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Abstract— In this work, we focus our attention on 

dispersion characteristics of Transverse Electric (TE) and 

Transverse Magnetic (TM) surface modes, leaky modes and 

volume modes of double-positive grounded slab. We have 

analyzed the dispersion using the Transverse Resonance 

Method (TRM). The simple method represents the boundary 

conditions of the grounded slab by an equivalent circuit. It 

reveals that this structure, though it contains several types, 

just the ordinary type exists for surface modes and just the 

improper type exists for leaky modes. Numerical results 

illustrate the properties and the existence conditions for these 

modes. 

Keywords— Grounded SLAB; surface modes; volume 

modes; leaky modes; Transverse Resonance Method. 

I.  INTRODUCTION  

A few years ago, the miniaturization of antennas leads to 
the appearance of new modes which are the surface modes. 
These modes have received considerable attention in the 
scientific community. Surface modes are used in different 
fields for many applications,  such as  the surface Radar [1], 
the surface wave filters [2], the surface plasmons for 
biodetection[3] as well as the seismic imaging with surface 
wave [2]. In electromagnetic, these modes can approach the 
antenna elements and this rapprochement generates the 
coupling phenomenon. Therefore, they provide a new way 
to miniaturization [4]. Surface modes exist at a 
discontinuity interface between two different mediums. At 
this interface, leaky modes can also exist. Usually, leaky 
modes are excited when perturbing a surface mode or a 
guided mode propagating in an open waveguide with proper 
periodic corrugations or modifications [5]. These Leaky 
modes propagate faster than the speed of the light and, at 
the same time, they leak  energy along the interface. Leaky 
modes are used for applications in the millimeter-wave 
ranges.  

Based on the modal analysis for double-positive 
grounded slab, the present authors have revealed that only 
surface and leaky modes can exist for TE and TM 
polarization [6][7],but they did not demonstrated the 
existence of volume mode which is identified as the 
magnetostatic wave. Volume mode is characterized by the 
limited field to structure and  no energy is lost from it.  

In this work, we investigate the propagation of real 
modes (i.e., surface, volume) [8][9] and complex modes 
(i.e., leaky) [5][10] supported by a slab placed on a 
perfectly conducting ground plane (grounded slab). In 
Section 2, we will present the other existing works and we 
will compare them with our work. In Section 3, we will 
analyse the dispersion characteristics of TE and TM modes 
based on a general method called the Tranverse Resonance 
Method (TRM) [11][12]. In Section 4, we will discuss the 
results obtained from the MATLAB simulations. In Section 
5, we will conclude this paper. 

II. STATE OF THE ART 

In 2003, Paolo Baccarelli has worked on the propagation 

of surface waves in a particular structure double-negative 

metamaterial grounded slab [8]. In 2004, the same author 

has presented the dispersion and radiation properties of 

leaky waves on the same structure [7]. He has demonstrated 

that leaky waves of only the proper type exist in double-

negative grounded slab, while proper or improper leaky 

waves exist in single negative grounded slab. Paolo 

Baccarelli has investigated in his work only the dispersion 

of surface and leaky modes on single- and double-negative 

grounded slabs.  

Our work focuses on the dispersion of surface, volume 

and leaky modes in double-positive grounded slab. In 

literature, there are many techniques through which we can 

realize this analysis such as the analytical technique dyadic 

Green’s function [13][14] which can be estimated to 

complex forms depending on how the material is described 

macroscopically. Another technique is postulating fields on 

one side of the discontinuity and using Snel’s law of 

reflection and refraction [15]. In our study, we use The 

TRM. This approach allows deriving the dispersion 

properties of real and complex modes for open structure in a 

simple way. It is also useful to describe the open structure 

with an equivalent circuit parameters as admittance or 

reflection coefficient. This circuit model permits to find in a 

simple way the dispersion equation for the two polarizations 

TE and TM. The resolution of these two equations permits 

10Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-514-2

ICWMC 2016 : The Twelfth International Conference on Wireless and Mobile Communications (includes QoSE WMC 2016)



to know the modes in this structure and their existence 

conditions. 

III. ANALYSIS  

Let us consider a grounded slab characterized by a 
lossless dielectric medium of height d and relative 

constitutive parameters 
r and

r 0   . It is infinite along 

the two directions x and z, as shown in Fig.1. 

