
SDL Implementation of LTE UE Non-Seamless Random Access Procedure

Handling

Mohamed Sami M. Yousef Hussein A. Elsayed Abdelhalim Zekry

Electronics Department,

National Telecommunication Institute

(NTI);

Cairo, Egypt

 Electronics and Communications Engineering Department,

Faculty of Engineering,

Ain shams University;

Cairo, Egypt

e-mail: mohamed.yousef@nti.sci.eg e-mail: helsayed2003@hotmail.com, aaazekry@hotmail.com

Abstract—Random access procedure in Long Term

Evolution (LTE) is required in completing the connection

establishment procedure. Due to the numerous number of

connection requests, collisions may occur, which would cause a

failure to be completed in both of the contention-based and the

non contention-based random access procedures. This paper

focuses on the main problems that may arise during the

random access procedure execution in the Medium Access

Control (MAC) sub-layer of LTE User Equipment (UE)

terminal. It investigates the unsuccessful random access

response (RAR) and the unsuccessful contention resolution

problems. Specification and Description Language (SDL) is

used to implement a design of random access procedure to deal

with these problems based on 3GPP release 9 standards.

Besides the reduced SDL code, an implementation simulation

is performed using the Message Sequence Chart (MSC)

simulator trace. The simulation proves the correct

functionality and feasibility of the built random access

procedure in handling those problems according to the

standard.

Keywords- LTE; random access procedure; MAC Sub-layer;

non successful random access response; non successful

contention resolution; SDL.

I. INTRODUCTION

Mobile communication passed through many
developments since the last few years with the introduction
of successive generations. The first generations were
primarily designed to support voice communication with
capabilities to support data transmission in the later releases.
However, the data rates were generally low. As a result of
the rapid increase in the Internet based applications in many
mobile communication devices with a growing bandwidth
demands, starting from the third generation full multimedia
data transmission was enabled, as well as voice
communications ‎[1]. Fourth generation technology allows
greater download and upload speeds to increase the amount
and types of content made available through mobile devices.
Accordingly, 3GPP main objective is to support: a high data
rate, low latency, and packet optimized radio access
technology ‎[2]‎[3].

As the MAC layer is connected to the underneath
physical layer through transport channels and is connected to
the Radio Link Control (RLC) layer above through logical
channels; the MAC layer performs multiplexing and de-

multiplexing of the data between logical channels and
transport channels.

With regards to the upper layer, the MAC layer is
responsible for two services: the radio allocation service and
the data transfer service. Regarding the former, this includes
procedures, such as logical channel prioritization, power
headroom reporting, handling of Up Link (UL) grant and
Down Link (DL) assignment, etc. Regarding the data
transfer service, the MAC layer performs procedures such as
scheduling requests, buffer status reporting, random access,
and Hybrid Automatic Repeat request (HARQ) ‎[4].

Evolved- Universal Terrestrial Radio Access Network
(E-UTRAN) defines two MAC entities: one in the UE and
the other in the eNodeB side. The functions performed by
each of those entities are different from each other. This
paper focuses on UE MAC sub-layer, particularly, the
random access procedure and non-seamless scenarios where
problems may arise during its execution. It also introduces
the appropriate actions to face these issues based on 3GPP
release 9 standards. While implementing the design, we
corroborated several procedures to reduce the runtime. The
design is based on 3GPP release 9 standard ‎[5] and
implemented using SDL. As an SDL output, the MSC
simulator trace shows the MAC flow for facing the random
access procedure problems in both of contention and non-
contention based procedure.

Several researches proposed methods and architectures to
improve both of contention and non contention based
random access process. LTE clustering and non-clustering
schemes performance of contention based random access
procedure is evaluated in ‎[6]. The proposal in ‎[7] shows how
hierarchical control of different users efficiently improves
random access success probability and optimize the system
performance. The work in ‎[8] suggests a fast random access
procedure for use in a mobile communication system.
Random access procedure enhancements for heterogeneous
networks is presented in ‎[9]. Hybrid random access and data
transmission protocol for Machine to Machine (M2M)
communications is proposed in ‎[10] to maximize the M2M
throughput and to resolve the congestion problem in the
random access procedure.

The rest of the paper is organized as follows: Section II
provides an introduction on the random access process in
LTE and its types. The implemented successful random
access process is explained in Section III, while Section IV
shows the problems in the random access process and the

109Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

mailto:mohamed.yousef@nti.sci.eg
mailto:aaazekry@hotmail.com

way the MAC deal with them. In Section V, the simulation
results for both unsuccessful RAR and the unsuccessful
contention resolution problems are presented. Finally, the
conclusions and future work is presented in Section VI.

