
OTIP: One Time IP Address
Renzo Davoli

Computer Science and Engineering Department
University of Bologna

Bologna, Italy
Email: renzo.davoli@unibo.it

Abstract—One Time IP address (OTIP) is a security feature
to protect private communications on the Internet. OTIP enables
nodes to change their IP addresses periodically following a cryp-
tographic sequence. Legitimate users have all the information
needed to compute the current addresses used by the servers,
thus their networking clients are able to access the required
services. OTIP current address is the output of a computation
based on the Fully Qualified Domain Name (FQDN) of the server,
a secret password and the current time. The major achievement
of OTIP is that all the IP addresses collected by wiretapping the
networks are useless for attackers as, in a short time, all the
servers will be using different addresses.

Index Terms—IP networks; TCPIP; Information security.

I. INTRODUCTION

OTIP means that the current IP address of a server changes
periodically to prevent networking attacks. The current IP
address of a server is computed on the basis of some private
information shared by legitimate users and the server itself,
like a password, and the current time. This method has mainly
been designed for IPv6 networks. In fact, the current server
address can be picked up as one of the valid host addresses
available on the local network, most of the time among 264

possible addresses. Clearly, a 264 address space is too large
for attackers to try a brute force enumeration attack on all
the available addresses; even if they eventually succeeded, the
retrieved addresses would have to be exploited before their
validity expires and the servers move to new addresses.

In theory, the same method could also be applied to IPv4,
but it would be ineffective, due to scarcity of addresses and
to the narrowness of address spaces within a network, most
of the times 256 nodes or less.

The paper is organized as follows: the next section discusses
the proposal, while section III compares OTIP with other
methods known in the literature. Section IV, which gives an
estimation of the probability that two servers may temporarily
choose the same address, is followed by the implementation
section, which describes the experimental part of the paper.
The final section is about the limits, future developments and
conclusive remarks.

II. DISCUSSION

The Internet supports services for the general public as well
as private services for a predefined set of authorized users.
For a business firm or a company, its institutional web site
is generally a service provided for the general public. On the
other hand, a remote shell service for system administration or

a Voice over IP (VOIP) service interconnecting the company’s
(software) Private Branch Exchanges (PBX) are examples of
private services.

All the private servers clearly have a means of protection to
prevent access by unauthorized users (e.g., password protec-
tions and traffic encryption). OTIP aims to provide one further
layer of protection for private services.

Without OTIP, attackers can collect the IP addresses of the
servers by wiretapping the network and creating a catalog of
valid addresses and services. These addresses can later be used
to perform brute force attacks, for instance using a database
of weak passwords, or even to test vulnerability by using a
collection of well-known exploits of the servers’ code.

OTIP can prevent these attacks, or at least makes them
extremely hard to succeed, as the addresses collected by
network sniffers expire in a short time.

OTIP does require the Real Time Clocks (RTC) of servers
and clients to be synchronized, as the current time is a
parameter to compute the current address. Networking services
for RTC synchronization, like NTP (Network Time Protocol)
[1], are quite common. Modern NTP implementations use
authenticated servers, which append a confirmation magic
number to prove the authenticity of each synchronization
packet. The use of authenticated NTP servers is warmly
suggested for OTIP. Although misaligned clocks would not
allow the discovery of the current IP addresses for servers,
attackers could tweak the clients’ perception of the current
time, thus preventing the legitimate users from accessing their
services. In other words, an attack on NTP would cause a DoS
(Denial of Service) for OTIP.

NTP, or other RTC synchronization protocols, is able to
reduce the error between the time read at different hosts below
a certain predefined level. These protocols, in fact, periodically
check the time of the current host against the time provided by
reliable synchronization servers on the network. The difference
between the local time and the time retrieved from the network
corrected using an estimation of the communication delay, is
used to put in place some modifying actions on the local RTC
current value (e.g., by tuning the frequency of the local clock).

