
Energy Management of a Set of Sensor Nodes at Application Level using the LINC

Middleware

Olesia Mokrenko

Air Liquide Medical Systems
Parc de haute technologie,

6 rue Georges Besse,
F-92182 Antony, France

Email: olesia.mokrenko@airliquide.com

Suzanne Lesecq, Maria Isabel Vergara-Gallego

Univ. of Grenoble Alpes
CEA, LETI, MINATEC Campus

17 rue des Martyrs,
F-38054 Cedex 9, France

Email: FirstName.LastName@cea.fr

Abstract—Optimization of the energy consumption of sensor
networks is traditionally performed either at the sensor node
level or at the network level. However, more energy savings
can be obtained if the application that makes use of the sensor
nodes is considered. In order to achieve such extra energy gains,
control theory can be applied. This paper summarizes control
strategies implemented to minimize the energy consumption of
a set of sensor nodes, while ensuring the application Quality of
Service (QoS), this latter being mainly expressed with a minimum
number of samples that must be available at the application level
at each sampling time. With the Control strategies proposed, the
sensor network lifetime is increased compared to the case without
control strategy at application level. The control strategies have
been implemented and evaluated on a real testbed composed of
heterogeneous sensor nodes, and using the LINC middleware for
node coordination.

Keywords–Energy management; control strategy; middleware.

I. INTRODUCTION

Sensor Networks, and especially their wireless version
(WSNs), have been a hot research topic for the last decades [1].
The optimization of energy consumption, in particular when
the nodes are powered by batteries, is mandatory if the goal is
to deploy sensor nodes that will run autonomously for years,
without battery changes. This goal can be achieved if the power
consumption is drastically decreased at all the “system” levels,
from the sensor node itself to the communication protocols, but
also at the application level.

At sensor node level, several improvements already ex-
ist, ranging from the design of novel radio technologies [2]
to microcontroller architectures [3], and energy management
methodologies [4]. Many approaches have been proposed at
the different layers of the communication stack to increase the
network lifetime [5]. They mainly minimize the node active
period using duty cycle, optimize routing protocols, and reduce
the quantity of transmitted data. However, the WSN lifetime
can be extended if the energy consumption is reduced not only
at the node level but also at a more global level, i.e. including
the applications running on top of the WSN.

A trade-off between performance (or application QoS) and
energy consumption must be found. A promising solution to
reach this trade-off is to rely on Control Theory. From a

model of the system (here a WSN system), possibly taking into
account constrains, Control Theory can ensure the application
QoS while minimizing the energy consumption of the whole
WSN. This control objective can be naturally expressed as
an optimization problem. The associated control law will then
require a bit of information from the nodes and protocol layers
(e.g., energy consumption of the nodes, remaining energy in
the batteries of the nodes, the work each node has to perform)
in order to manage the nodes and the whole system. To our
knowledge, most of the work relying on Control Theory for
the minimization of energy consumption in WSNs are related
to managing the transmission power of the sensor nodes. These
mechanisms are applied at the node level, where no knowledge
regarding the global state of the network is required. Moreover,
the application constraints are not taken into account. Note
that [5] reviews various energy conservation schemes but none
of them seems grounded in control theory. [6] proposes a
classification of power control mechanisms in WSN, based
on Control Theory and actually related to power control
protocols only. The present paper details the implementation,
on a real test-bed, of power control strategies at application
level based on Model Predictive Control (MPC) and on a
Hybrid Dynamical System (HDS) approach. The objective
of both strategies is to minimize the energy consumption of
the whole WSN while the application QoS is fulfilled. This
problem is naturally expressed as an optimization one with
constraints, which boils down to MPC. However, the system
to be controlled (i.e., the WSN) is hybrid, with evolution
of the battery charge driven by differential equations while
the state of the sensor nodes is discrete (e.g., on, off, sleep
modes). Therefore, a HDS approach is also a good candidate
for the WSN power control. For the selected test-bed, the MPC
strategy described in [7],[8], doubles the WSN lifetime when
compared to the implementation without control at application
level. Theoretical details regarding the HDS strategy can be
found in [9]. Preliminary results show that, in simulation, the
lifetime is extended by a factor slightly smaller than 2, which
is logical due to the sub-optimal solution provided by the HDS
approach.