II. LTE RANDOM ACCESS PROCEDURE

Control of the random access procedure is an important
part of the MAC layer functionality in LTE. Sometimes LTE
UE wishes to transmit on the Physical Uplink Shared
Channel (PUSCH) but it does not have allocated resources to
do so. In this case, the mobile sends a scheduling request on
the physical uplink control channel. Furthermore, if it does
not have the resources to do that, then it initiates the random
access procedure to acquire uplink synchronization. After
that, eNodeB can schedule orthogonal uplink transmission
resources for UE.

There are two forms of the random access procedure:
contention-based and non-contention. In both forms, the
UE’s‎first‎step‎is‎to‎transmit‎a‎preamble‎to‎the‎eNodeB‎as‎an‎
indication of procedure start. For contention-based procedure,
the Random access preamble is randomly chosen by the UE,
whilst in the case of non-contention-based procedure, the
Random access preamble is designated by the eNodeB to
guarantee a contention free procedure. The usage of the
random access procedure determines which form to be used.

A. Contention-based Random Access Procedure

In this process, there is no reserved random access
preamble for the UE. Accordingly, UE has to randomly
select a Random Access (RA) preamble resource. For LTE,
each cell has 64 available random access preambles. A set of
these preambles is reserved for non-contention-based
random access procedure, while the rest are available for
contention-based random access procedure; and are divided
into two groups: the random‎access‎preamble‎group‎“A”‎and‎
the‎random‎access‎preamble‎group‎“B”‎‎[11].

Since UEs choose the random access preamble by
themselves, it is possible for more than one UE to select the
same RA preamble simultaneously. In this case,
acknowledgment by the eNodeB of receipt of the RA
preamble is not enough, and eNodeB should further perform
the contention resolution step, through which eNodeB should
indicate which UE’s transmission has actually been received.
The process consists of 4 steps to send the request and
resolve the contention as shown in Figure 1.

Step 1: Random-access preamble transmission:
The procedure starts with the UE transmitting a random-

access‎ preamble.‎ The‎ transmission’s‎ main‎ objective‎ is‎ to‎
indicate to the base station the presence of a random-access
attempt and to estimate the delay between the eNodeB and
the terminal.

In contention-based random access procedure, UE has to
first select a group from which it chooses a random access
preamble. The group selection is based on the path-loss, the
estimated size of the MAC Packet Data Unite (PDU), and
whether this random access attempt is the initial attempt or a
re-attempt. Group B is chosen if the estimated size of the
MAC PDU is big and the measured path-loss is small. In this
step, the UE also determines the transmission power of the

random-access preamble, as well as the frame and sub-frame,
which it will use to send the preamble in.

UE eNB

Random access preamble

Random access response

Scheduled transmission

Contention resolution

Figure 1. Contention-based Random Access Procedure steps

Step 2: RAR:
The UE receives the RAR, as an indication of receiving

the preamble, within a pre-specified time window. If the
terminal does not receive a RAR within the time window, the
attempt will be considered failed and the procedure will be
repeated from the first step.

As the preamble is randomly selected by the UE, there is
a probability that multiple terminals use the same random-
access preamble at the same time. In this case, multiple
terminals will react upon the received RAR and a collision
occurs. Accordingly, steps 3 and 4 are used to solve this
collision.

Step 3: Terminal identification:
The UE step sends its first scheduled uplink message on

the PUSCH. The message reflects the reason behind the
random access procedure, which may be a Radio Resource
Control (RRC) connection request, tracking area update, or
scheduling request. This message also includes a unique
identity for the UE, which is required for contention
resolution in the fourth step.

If a preamble collision has occurred at Step 1, i.e., more
than one UE selected the same preamble, the same
temporary C-RNTI will be received by the colliding UEs
through the RAR and they will also collide in the time-
frequency resources during the transmission of their terminal
identification message. This scenario may result in such
interference that none of the colliding UEs can be decoded
by the eNodeB; and so the UEs restart the random access
procedure after waiting for backoff time (if exists). However,
if eNodeB decoded one UE successfully, the other UEs will
not recognize the contention and so contention resolution
message (step 4) would be used to resolve the contention.

Step 4: Contention resolution
The contention resolution message is the last step in the

random-access procedure. It is a downlink message used to
ensure that a terminal does not incorrectly use another
terminal’s‎identity.

As multiple UEs initialize random-access procedure
using the same preamble sequence in the first step where
only one of these UEs has been detected by the eNodeB, a
possible reason for this is that the undetected UE sent the
message with low power relative to its distance from the
eNodeB. Accordingly, all of the UEs will receive the same
RAR (step 2) and therefore each UE assumes that it receives
a correct RAR. As a next step, all the UEs who receive a

110Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

correct RAR will send terminal identification message
including their identity. UEs are now waiting for the
contention resolution message, as the UE may have a C-
RNTI or not. There are two contention resolution
mechanisms ‎[11]. If the terminal already had a C-RNTI
assigned, contention resolution is handled by addressing the
terminal on the Physical Downlink Control Channel
(PDCCH) using the C-RNTI. Upon detection of its C-RNTI
on the PDCCH, the terminal declares the random access
attempt successful, and there is no need for contention-
resolution-related information on the DownLink Shared
Channel (DL-SCH).