Even when the value of the current time can be retrieved
from a very precise service, all the actions do not take place
on clients and servers simultaneously, due to the transmission
delays of the network. For example, a client’s request takes
time to travel across the network. Thus, the time read by the
client when the request is issued will never be the same of the

154Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

time at which the server receives and processes that request.
In order to deal with all these errors and delays OTIP cannot

manage the address change as an instantaneous action. For a
specific time interval both addresses (the old one and the new
one) should be valid. This time interval should be carefully
chosen to solve two possible problems.

• A request from a client whose RTC is running slightly
fast (while remaining within the admitted tolerance) may
arrive in advance with respect to the time due for the
address change on the server.

• A request from a client whose RTC is precise or slightly
late can arrive at the server after the time due for address
change, also because of the delay introduced by the
networking communication.

In order for a server to tolerate clock desynchronization
and network delays, the new address should be activated in
advance for at least a time equal to the maximum difference
between the RTC readings, and the old address should be kept
valid for a time at least equal to the maximum transmission
delay in the network plus the maximum difference of the RTC.

Formally, calling ∆t the maximum desyncronization guar-
anteed by the clients and the server, i.e., if s is the server and
c a generic client:

∀c : |tc − ts| < ∆t (1)

and when the maximum network delay is dnet, the period of
the OTIP address change is T , then the n-th server address
must be valid and available for clients in the time interval:

[t0 + (n− 1)T −∆t, t0 + nT + ∆t + dnet] (2)

III. RELATED WORK

A time based One Time Password (OTP) [2] is a password
which is valid for a limited time. This security feature is
commonly used to protect transactions on the network. Many
Internet based banking systems, for instance, provide each
user with their own small piece of hardware called security
token. This device, usually similar to a key-holder, shows on its
display a password generated on the basis of a secret seed and
the current time provided by a reasonably precise clock which
is a hardware component of the security token itself. OTIP
applies the OTP concept to IP addresses instead of passwords.

IETF (Internet Engineering Task Force) have introduced
by RFC3041 [3] and then by RFC4941 [4] the idea of
dynamically changing IP addresses. The focus of these stan-
dards (and of other proposals like [5]) is the privacy of the
client. Autoconfiguration methods, in fact, can reveal the MAC
(medium access control) address of each host connected to
the Internet because that address is copied in some bytes of
the IPv6 address, allowing attackers to trace the position of
a specific computer on the network. OTIP and these privacy
extensions have different purposes: the former applies the
dynamic change of IP addresses to protect server from attacks,
the latters changes the IP addresses of the client to preserve
the user’s privacy.

OTIP is a killer application of the Internet of Threads
(IoTh). As described in [6], IoTh opens a wide range of new
applications by allowing each process to be a node of the
Internet. Each process can have its own IP addresses, routing
definitions etc.

Using IoTh each OTIP server can define its own OTIP
policy, address change period, address computation algorithm,
overlapping time interval for address validity etc.

The proof-of-concept implementation provided in section V,
is based on LWIPv6 [7], View-OS [8] and msocket [9].

OTIP could be implemented without IoTh using a daemon
to add and delete IP addresses of a network controller or
a virtual interface of a container [10]. In both cases this
daemon would be granted network administration capabili-
ties (CAP_NET_ADMIN in Posix.1 [11] terminology). In this
scenario the selection of the right address to use should be
done by the bind system call. Other processes running on the
same host may erroneously use the same address designed just
for a specific server (e.g., by using in6addr_any, as many
daemons do). Apart from the software architectural complexity
of having a daemon as an executor of the OTIP address change
requests, the effects of an attack would not be confined to
a single service but could scale up to the container or to
the whole networking support of the hosting system. IoTh
implementation is clearer, simpler and safer. Finally, can be
regarded as a special case of a hash-based address as defined
in [12].

IV. ADDRESS COLLISION

It is clearly possible, although improbable, that two OTIP
servers running on the same data-link network (real or virtual
Local Area Network, LAN) temporarily get the same address.
If we regard the addresses as if they were randomly chosen,
this problem can be regarded as an application of the Birthday
Problem (also known as the Birthday Paradox, as explained in
[12]).

The probability of m nodes choosing the same address using
a host suffix of h bits is:

Pr[(h,m)] = 1−
2h!

