by the short notes
of Skype developers regarding their updates [21]. Specifically,
the above topics can be associated with the following origi-
nal developers claims: (a) General performance and reliabil-
ity improvements (Version 2017.08.15, Version 2017.08.29:
phone calls, video calls and messaging quality), (b) Improved
sign in - sign back into your account more easily (Version
2017.08.15: ”log in” features, user account related functions),
(c) New controls added to help users manage vibration and
LED notification alerts. (Version 2017.07.05: notification), (d)
Improvements to PSTN call stability (Version 2017.07.05:
connection), (e) Messaging improvements Add content to
chats via the + button and enjoy more room for your messages.
(Version 2017.08.02: messaging), (f) The ability to add or
remove contacts from your profile (Version 2017.08.01), (g)
Activity indicators - see who’s currently active in your Chats
list (Version 2017.08.02: contacts and statuses). Hence, due
to the correlation between the previously mentioned issues
detected using our method and the content of the following
up updates, we can verify the existence of those issues.
However, whether the reason of the according update is the
user reviews is unknown. On the other hand, we can also
detect the disagreement amongst users’ opinions. For example,
a number of users think the calling quality deteriorated after
the update while many others think it was improved ((t+(i−1)6,
t−i10) and (t−(i−1)3, t+i6)). A number of users also think the
update improves the app when other users think it is just
as bad as the previous ((t−(i−1)7, t+i3) and (t−(i−1)3, t−i10)). We
can obtain more details regarding users’ different opinions by
further investigating the keywords-related review texts.

105Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

IV. RELATED WORK

The spontaneous feedback from the users, i.e., the user
reviews, helps effectively the evolution of the target system,
where a key to enable such feedback is to ease the users effort
in composing and uploading it [22]. For the contemporary
mobile apps, the app distribution platforms, e.g., Apple App-
Store, and Google Play, enable such spontaneous reviews of the
users and facilitate the developers in terms of maintaining and
evolving mobile apps [23]. Such feedback and reviews contain
helpful information for developers in terms of identifying
missing features and improving software quality [24]. From
those review information, user requirements can be elicited
continuously and, in a crowd-based fashion [25] [26].

The reviews of the mobile app users reflect a variety of
topics, which majorly cover the perspectives of bug reports,
feature requests, user experiences, solution proposal, informa-
tion seeking and giving, and general ratings [2]–[4].

For such purpose, NLP, SA, and supervised learning are
the common techniques used to classify user reviews [3] [4].
According to recent studies, the combination of NLP and SA
techniques has high accuracy in detecting useful sentences [4].
These techniques are also used in many other studies in terms
of review opinion mining [7] [9] [24].

Many studies have contributed to the user opinion mining
of mobile apps. Fu et al. [5] proposes WisCom, which can
detect why the users like or dislike a particular app based
on the users reviews throughout time and provide insights
regarding the users concerns and preferences in the app market.
Similar studies regarding mining information from app stores
data focus on different perspectives of the issues, e.g., the
correlations between ratings and download rank [6], ratings
and API use [27], review classification and useful sentences
detection [4]. On the other hand, Chen et al. [7] provides
the AR-miner framework, which facilitates the informative
reviews extraction, review grouping based on topics, review
prioritization and informative reviews presentation with visual-
ization. Guzman and Maalej [8] proposes an approach focusing
on feature extraction and sentiment analysis, which facilitates
the evaluation of individual app features. Similarly, Iacob and
Harrison [9] focuses also on the feature requests extraction but
via means of linguistic rules and LDA topic modeling. Many
studies also provide methods of using automatic classification
method to study mobile app user reviews [28] [29] [30]

Compared to the previous mentioned approaches in user
review opinion mining, our method aims towards the similar
topic detection and analysis concerning not only the app in
general but also the particular major updates. Furthermore, we
focus on the topic similarity of data segments, classified by
sentiment analysis and supervised learning, which is different
from the methods mentioned above. It enables the developers
to acquire information regarding each individual update and
will provide insights on the future updates.

V. CONCLUSION

In this study, we propose a method for analyzing the
correlation of mobile apps user reviews before and after a
particular app updates in order to detect how users’ opin-
ions change with the update released. After classifying the
reviews before and after a particular update by positive and
negative sentiment, we extract the topics of each segment.

By comparing the similarities of these extracted topics, we
identify both the positive and negative issues reflected by these
reviews regarding the particular update and the app in general.
Overall, this study is an exploratory investigation on using user
review opinion mining techniques in detecting update-specific
issues. The future studies shall extend the use of this method to
the whole maintenance lifecycle of mobile apps to investigate
the broader correlation between users feedback and the apps’
update trends. Releasing strategies improvement based on this
method will also be studied. Other factors, e.g., the different
app categories, different platforms, and different mining and
analysis techniques will also be taken into account.