The second mechanism occurs when the terminal does
not have a valid C-RNTI, in which the contention resolution
message is addressed using the TC-RNTI, and the associated
DL-SCH contains the contention-resolution message. The
terminal will compare the identity in the message with the
identity transmitted in the third step. Only a terminal which
observes a match between the identity received in the fourth
step and the identity transmitted as part of the third step will
declare the random-access procedure successful and promote
the TC-RNTI from the second step to the C-RNTI ‎[11].

Terminals that do not detect PDCCH transmission with
their C-RNTI or do not find a match between the identity
received in the fourth step and the respective identity
transmitted as part of the third step are considered to have
failed the random-access procedure and need to restart the
procedure from the first step. Furthermore, a terminal that
has not received the downlink message in step 4 within a
certain time from the transmission of the uplink message in
step 3 will declare the random-access procedure as failed and
need to restart from the first step ‎[11].

B. Non-Contention-based Random Access Procedure

The non-contention-based random access procedure
provides delay and capacity enhancements compared with
the contention-based procedure. The procedure is executed
in only three steps as shown in ‎Figure 2.

UE eNB

Random access preamble

Random access response

RA preamble assignment

Figure 2. Non contention-based random access procedure steps

Step 1: Random access preamble assignment:
The eNodeB allocates a designated RA preamble to the

UE. Besides the preamble, some restrictions for the
frequency and time resource can be signaled so that the same
sequence can be simultaneously allocated for UEs that
transmit on different PRACH sub-frames.

Step 2: preamble transmission:
As for contention-based random access procedure, the

UE transmits the random-access preamble where also it

determines the transmission power, the frame, and sub-frame
which it will use to send the preamble.

Step 3: RAR:
In the non-contention-based RA procedure, as the

designated RA preamble is used by only one specific UE
there is no possibility of collision. As soon as the eNodeB
detects the RA preamble, the eNodeB knows of the access by
the UE and the procedure is terminated by transmission of
the RA response, i.e., contention resolution is not needed as
the preamble shall not be used by other UEs.

III. SUCCESSFUL RANDOM ACCESS PROCEDURE

FLOW

Initially, MAC is in Idle state till it receives a request for
random access process; either CMAC_RANDOM_ACC_
REQ signal in case of contention based process request or
CMAC_RANDOM_ACC_REQ_non_cont signal in case of
non contention based process request accompanied by the
Random Access Preamble and the PRACH Mask Index
designated by eNodeB for the UE. After receiving the
request, UE initiates the random access procedure. The
following subsection explains the random access procedure
steps in UE:

A. Random Access Resource selection and transmission

step

Upon receiving the request, the MAC sub-layer instructs
the physical layer with the preamble_value signal including
the preamble index to be sent to the network side. If
contention based request was sent, the UE randomly selects
Random Access Preamble from the available set of
preambles.

According to the restrictions given by prachconfigIndex
and PRACH Mask Index, MAC sends frame_value and
subframe_value signals to the physical layer indicating the
selected frame and sub frame of the PRACH to carry the
random access preamble. received_target_power signal is
then sent by the MAC to instruct the physical layer with the
appropriate preamble transmission power based on the
estimated path-loss signals in addition to a configurable
offset. Now, the physical layer is ready to send the preamble,
while MAC is in Random_Access_Response_Reception
state after starting RAR_window_timer timer waiting for the
eNodeB reply.

B. RAR reception step

The MAC starts reading the RAR PDU contents shown
in Figure 3 ‎[5], when it receives Random_Access_
Response_MAC_PDU signal from physical layer. RAR
PDU header is divided into sub-headers; there are two types
of sub-headers: MAC RAR sub-header and Backoff
Indicator sub-header as shown in Figure 4 and Figure 5,
respectively. If PDU contains a Backoff Indicator sub-
header, UE has to set the back_off_parameter_value to the
value determined in the BI field of the subheader, else the
backoff parameter value is set to 0 ms.

As the PDU may include reply to more than one UE,
MAC starts filtering the Random Access Preamble Identifier
(RAPID) Fields in the received PDU. If UE found RAPID

111Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

corresponds to the transmitted preamble_value, the RAR
reception step is considered successful and UE will apply the
MAC RAR fields: Timing Advance Command, UL Grant,
and Temporary C-RNTI ‎[5].