(
m
2h

)
m2h

(3)

which can be approximated when m << 2h:

Pr[(h,m)] ≈ 1− e−
m2

2h+1 (4)

Figure 1 shows the probability of address collision using a
64 bit network prefix and a 64 bit host address, which is the
most common scenario in current IPv6 implementations.

The probability in a network connecting one thousand
servers has the order of magnitude 10−14, and even connecting
one million servers the collision probability is less than 10−7.

The effect of a collision is a temporary unreachability of
the servers lasting for an OTIP address change period (64
seconds in the proof-of-concept implementation). Clearly this
limitation should be taken into account for applications which
require extremely stringent constraints in service continuity,

155Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

Fig. 1. Probability of address collision in a :64 IPv6 network [12]

Client Application: e.g., web browser.
URL:
http://www.mycompany.com__secretpwd/index.html

User's computer

1. DNS req:
www.mycompany.com__secretpwd

DNS proxy

DNS server
(not OTIP enabled)

2. DNS req:
www.mycompany.com

3: DNS reply
2001:1:2:3::42

4: DNS reply
2001:1:2:3:abcd:1234:5678:90ff
ttl=1

5 http connect to:
2001:1:2:3:abcd:1234:5678:90ff

OTIP enabled web server
or OTIP proxy to a hidden web server

Fig. 2. Structure of the proof-of-concept implementation of OTIP for TCP
communications

but the eventuality of service fault for address collision is able
to satisfy the requirements of a very wide range of network
services.

V. IMPLEMENTATION

This section describes a proof-of-concept implementation
of OTIP for TCP (transmission control protocol) servers
and some ideas for alternative implementations also for
connection-less services based on UDP (user datagram pro-
tocol).

Figure 2 provides a schematic view of the test imple-
mentation. In order to support unmodified client programs
the prototype uses an OTIP enabled Domain Name Server
(DNS) proxy which is installed on the user’s computer where
the client program is running. This DNS proxy transparently
forwards all the requests to the real DNS server except those
matching the OTIP syntax. For the scope of this prototype the
syntax is:

FQDN__password

So, if in a configuration file of the client program or, for
instance, in the host part of a URL of a browser a specification
like the following:

www.mycompany.com__secretpwd

appears, it will be resolved by the DNS proxy using the
base address of www.mycompany.com retrieved by a query
to the local DNS server (or possibly from the DNS server
of mycompany.com). The host part of the resulting IPv6
address will be computed by the proxy using the base address,
the password (secretpwd in this example) and the current
time. Calling t the current system time in seconds (as returned
by the time POSIX system call), the method implemented
in this proof-of-concept computes a 128bit MD5 hash of the
string composed by t � 6 (right shifted 6 bit positions, i.e.,
divided by 64), a space and the password. The statement used
to create the input string for the hash function is the following:

len=asprintf(&s,"%d %s",time(&now)>>6,pwd);

The result of an exclusive-or (XOR) operation between three
operands:

• the 64 most significant bits of the MD5 hash value,
• the 64 least significant bits of the same value,
• and the host part of the address returned by the real DNS,

becomes the host part of the current OTIP address. It is
worth noting that the description of the algorithm used to
compute the OTIP address in this implementation has been
given here for the sake of presentation completeness. Any
choice of hash function involving the time and the FQDN
or IP address returned by the real DNS would fit, provided
the same algorithm is consistently applied both by the server
and the client.

The proxy sets the TTL (time-to-live) to one second in its
reply to force the client to invalidate the resolution cache in a
short time and to repeat the query for any further connection
needed to the same server. This is necessary as the address
may have changed in the meanwhile following the OTIP
specifications. The password is never sent along the network
as the proxy is running in the same host of the client process,
thus it cannot be captured by an attacker possibly tracing the
network traffic.

On the server side either an OTIP specific server program
or a proxy interfacing an existing server daemon, provide
the connectivity for OTIP clients. The Berkeley sockets and
msocket API (application programming interface) use the
accept system call to manage each TCP incoming connec-
tion accept takes as its first argument a socket descriptor
used for listening to the arrival of new connections (listening
socket) and returns a new socket descriptor connected to
the remote client (connected socket) when a new connection
arrives. When the address validity expires, OTIP closes the
listening socket so that no new connections can take place
using the old address, and it opens a new listening socket
using the new address. Connected sockets continue to use the
address which was the current one at their connection time.
An address is completely dismissed when the last connection
using that address gets closed.