 
Figure 1. Schematic illustration of infinity grounded slab. The dielectric 

slab is characterized by a relative permittivity 
r  and permeability 

r . 

Taking into consideration the assumption that no 
variation along the x direction and that the electromagnetic 
field depends on time and the longitudinal coordinate 

as zj( t k z)
e
   , the real and complex modes can be separated 

into two polarizations TE modes with 0y zE E  and 

TM modes with 0y zH H  . The field related to such 

structure can be travel in an equivalent transmission line 
model illustrated in Fig. 2. This model describes the 
transverse discontinuity with equivalent network parameters 
to simplify the resolution of the Maxwell equations using 
the TRM.   

 
Figure 2. Equivalent circuit used to illustrate the transverse Resonance 

Method. 

The symbolic representation of the two homogeneous 
media (air, dielectric) separated by the discontinuity plan 

(xoz)  is given by two equivalent admittances 
1Y and 2Y . 

The equivalent admittance 2 z 0Y (k ,k ) of the dielectric slab 

is a function of the transverse propagation constant zk  and 

the free space propagation constant 0k . Consequently, it is 

then possible to find the dispersion equation by using the 

univalent circuit. The variable j , which is a virtual current 

source, is zero at the discontinuity plan. It is equivalent to 
an open circuit. E is a dual grader [14]. 

According to Kirchhoff’s current and Ohm’s law, we 
deduce :   

1 2(Y Y ) 0                                                                   (1) 

  

Where 
1 1MY y  and 

2 2M y2Y y coth(k d) .  

TE,TM   indicate the polarization supported by the 

structure. The expression of the relevant characteristic 
admittances for the two polarizations areas are the 
following 
[15]:
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Where 1k y  and 2k y  are the transverse wavenumbers. 

The use of the equivalent circuit model allows us to 

derive the dispersion relation of the structure for TE and TM 

modes: 

TE:          

2 2 1k coth(k ) k 0                                               (6)y y yd  

 

TM:            

2 2 1k (k ) k 0                                              (7)y y y rth d  

 

The resolution of these two equations gives the 

transverse propagation constant 
zk  of real and complex 

modes. The real modes propagate in z direction with a real 

propagation constant 
z zk    and the complex modes 

propagate with a complex propagation constant 

z z zk j    [16].  

A. Surface Modes 

1) TM Polarization 
In the TM polarization, the magnetic fields can be 

written in the two regions as: 

1kk

1 1
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Surface mode propagates without radiation along the 

structure. There is no attenuation of the wave along z since 
the dielectric slab is lossless. Therefore, the propagations 
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constant 
zk  is real (

z zk   ). This mode is characterized by 

a field that is exponential in the air and that is confined 
above the interface between the two media [17]. So, the 

wave number 
y1k  is real 

y1 y1k    while 
y1  is positive.By 

applying the difference between the two wave equations, we 
obtain the result equation: 

 2 2 2

2 1 0 ( 1)                                                 (9)y y rk k    

 

Since 1r   and 1y  is a positive real, the 

wavenumber 2yk  can be real or purely imaginary. In case 

2yk is real, the dispersion equation can be written as: 

1 2 2( )                                          (10)r y y yth d    

 

This equation implies that 
r 0   but it is not compatible 

with 1r  . Therefore, the wave number 2yk  is purely 

imaginary. At this condition, these surface modes can be 

obtained graphically by finding the intersection between two 

equations that are written as: 
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The first equation corresponds to the tangent function. 
The second one corresponds to a circle with center (0,0) and 

radius a , where 0 1ra k d   . We will present in 

Fig.3. 

2) TE Polarization 
In the TE polarization, the electric fields can be written 

in the two regions as: 
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In this case, the dispersion equations can be written as:

 1 2 2

2 2 2

1 2 0

cot( )
                                    (13)
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As for the TM polarization, the intersection of these two 

equations allows us to find the surface modes which are 
supported in this structure. This intersection will be shown in 
Fig. 4. 