REFERENCES

[1] X. Li, Z. Zhang, and J. Nummenmaa, “Models for mobile applica-
tion maintenance based on update history,” in Evaluation of Novel
Approaches to Software Engineering (ENASE), 2014 International
Conference on. IEEE, 2014, pp. 1–6.

[2] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
app users complain about?” IEEE Software, vol. 32, no. 3, 2015, pp.
70–77.

[3] W. Maalej and H. Nabil, “Bug report, feature request, or simply
praise? on automatically classifying app reviews,” in 2015 IEEE 23rd
international requirements engineering conference (RE). IEEE, 2015,
pp. 116–125.

[4] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user reviews
for software maintenance and evolution,” in Software maintenance and
evolution (ICSME), 2015 IEEE international conference on. IEEE,
2015, pp. 281–290.

[5] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,”
in Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2013, pp. 1276–1284.

[6] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: Msr
for app stores,” in Proceedings of the 9th IEEE Working Conference
on Mining Software Repositories. IEEE Press, 2012, pp. 108–111.

[7] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner: mining
informative reviews for developers from mobile app marketplace,” in
Proceedings of the 36th International Conference on Software Engi-
neering. ACM, 2014, pp. 767–778.

[8] E. Guzman and W. Maalej, “How do users like this feature? a fine
grained sentiment analysis of app reviews,” in Requirements Engineer-
ing Conference (RE), 2014 IEEE 22nd International. IEEE, 2014, pp.
153–162.

[9] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, 2013, pp.
41–44.

[10] C. H. E. Gilbert, “Vader: A parsimonious rule-based model for senti-
ment analysis of social media text,” in ICWSM, 2014.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, 2003, pp. 993–1022.

[12] T. T. Tanimoto, “Ibm internal report,” Nov, vol. 17, 1957, p. 1957.
[13] B. V. Kumar and L. Hassebrook, “Performance measures for correlation

filters,” Applied optics, vol. 29, no. 20, 1990, pp. 2997–3006.
[14] Langdetect, https://pypi.python.org/pypi/langdetect, last accessed on

06/20/18.
[15] Pyenchant, https://pypi.python.org/pypi/pyenchant, last accessed on

06/20/18.
[16] NLTK, http://www.nltk.org, last accessed on 06/20/18.
[17] E. Cambria, R. Speer, C. Havasi, and A. Hussain, “Senticnet: A

publicly available semantic resource for opinion mining.” in AAAI fall
symposium: commonsense knowledge, vol. 10, no. 0, 2010.

[18] S. Baccianella, A. Esuli, and F. Sebastiani, “Sentiwordnet 3.0: an
enhanced lexical resource for sentiment analysis and opinion mining.”
in Lrec, vol. 10, no. 2010, 2010, pp. 2200–2204.

106Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

[19] M. M. Bradley and P. J. Lang, “Affective norms for english words
(anew): Instruction manual and affective ratings,” Citeseer, Tech. Rep.,
1999.

[20] M. Stevenson and Y. Wilks, “Word sense disambiguation,” The Oxford
Handbook of Comp. Linguistics, 2003, pp. 249–265.

[21] “Skype on Google Play,” URL: https://play.google.com/store/apps/
details?id=com.skype.raider, last accessed on 06/20/18.

[22] K. Schneider, “Focusing spontaneous feedback to support system evo-
lution,” in RE, pp. 165–174.

[23] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in Requirements Engineering Conference (RE), 2013 21st IEEE
International. IEEE, 2013, pp. 125–134.

[24] L. V. Galvis Carreño and K. Winbladh, “Analysis of user comments:
an approach for software requirements evolution,” in Proceedings of the
2013 International Conference on Software Engineering. IEEE Press,
2013, pp. 582–591.

[25] N. Seyff, F. Graf, and N. Maiden, “Using mobile re tools to give end-
users their own voice,” in Requirements Engineering Conference (RE),
2010 18th IEEE International. IEEE, 2010, pp. 37–46.

[26] E. C. Groen, J. Doerr, and S. Adam, “Towards crowd-based re-
quirements engineering a research preview,” in International Working
Conference on Requirements Engineering: Foundation for Software
Quality. Springer, 2015, pp. 247–253.

[27] G. Bavota, M. Linares-Vasquez, C. E. Bernal-Cardenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “The impact of api change-and fault-
proneness on the user ratings of android apps,” IEEE Trans. on Soft.
Engin., vol. 41, no. 4, 2015, pp. 384–407.

[28] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan, “Analyzing and
automatically labelling the types of user issues that are raised in mobile
app reviews,” Empirical Software Engineering, vol. 21, no. 3, 2016, pp.
1067–1106.

[29] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, “On the automatic
classification of app reviews,” Requirements Engineering, vol. 21, no. 3,
2016, pp. 311–331.

[30] Z. Sun, Z. Ji, P. Zhang, C. Chen, X. Qian, X. Du, and Q. Wan,
“Automatic labeling of mobile apps by the type of psychological needs
they satisfy,” Telematics and Informatics, vol. 34, no. 5, 2017, pp. 767–
778.

107Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