It is easier to code an OTIP enabled server or an OTIP
proxy using msocket API, as it is possible to start and close

156Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

Server address validity

time

Clients

example of net delay

client with a fast RTC

Fig. 3. Server address intervals of validity (as perceived from the server and
by the clients)

an entire TCP-IP stack each time a new address is needed or
an old address expires. In the proof-of-concept implementation
each address has a validity period of 64 seconds. On the server
side each address is valid for 128 seconds. It is activated 32
seconds before the beginning of its validity period defined for
the client and it expires 32 seconds after the end of the period
as shown in Figure 3.

The overlapping between the validity periods of successive
addresses has been set to 32 seconds, which should normally
be a value far beyond the sum of the maximum difference
between the clock readings plus the maximum transmission
delay using NTP and a non-overloaded network.

In theory, this choice may reduce the time needed for a brute
force attack by a factor less than four (two addresses always
active for double the time). De-facto, 262 attempts (which is
∼ 4 1018) to find an address which needs to be exploited
in less than two minutes is a specification able to satisfy the
security requirements of a wide range of applications.

The method described above for TCP cannot be directly
applied to UDP. UDP is connection-less so it is not possible
to keep the old address working only for the data exchanged
along the existing connections. It is possible to write OTIP
aware UDP clients which take care of the OTIP address valid-
ity periods and compute the new server address as needed. As
a backwards compatibility feature, it is possible to implement
OTIP UDP proxies which set up an OTIP UDP tunnel between
the client and the server. Each client uses a port on the local
host to exchange networking packets to the server. The local
port is managed by the local proxy, which forwards each
packet to the OTIP dynamically changing address of the proxy
on the server side. On the server side, the OTIP UDP proxy
forwards the packets to the OTIP unaware server using a local
port (see Figure 4). Proxies are able to support several UDP
clients at the same time. To do so, a new port is used by the
client side proxies for each local client and by the server side
proxies for each remote client. In this way the return packet
can be properly rerouted.

VI. LIMITS, FUTURE DEVELOPMENTS AND CONCLUSIONS

OTIP reduces the vulnerability of private services provided
through the Internet. It makes it hard for attackers to discover
the current address used by servers to communicate with their
legitimate users. This method should be applied, together with
other already known precautions, to protect communications

UDP client UDP PROXYlocalhost:5060 UDP serverUDP PROXY localhost:5060

2001:1:2:3:abcd:1234:5678:90ff

UDP client UDP PROXYlocalhost:5060 UDP serverUDP PROXY localhost:5060

2001:1:2:3:1234:5678:90ff:aabb

port 5060

port 5060

Fig. 4. A proposal to support OTIP for UDP services using existing clients
and servers.

along the Internet. A non-exhaustive list of such defenses,
which should be put in place, includes the encryption of
the communication payloads and the measures to avoid TCP
spoofing, as defined in RFC 4953 [13]. In fact, an attack on
the TCP sequence numbers could permit an attacker to hijack
an existing TCP connection, avoiding, in this way, the OTIP
protection.

Another scenario in which the protection of OTIP can be
disrupted happens when even one user’s host running the client
program and the DNS proxy is compromised. An intruder who
installed a root-kit on a host could read the OTIP passwords
and compute the current addresses of the servers at a later
time.

The implementation section above has shown how existing
networking clients and servers can already use OTIP. Some
programs may not be able to take advantage of this support.
During the studies and tests we have seen two cases of
programs which need some changes to use OTIP. In one
case a TCP client did not properly managed the value of
TTL returned by the DNS query and used a cached address
far beyond its expiration. Unfortunately, such behavior is not
very rare, as the server address is perceived by programmers
as a constant. A second case happens when it was not
possible to configure the client to change the address of the
server for UDP communications, in order to use the UDP
proxy. Sometimes the change of the server address is not a
configurable entity in itself as it is the same address used for
other services, or the UDP server address was communicated
to the client as an element of the protocol.