B. Volume Modes 

Volume modes propagate in the two media of this 

structure without radiation along the longitudinal z direction, 

and  with a real propagation constant 
z zk   . The magnetic 

field in the TM polarization is represented by these 

equations in the two regions: 
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The difference between the two wave equations allows 
us to obtain this equation:

 2 2 2

2 1 0 ( 1)                                    (15)y y rk k    

 

We imply that the wave number of the slab  
y2k  is 

purely imaginary. Therefore, we can write these two 
equations:
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In order to find volume modes, we trace these two 

equations in the landmark (
y2d /  ,

y1d /  ) for a height 

d=1.5cm and a relative permittivity 
r . 

In TE polarization, the electric field is written in the two 
regions by the two equations:  
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Volume mode is characterized by a real wavenumber 

1 1k y y and a purely imaginary wavenumber 

2 2k y yj  . It is represented by the intersection of the 

two equations which are written as:

 1 2 2
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The first equation corresponds to cotangent function. 
The second one corresponds to a circle with center (0,0) and 

radius a , where 0 1ra k d   . 

C. Leaky Modes 

The leaky mode propagates with radiation along the z 

direction [10]. It can radiate either forward or backward 

with a complex propagation constant  
z z zk j    . The 

leaky mode is characterized by two complex wave numbers 

y1k  and  y2k . 
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In a conventional dielectric ( 0r  ), the leaky mode is 

improper modes. But in a dielectric of a negative 

permittivity, the leaky mode is proper mode [4]. As a 

conclusion, in the studied structure only complex improper 

modes may exist, while complex proper modes are 

forbidden. 

 In case TE polarization, the dispersion equation can be 

written as:  

coth( )                                                    (19)W Z Z 

 

Where: 1W k y d u jv    and 
2k yZ d x jy  

 

By taking into consideration that 
2 2 2

2 1 0 ( 1)y y rk k k     , we obtain the two equations: 

2 2 2

2 2

cosh(2 )cos(2 )( ) 2 sinh(2 )sin(2 )
(20)

sinh(2 )sin(2 )( ) 2 cosh(2 )cos(2 ) 0

x y x y xy x y a

x y y x xy x y
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
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The solutions of this system illustrate the leaky mode for 

the grounded slab with relative permittivity 
r 2.2   and a 

height d=1.5cm. 

IV. NUMERICAL RESULTS AND DISCUSSION  

There are two kinds of surface modes, ordinary surface 
modes and surface plasmon [4]. According to our analysis, 
we conclude that only the trapped surface modes can exist 

in our structure because 0 0z rk k   . However, the 

existence of surface plasmon is conditioned by 

0z rk  . It can be present in other structures like 

surface plasmon waveguides and plasma slabs. The 
ordinary surface mode is illustrated in Fig. 3 by a red cross, 
which represents the intersection of the tangent function and 
the circle whose center (0,0) and radius a  for TM 

polarization. 
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Figure 3. Location of TM surface modes for grounded slab with 

r 2.2   . The green circle corresponds to d=1cm and the pink circle to 

d= 1.5cm.  

 For TE polarization, ordinary surface mode is illustrated 

in Fig. 4 by a red cross, which represents the intersection of 

the cotangent function and the circle whose center (0, 0) and 

radius a. 
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Figure 4. Location of TE surface modes for grounded  slab with 

r 2.2   for three values of heigth d = 0.74cm (red circle),d=1cm (green 

circle) and d=1.5cm (pink circle).  

When we increase the height d and the dielectric 

permittivity
r  , the number of surface modes supported by 

this structure increases for both polarizations. This number 
is equal to n+1 with n as a natural number satisfying the 

relation 1n a n    [4].   

In TE polarization, surface modes cannot exist below 
the limit value of radius a which is equal to 0.74cm. The red 

circle in Fig. 4 represents the limiting case. 

Fig. 5 shows the dispersion characteristics of the surface 

mode for TM and TE polarizations supported by a grounded 

slab with relative permittivity 
r 2.2  , permeability 

r 0 1    and height 1.5d cm .  
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Figure 5. Dispersion plots of  TM and TE ordinary surface modes for 

grounded slab showing the real propagation constant ( )  versus the 

operating frequency (f) . The dielectric slab is characterized by  

r 2.2  , r 0 1     and   d = 1.5cm. 
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One of the dispersion characteristics of grounded slab is 

that the cutoff of the principal mode TM 0 of surface mode 

does exist, as shown in Fig. 5. But, in case  1r  , the  

TM 0surface modes cutoff is suppressed. 