MAC header MAC RAR 1 MAC RAR 2 MAC RAR n
Padding

(optional)

E/T/R/R/BI

subheader

E/T/RAPID

Subheader n

E/T/RAPID

Subheader 2

E/T/RAPID

Subheader 1

MAC payload

Figure 3. RAR PDU structure ‎[5]

E T RAPID

Figure 4. RAR subheader structure

E T R R BI
Figure 5. Backoff Indicator subheader structure

At this step, the Random access procedure is considered
successfully completed if it is non contention based;
otherwise, contention resolution step is needed if the process
is contention based because more than one UE may transmit
the same preamble_value simultaneously.

C. Contention resolution step

To resolve contention, UE sends MAC_PDU_UL signal
including its identification information, message. If the UE is
already connected to a known cell then it has a C-RNTI (Cell
Radio Network Temporary Identifier) assigned to it, which
acts as its identifier. Otherwise, the core-network terminal
identifier will be used. Consequently, the MAC starts
mac_ContentionResolutionTimer timer waiting for
MAC_PDU_DL signal, it is now in msg4_Waiting state
waiting for the eNodeB reply. If MAC_PDU_DL signal is
received including the UE pre-transmitted identification
information the contention resolution step is successfully
completed and the Random Access procedure is considered
successfully completed.

DL-SCH MAC PDU consists of: a MAC header, zero or
more MAC Service Data Units (MAC SDU), zero or more
MAC control elements (fixed size and variable size), and
optionally padding as shown in ‎Figure 6. The MAC header
consists of one or more MAC subheaders; each subheader
corresponds to either: MAC SDU or MAC control element
or padding. The Logical Channel ID (LCID) field in each
subheader represents the type of the corresponding MAC
control element or padding or the logical channel instance of
the corresponding MAC SDU ‎[5].

MAC header
MAC control

element 1

MAC control

element 2
MAC SDU

Padding

(optional)

R/R/E/LCID

subheader

R/R/E/LCID/F/L

Subheader

R/R/E/LCID/F/L

Subheader

R/R/E/LCID

Subheader

MAC payload

MAC SDU

R/R/E/LCID padding

Subheader

Figure 6. DL-SCH MAC PDU structure ‎[5]

D. Successful RANDOM ACCESS PROCEDURE

implementation

The successful random access procedure, using the
previous steps and the setup values, has been implemented
in ‎[12], but has not considered error handling. So, this paper
focuses on implementation and simulation of various cases
of error handling methodologies.

IV. RANDOM ACCESS PROCEDURE INVOLVED

PROBLEMS

This section focuses on the random access procedure
common problems and how the MAC protocols deal with
them, which is the main target of this paper. The first one is
that the RAR step is considered unsuccessful if the RAR
window expired without receiving the RAR or if the RAPID
corresponding to the transmitted Random Access Preamble
is not received in any of the arrived RARs. The second
problem appears in the contention based procedure, where an
error could occur due to non successful contention resolution
step. This occurs if mac-ContentionResolutionTimer expires
before successful Contention Resolution.

A. Non successful RAR problem

As a first step in the random access procedure the UE
informs the physical layer with the selected frame, subframe
and the power for sending the preamble. After so, MAC sets
RAR_window_timer with the window time it has to wait for
RAR. Then MAC transits to Random_Access_
Respons_reception state waiting for either a RAR or timer
expire signal, ‎Figure 7.

As seen in Figure 7, if there is a received RAR before the
RAR_window_timer expires, the UE has to check the
received‎PDU’s‎subheaders:‎Backoff‎Indicator‎(if‎exist)‎and‎
RAR sub-headers. Thus, UE determines if there is a RAR
corresponds to its transmitted ra_peambleindex, so it transits
to check_if_correct_RAR step, if not UE transits again to
Random_Access_Respons_reception state waiting for new
PDU. Else, the UE resets the RAR_window_timer and apply
the Backoff value (if exist).

On the other side, if the RAR_window_timer expires, the
random access procedure is considered non successful; and
hence the UE transits to non_successful_RAR step following
the procedures shown in ‎Figure 8. At that point, MAC starts
by incrementing PREAMBLE_TRANSMISSION_
COUNTER by 1, which counts the number of trials of the
preamble transmission. Then, if PREAMBLE_
TRANSMISSION_COUNTER value is greater than
preambleTransMax, it indicates that MAC has reached the
maximum number of possible trials. Therefore, MAC sends
Non_successful_Random_Access_process signal to indicate
a Random Access problem to the upper layer (RRC) then
transit to the Idle state. But if the
PREAMBLE_TRANSMISSION_COUNTER has not
reached the maximum number of trials, UE has to start
another Random access procedure attempt. The UE has to
wait a backoff delay time before starting the next trial. The
backoff delay is a random value chosen between zero and the
back_off_parameter_value already sent by the network.

112Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

Backof_parameter procedure is called by the UE for
determining the backoff time corresponds to the
back_off_parameter_value based on ‎[5].

The‎SDL‎“uniform” operator is used for random number
selection. Also, MAC has to inform the physical layer to
increase the preamble transmission power in each trial by
power_ramping_step value.

B. Non successful contention resolution problem

As stated before, this problem appears in the contention-
based procedure, where an error could occur due to non
successful contention resolution step. It occurs if mac-
ContentionResolutionTimer expires without receiving DL-

SCH MAC PDU or the received contention resolution
identity MAC control element does not match the
transmitted one.

In Figure 9, after UE transmits msg3 and store its value
in msg3_buffer it starts mac_ContentionResolutionTimer
and transits to msg4_waiting state waiting for the eNodeB
reply or mac_ContentionResolutionTimer expire signal. If
the timer expire or the received PDU does not match the
UE‘s‎ ID,‎ the‎ UE‎ transits‎ to‎ non_successful_
Contention_Resolution step. In the non_successful_
Contention_Resolution step, the UE transits to
non_successful_RAR step repeating the same procedures of
Non successful RAR.

Figure 7. RAR PDU reception

 /*#include 'random.pr'*/

process Random_access_control 10(17)
DCL
MAC_PDU_RECEIVED bit_string,
no_of_RAR integer,
correct_RAR_index integer,
back_off_existence bit, /* 0 => not exist ,1 => exist */
RAR_H_offs integer;

Random_Access_Response_Reception

RAR_window_timer

non_successful_RAR

Random_Access_Response_MAC_PDU (MAC_PDU_RECEIVED)

RAR_H_offs:=0,
no_of_RAR:=0,

correct_RAR_index :=0,
back_off_existence:=0

MAC_PDU_RECEIVED(1)=0

no_of_RAR:=1

ra_preambleindex =substring(MAC_PDU_RECEIVED,(RAR_H_offs+2),6)

correct_RAR_index:=no_of_RAR

MAC_PDU_RECEIVED(RAR_H_offs)=1

no_of_RAR := no_of_RAR+1

RAR_H_offs:=RAR_H_offs+8

check_if_correct_RAR

back_off_existence:=1,
back_off:=substring (MAC_PDU_RECEIVED,4,4)

MAC_PDU_RECEIVED(0)=0

Random_Access_Response_reception

false

true

true

false

false

true
/*BI Exist*/

true

false

113Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

 /*#include 'random.pr'*/

process Random_access_control 11(17)

TIMER Delay_Timer;

DCL
backoff_delay duration,
zero_time duration;

BackOff_parameter

non_successful_RAR

preamble_transmission_counter:=preamble_transmission_counter+1

preamble_transmission_counter=preamble_trans_max+1

preamble_selector=1

send_preamble

BackOff_parameter(back_off,back_off_parameter_value)

zero_time:=0,
backoff_delay:= uniform(zero_time,back_off_parameter_value,seq),

backoff_delay:=backoff_delay/1000

SET (now+backoff_delay,Delay_Timer)

 back_off(back_off_parameter_value)

my_wait

Non_Successful_Random_Access_Process

Idle

my_wait

Delay_Timer

preamble_group_selection

SET (now+backoff_delay,Delay_Timer)
/*SET (now+3,Delay_Timer)*/

false

false

true

true

Figure 8. Procedures for non successful RAR

 /*#include 'random.pr'*/

process Random_access_control 13(17)

Timer mac_ContentionResolutionTimer;

check_if_process_ended

preamble_selector=1

MSG_3_POWER(preamble_initial_received_target_power+((power_ramping_step+30)*preamble_transmission_counter))

Temporary_C_RNTI:=substring(MAC_PDU_RECEIVED,(RAR_offs+32),16)

ccch_order=1

Msg3_req_CRNTI(C_RNTI)

Wait_msg3_Reply

Msg3_reply(msg3_buffer)

MAC_PDU_Buffer:='0'b

set((now+mac_contentionresolution_timer_value),mac_ContentionResolutionTimer)

msg4_Waiting

PDCCH_reception

ccch_order=1

reset (mac_ContentionResolutionTimer)

Temporary_C_RNTI:='0'b

R.A_Procedure_successfully_completed

wait_PDU

mac_ContentionResolutionTimer

Temporary_C_RNTI:= '0'b

non_successful_Contention_Resolution

Msg3_req

R.A_Procedure_successfully_completed

true

false

false

true

true

false

Figure 9. Contention resolution

V. IMPLEMENTATION SIMULATION RESULTS

This section shows the implementation simulation results
for Non Successful random access procedure different
scenarios and how MAC dealt with them. SDL provides
functional simulation, which uses MSC simulator trace
introduced by Telelogic Tau SDL and TTCN Suite 4.0,
which is launched by the Telelogic Tau Company.