As far as the address collision problem is concerned, we
have shown its very limited and temporary impact. This
drawback, however, cannot be easily eliminated by adding a
duplicate address detection check, as proposed for the IPV6
privacy extensions [4], as servers and clients compute the
current addresses independently. The clients cannot locally
detect duplicate addresses on the servers’ networks, and any
sub protocol designed to force the clients to change the address
sequence would weaken the methods, as it could also be used
by attackers.

Although OTIP can be applied as described in section V of
this paper, the syntax and implementation of OTIP should be
standardized to provide a general purpose support to this new

157Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

feature. OTIP does not need to change any existing protocols,
and it is able to support many existing client programs. Some
standardization effort is needed, for example, to share the same
OTIP DNS proxy for all the OTIP servers, as different service
providers could use a different syntax or a different function
to compute the current address.

It is worth noting that OTIP does not exclude hash based
address definition as introduced in [12]. System administrators
use hash based addresses to configure their hosts and DNS
servers in an easier and less error-prone mode. Hash addresses
can be used as base addresses for OTIP, combining a simple
deployment of the network at the servers’ side and the safety
of the dynamic evolution of addresses as provided by OTIP.

The source code to test the experiments
presented in this paper can be downloaded from
svn://svn.code.sf.net/p/view-os/code/branches/otiptest

and has been released under the GNU General Public License
(GPL) v. 2 or newer. The programs are intended as just
a proof-of-concept to show the effectiveness of the ideas
introduced here.

REFERENCES

[1] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network Time Protocol
Version 4: Protocol and Algorithms Specification,” RFC 5905 (Proposed
Standard), Internet Engineering Task Force, Jun. 2010.

[2] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “TOTP: Time-
Based One-Time Password Algorithm,” RFC 6238 (Informational),
Internet Engineering Task Force, May 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6238.txt (Retrieved: June 15, 2013)

[3] T. Narten and R. Draves, “Rfc 3041: Privacy extensions for stateless
address autoconfiguration in ipv6,” IETF, Tech. Rep., 2001.

[4] T. Narten, R. Draves, and S. Krishnan, “Privacy Extensions for
Stateless Address Autoconfiguration in IPv6,” RFC 4941 (Draft
Standard), Internet Engineering Task Force, Sep. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4941.txt (Retrieved: June 15, 2013)

[5] M. Tortonesi and R. Davoli, “User untraceability in next-generation
internet: a proposal,” in Proceeding of Communication and Computer
Networks 2002 (CCN 2002), IASTED, Ed., November 2002, pp. 177 –
182.

[6] R. Davoli, “Internet of threads,” in Proc. of the The Eighth International
Conference on Internet and Web Applications and Services, ICIW 2013.,
2013, pp. 100–105.

[7] ——, “LWIPV6,” http://wiki.virtualsquare.org/wiki/index.php/LWIPV6
(Retrieved: June 15, 2013), 2007.

[8] L. Gardenghi, M. Goldweber, and R. Davoli, “View-os: A new unifying
approach against the global view assumption,” in Proceedings of the 8th
international conference on Computational Science, Part I, ser. ICCS
’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 287–296.

[9] R. Davoli and M. Goldweber, “msocket: multiple stack support for the
berkeley socket api,” in SAC ’12: Proceedings of the 27th Annual ACM
Symposium on Applied Computing. New York, NY, USA: ACM, 2012,
pp. 588–593.

[10] LXC team, “lxc linux containers,” http://lxc.sourceforge.net/ (Retrieved:
June 15, 2013).

[11] POSIX.1-2008, “The Open Group Base Specifications,” Also published
as IEEE Std 1003.1-2008, San Francisco, CA, Jul. 2008.

[12] R. Davoli, “Ipv6 hash-based addresses for simple network deployment,”
in Proc. of the The Fifth International Conference on Advances in Future
Internet, AFIN 2013, To appear, 2013.

[13] J. Touch, “Defending TCP Against Spoofing Attacks,” RFC 4953
(Informational), Internet Engineering Task Force, Jul. 2007.

158Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