The cutoff frequency of each guided modes of higher-order 

is also shown in Fig. 5 for TM and TE polarizations. The 

cutoff frequency  is the lowest frequency of guided 

propagation at which 
0z K  [18]. For higher-order 

modes, when the frequency is increased, the propagation 

constant approaches to 
0 rK  but it cannot exceed this 

value (
0 rK  ). This limit is the upper limit of ordinary 

surface modes, whereas, the lower limit is k0. This means 

that the ordinary surface modes are slow. When the relative 

permittivity of slab is increased, the propagation constant 

decreases and the lost power is confined near the slab 

region. 

 
In Fig. 6 and Fig. 7, the graphic location of the second 

kind of real modes, i.e., volume mode are represented in 
TM and TE. Volume mode is represented by a red cross 
which is the intersection of two curves. The first curve 
represents the tangent function for TM polarization and 
cotangent for TE polarization while the second curve 
represents the hyperbola function. 
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Figure 6. Location of TM volume modes for grounded slab of height 

d=1.5cm with 
r 2.2   and 

r 0 1    .    
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Figure 7. Location of  TE volume modes for grounded slab of height 

d=1.5cm with 
r 2.2   and 

r 0 1    .   

 We can see that when we increase the height d of the 
structure, the number of the volume mode decreases for the 
two polarizations, and the principal mode TM0 can be 
suppressed. This number equal to m-1, when m is a natural 

number satisfying the relation 1m a m   . 

 In Fig. 8, the dispersion characteristics of volume mode 
(for the real propagation constant versus frequency) are 
represented in TM and TE polarizations for the grounded 

slab structure with  
r 2.2   and 

r 0 1    . 
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Figure 8. Dispersion plots of TE and TM volume modes for grounded 

slab of heigth d = 1.5cm with a relative permitivity 
r 2.2   .  

 

Through Fig. 8, we observe that the real propagation 
constant cannot exceed the propagation constant in free 
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space (i.e., 
z 0K  ). Thus, the volume mode for both 

polarizations exists in the grounded slab structure. The 
representation of Fig. 8 shows that the dispersion curve of 
first mode of higher-order TM1 tends, on the one hand, 
towards the fundamental mode TM0 in low frequencies, and 
disappears, on the other hand, when the frequency 

2.1f GHz . The dispersion curve of the third mode of 

higher-order TM3 tends toward that of the principal mode 
TM0 of volume mode in high frequencies. In polarization 
TE, there is no fundamental mode. The mode of higher-
order TE2 appears at the same frequency of TE3 where f= 
4.89GHz and disappears at the same frequency of TE1 
where f=5.18GHz. 

  

In grounded slab with positive permittivity and 
permeability, just one type of the complex mode exists, 
which is the improper mode [7]. The dispersion 
characteristics of these modes are represented in Fig. 9. The 

dielectric slab is characterized by height d=1.5cm, 
r 2.2   

r 0 1     and height d = 1.5cm.  
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Figure 9. Dispersion curves of  normalized real and attenuation constants 
of TE leaky modes for grounded dielectric slab . 

 

 We can see that leaky modes exist in the grounded slab 

when z 0K  . When the frequency is lower than the first 

cutoff frequency of the surface mode 1 4.4cf GHz , all 

complex modes exist with very high normalized z  and z . 

When the frequency increases, the normalized real constants 

(0,0) decrease rapidly within a very narrow frequency 

range and remain constant at r .  However, the 

normalized attenuation constants 0z k increase rapidly 

and remain constant at zero. Leaky mode is characterized by 

an order mode n. The minimum of n for  leaky mode must be 

equal to the  maximum of this order mode  for surface mode 

[4].  

 

V. CONCLUSIONS 

In this paper, we investigate the dispersion 
characteristics and existence conditions of real and complex  
TE and TM modes. These modes are separated by the 
nature of the propagation constant. Surface mode is 

characterized by 0 0z rk k   , volume mode is 

characterized by 0 0z rk k   and leaky mode is 

characterized by 
z 0K  . We observe that only the 

improper type of the leaky mode and only ordinary type of 
the surface mode occur in the double-positive grounded 
slab. The analysis are achieved by a simple method which is 
the TRM. 
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