A. Non successful RAR

Figure 10 and Figure 11 show the simulation result of a
non successful RAR for a contention-based random access
procedure, where the preamble_trans_max is set to (2); After
receiving CMAC_RANDOM_ACC_REQ signal, the
Random_access_control process randomly selects

preamble_value‎ (“100110”)‎and‎ the‎rest‎of‎Random‎Access‎
Resources including preamble_received_target_power (-68),
then it transit from Idle state to Random_Access_
Response_Reception state. The Random_access_control
process receives Random_Access_Response_MAC_PDU
during RAR_window_timer time, the PDU includes: a
backoff‎ ID‎ (“0011”),‎ RAPID‎ (“001000”)‎ and‎ RAPID‎
(“101010”).‎ As‎ none‎ of‎ the‎ received‎ RAPIDs‎ match‎ the‎
transmitted pramble_value, the Random_access_control
process will transit to Random_Access_Response_Reception
state waiting for a new PDU. Unfortunately, the
RAR_window_timer expires without receiving PDU,
accordingly the RAR step is non successful and UE has to
start another random access procedure trial. The second trial
starts after waiting a backoff time (13.1 ms).

114Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

The UE starts the second (last) trial and randomly selects
preamble_value‎ (“100101”).‎ The‎ preamble_received_
target_power is also increased to be (-4). As the first trial the
RAR step is not successful, consequently MAC sends
Non_successful_Random_Access_process signal to RRC.

B. Non successful contention resolution

Figure 12 to Figure 15 show a non successful random
access procedure due to a problem in the contention
resolution step. The preamble_trans_max for this procedure
is set to (3); After receiving CMAC_RANDOM_ACC_REQ
signal, the Random_access_control process randomly selects
preamble_value‎ (“011111”)‎and‎ the‎rest‎of‎Random‎Access‎
Resources including preamble_received_target_power (-68),
then it transit from Idle state to Random_Access_
Response_Reception state.

The Random_access_control process receives
Random_Access_Response_MAC_PDU during RAR_
window_timer time, as it is seen in ‎Figure 12. , the PDU
includes RAPID‎(“01111111”)‎and‎there‎is‎no backoff field.

As the received RAPID match the transmitted
pramble_value, the Random_access_control process
considers the RAR to be successful and it informs the
physical layer with the received parameters (TAC,
RAR_Grant).

As the Random_access_control process is now ready to
send message3, it first informs the physical layer with the
power required to send it (MSG_3_POWER signal). Then, it
sends msg3_req signal to the multiplexing_and_assembly
process in order to send message3 (including the UE's
identity) and to take a copy of it for contention resolution.

After starting the mac_Contention Resolution Timer the
Random_access_control process is now waiting for
contention resolution message. upon receiving contention
resolution message (MAC_PDU_DL signal) the
Random_access_control process terminate the timer and
starts filtering the received PDU, but unfortunately the
identity in the received PDU does not match the transmitted
UE's identity. Accordingly, the contention resolution is
considered non successful and UE has to start another
random access procedure trial, where the UE will starts the
new trial immediately (Delay_Timer set to zero) as there is
no backoff indication from the eNodeB.

In the new trial, UE selects a new random preamble and
repeats the steps again, but also a problem occurs in the
contention resolution. The UE starts the third (last) trial, but
also a problem occurs. Now, the UE has reached to the
maximum number of trials (3), and so
Non_successful_Random_Access_process signal is sent to
RRC.

Random_access_control_1_11

process
Random_access_control

PHY_1_12

process
PHY

Multiplexing_and_assembly_1_10

process
Multiplexing_and_assembly

RRC_process_1_9

process
RRC_process

env_0

Simulation trace
generated by
SDL Simulator 4.4

my_wait

Random_Access_Response_Reception

Random_Access_Response_Reception

Waiting_for_Msg3_parameters

S0_3

S0_2

S0_1

wait_the_reply

MSC SimulatorTrace

preamble_value

('110000'B)

user_env

CMAC_RANDOM_ACC_REQ

preamble_received_target_power

(-68)

frame_value

(7)

subframe_value

(6)

preamble_value

('100110'B)

Random_Access_Response_MAC_PDU

('10000011110010000110101001111111111111100000001111111111000000000001110001110001100110011001111111000110010101011110001111'B)

RAR_window_timer(0.0030)

Delay_Timer(0.0131)

Figure 10. Non successful RAR simulation (1)

115Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

Figure 11. Non successful RAR simulation (2)

Random_access_control_1_3

process
Random_access_control

PHY_1_4

process
PHY

Multiplexing_and_assembly_1_2

process
Multiplexing_and_assembly

RRC_process_1_1

process
RRC_process

env_0

Simulation trace
generated by
SDL Simulator 4.4

Wait_msg3_Reply

Random_Access_Response_Reception

Idle

msg3_state

Waiting_for_Msg3

Waiting_for_Msg3_parameters_2

Waiting_for_Msg3_parameters_1

Waiting_for_Msg3_parameters

S0_3

S0_2

S0_1

wait_the_reply

msg3_state S0S0

MSC SimulatorTrace

mac_ContentionResolutionTimer(16.0000)

CMAC_RANDOM_ACC_REQ
preamble_value

('011111'B)

subframe_value

(6)

frame_value

(7)

preamble_received_target_power

(-68)

Random_Access_Response_MAC_PDU

('01011111000000011111111111110000000000000011111111111110001111'B)

RAR_window_timer(0.0030)

TAC

('00000011111'B)

RAR_Grant

('11111111000000000000'B)

MSG_3_POWER

(-66)

Msg3_req

Msg3_reply

('1100001111'B)

MAC_PDU_UL

('1100001111'B)

user_env

Figure 12. Non successful contention resolution simulation (1)

Random_access_control_1_11

process
Random_access_control

PHY_1_12

process
PHY

Multiplexing_and_assembly_1_10

process
Multiplexing_and_assembly

RRC_process_1_9

process
RRC_process

env_0

Idle

Random_Access_Response_Reception

Random_Access_Response_Reception

S0_3

S0_2

S0_1

Waiting_for_Msg3_parameters

S0

Non_Successful_Random_Access_Process

RAR_window_timer(0.0030)

Random_Access_Response_MAC_PDU

('10000011110010000110101001111111111111100000001111111111000000000001110001110001100110011001111111000110010101011110001111'B)

preamble_value

('100101'B)

subframe_value

(6)

frame_value

(7)

preamble_received_target_power

(-4)

env_0 RRC_process_1_9
process

Multiplexing_and_assembly_1_10
process

Random_access_control_1_11
process

PHY_1_12
process

116Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

Random_access_control_1_3

process
Random_access_control

PHY_1_4

process
PHY

Multiplexing_and_assembly_1_2

process
Multiplexing_and_assembly

RRC_process_1_1

process
RRC_process

env_0

Random_Access_Response_Reception

my_wait

wait_PDU

msg4_Waiting

Waiting_for_Msg3_parameters

S0_3

S0_2

S0_1

S0

TAC

('00000011111'B)

frame_value

(7)

preamble_received_target_power

(-36)

Random_Access_Response_MAC_PDU

('01100101000000011111111111110000000000000011111111111110001111'B)

RAR_window_timer(0.0030)

subframe_value

(6)

preamble_value

('100101'B)

Delay_Timer(0.0000)

mac_ContentionResolutionTimer(16.0000)

MAC_PDU_DL

('0001110011010011110000000000000'B)

PDCCH_reception

env_0 RRC_process_1_1
process

Multiplexing_and_assembly_1_2
process

Random_access_control_1_3
process

PHY_1_4
process

Figure 13. Non successful contention resolution simulation (2)

VI. CONCLUSON AND FUTURE WORK

In this paper, the random access process main problems
are considered for both contention and non contention based
process and the way MAC sub-layer solve them are
explained as stated in 3GPP standard.

SDL/MSC is used to verify and validate the functionality
of the proposed solution for both unsuccessful RAR and the
unsuccessful contention resolution problems and reporting
the upper layer with unsolved ones. A reduced size code is
generated, which can be integrated with the rest of the
layers’‎processes,‎when‎implemented,‎to‎produce‎a‎complete‎
E-UTRAN system. Also, the introduced methodology can be
used to implement other processes in the MAC sub-layer or
any control layer protocols of LTE system.

REFERENCES

[1] Ericsson, June. "Ericsson mobility report." (2014).‏

[2] D. Astély, E. Dahlman, A. Furuskär, Y. Jading, M.
Lindström,‎ and‎S.‎Parkvall,‎ “LTE:‎The‎Evolution‎of‎Mobile‎
Broadband,”‎ IEEE‎Comm.‎Mag.,‎ vol‎ 47,‎ no.4,‎ 2009,‎ pp.44-
51,.

[3] 3GPP TR 25.913: Requirements for Evolved UTRA (E-
UTRA) and Evolved UTRAN (EUTRAN).

[4] S. Yi, S. Chun, Y. Lee, S. Park, and S. Jung, “Radio‎Protocols‎
for LTE and LTE-advanced”.‎John‎Wiley‎&‎Sons,‎2012.‏

[5] 3GPP. TS 36.321 V 9.6.0 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network;

Evolved Universal Terrestrial Radio Access (E-
UTRA);Medium Access Control (MAC) protocol
specification; (2012-03)

[6] A. N. Khan, J. Khalid, and H. K. Qureshi, “Performance‎
analysis of contention-based random access procedure in
clustered‎LTE‎networks”.‎ In: Next Generation Mobile Apps,
Services and Technologies (NGMAST), 2013 Seventh
International Conference on. IEEE, 2013. p. 203-209.

[7] Z.‎Chen‎and‎Y.‎Zeng,‎“Random‎Access‎Control‎for‎M2M‎in‎
LTE‎ System”‎ International‎ Journal‎ of‎ Distributed‎ Sensor‎
Networks, Volume 2013, pp. 1-8, Article ID 313797.

[8] J. Löhr, H. Suzuki, O. Gonsa, and M. Feuersänger,
"Enhanced random access procedure for mobile
communications." U.S. Patent No. 8,737,336. 27 May 2014.‏

[9] M. S. Vajapeyam, et al. "Random access procedure
enhancements for heterogeneous networks." U.S. Patent No.
8,666,398. 4 Mar. 2014.‏

[10] D. T. Wiriaatmadja and K. W. Choi, "Hybrid Random Access
and Data Transmission Protocol for Machine-to-Machine
Communications in Cellular Networks." Wireless
Communications, IEEE Transactions on 14.1 (2015): pp. 33-
 ‏.46

[11] E. Dahlman, S. Parkvall, and J. Skold, “4G:‎ LTE/LTE-
advanced for mobile‎broadband.”‎Academic‎press,‎2013.‏

[12] M.‎ S.‎ Yousef,‎ H.‎ A.‎ Elsayed,‎ and‎ A.‎ Zekry,‎ “Design‎ and‎
Simulation‎ of‎ Random‎ Access‎ Procedure‎ in‎ LTE”‎
International Journal of Computer Application, Foundation of
Computer Science, (IJCA 0975 – 8887), Vol 110, Issue 16,
Jan. 2015, pp 16 - 22, New York, USA.

117Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Khan%2C%20A.N..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Khalid%2C%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Qureshi%2C%20H.K..QT.&newsearch=true

Random_access_control_1_3

process
Random_access_control

PHY_1_4

process
PHY

Multiplexing_and_assembly_1_2

process
Multiplexing_and_assembly

RRC_process_1_1

process
RRC_process

env_0

S0_3

S0_2

S0_1

my_wait

wait_PDU

msg4_Waiting

Wait_msg3_Reply msg3_state

S0

Waiting_for_Msg3

Waiting_for_Msg3_parameters_2

Waiting_for_Msg3_parameters_1

RAR_window_timer(0.0030)

preamble_received_target_power

(-4)

frame_value

(7)

subframe_value

(6)

preamble_value

('101100'B)

TAC

('00000011111'B)

RAR_Grant

('11111111000000000000'B)

MSG_3_POWER

(-34)

Msg3_req

Msg3_reply

('1100001111'B)

PDCCH_reception

MAC_PDU_DL

('0001110011010011110000000000000'B)

mac_ContentionResolutionTimer(16.0000)

Delay_Timer(0.0000)

MAC_PDU_UL

('1100001111'B)

env_0 RRC_process_1_1
process

Multiplexing_and_assembly_1_2
process

Random_access_control_1_3
process

PHY_1_4
process

Figure 14. Non successful contention resolution simulation (3)

118Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

Random_access_control_1_3

process
Random_access_control

PHY_1_4

process
PHY

Multiplexing_and_assembly_1_2

process
Multiplexing_and_assembly

RRC_process_1_1

process
RRC_process

env_0

Random_Access_Response_Reception

Waiting_for_Msg3_parameters

Waiting_for_Msg3_parameters_2

Waiting_for_Msg3_parameters_1

msg3_state

Wait_msg3_Reply

Waiting_for_Msg3

Idle

wait_PDU

msg4_Waiting

S0

S0

Random_Access_Response_MAC_PDU

('01101100000000011111111111110000000000000011111111111110001111'B)

RAR_window_timer(0.0030)

Msg3_req

Msg3_reply

('1100001111'B)

MAC_PDU_UL

('1100001111'B)

Non_Successful_Random_Access_Process

mac_ContentionResolutionTimer(16.0000)

MAC_PDU_DL

('0001110011010011110000000000000'B)

PDCCH_reception

TAC

('00000011111'B)

RAR_Grant

('11111111000000000000'B)

MSG_3_POWER

(-2)

env_0 RRC_process_1_1
process

Multiplexing_and_assembly_1_2
process

Random_access_control_1_3
process

PHY_1_4
process

Figure 15. Non successful contention resolution simulation (4)

119Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