The main goals here are to describe how the gap between
theory and implementation has been closed, and demonstrate
and validate the theoretical results. Thus, the control strategies
will not be described in details, and the reader can refer

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-514-2

ICWMC 2016 : The Twelfth International Conference on Wireless and Mobile Communications (includes QoSE WMC 2016)

to [7],[8],[9] for details regarding the control approaches.
Two communication technologies are deployed on the test-
bed, leading to a heterogeneous network. This shows that the
proposed strategies are independent from the communication
technologies. The implementation is based the LINC [10] co-
ordination middleware. Thanks to its resource-based approach
and transactional guaranties, LINC makes it possible for the
global controller to take decisions according to the current
state of the sensor nodes, and to force the WSN to behave as
expected at the application level.

The paper is organized as follows. Section II presents a
description of the sensor network considered and the proposed
application. Section III describes how the network has been
implemented and integrated with the power controllers (MPC
and HDS) at application level. Section IV summarizes the
implementation results. Finally, Section V discuses the related
works and Section VI summarizes the main findings and gives
future work directions.

II. SYSTEM DESCRIPTION

Consider a WSN that has been deployed to monitor en-
vironmental parameters in a given zone in a building. The
parameters typically monitored are the temperature, the CO2

and humidity levels. The sensor readings are sent by the sensor
nodes to a sink node that will basically interact with building
appliances, e.g., the heating system or the air conditioning
units. Actually, measurements are collected to feed the Build-
ing Automation Systems that will control the temperature or
the ventilation in the given zone. These correspond indeed
to the application level. The present work deals with the
collection of enough measurements for the application to
perform its task (e.g., temperature control, ventilation control)
adequately. To reach a nominal behavior at the application
level, a given application Quality of Service (QoS) must be
reached. Here, the application QoS refers to the minimum
amount of information required for the correct functionality
of the application. It is defined with the sampling frequency
of the nodes and the quantity and quality of sensor readings.

In the present work, the sensor nodes are supposed to be
densely deployed in the zone, leading to information redun-
dancy. Thus, the minimum number of nodes needed to ensure
the application QoS is smaller than the total number of nodes
deployed. It is therefore possible to switch off some nodes,
leading to energy savings and network lifetime extension.
Moreover, a node can be replaced by another one when, for
instance, the first one runs out of energy.

The sensor nodes may differ from:

• the available energy: sensor nodes are powered by
batteries with possibly harvesting systems to harvest
energy. As a consequence, the nodes can have different
available energy;

• the energy consumption: to read a given environmental
parameter, the sensor nodes may require different
energy budgets, depending on their hardware;

• heterogeneity: sensor nodes can be heterogeneous re-
garding communication protocol, data format and/or
hardware characteristics.

As a consequence, the choice of the active nodes at a
given instant of time is not straightforward. Moreover, nodes
may become Unreachable) without notice. This disconnection
may be caused by energy shortage, communication troubles,
or hardware failures. Nodes may also “re-enter” the network
when they leave the Unreachable state if the Unreachable
condition is no more valid. As multiple hardware platforms
and communication protocols can be deployed, it is necessary
to rely on a middleware layer to support heterogeneity. Such
a layer abstracts the controller from the communication pro-
tocols, data formats, or other low level matters.

Fig. 1 illustrates the data collection system, split in four
levels: I) the sensor nodes, II) the communication infrastruc-
ture, III) the data collection and synchronisation level and IV)
the Controller. These levels are now detailed.

Communication

 infrastructure

...

Figure 1. WSN System levels

A. Sensor nodes

Sensor nodes are usually split in four main parts, namely,
computation, communication, sensing and power supply [11].
For each node, different power modes are defined, correspond-
ing to a combination of the state for each unit in the node.
The energy consumption of the node in a given power mode
is given in the node datasheet provided by the manufacturer.
The activity of the sensor nodes (i.e., sensing, computing,
communication) is usually “duty cycled”: the node periodically
wakes-up, senses environmental parameters, processes and
transmits these data, and finally enters the sleep mode (i.e.,
all units are disabled, waiting for a timer event). The node
consumption is related to the duty cycle.

The energy management strategies implemented here as-
sign a functioning mode to each Reachable node. Each func-
tioning mode is defined by a given period for the sensing and
communication tasks. Hence, all nodes in the network are duty
cycled, and their energy consumption depends on their duty
cycle for communication and sensing. Basically, the controller
(that implement either the MPC of a HDS approach) combines
information received from the nodes regarding their remaining
energy and the application QoS requirements, to decide the
most suitable functioning mode for each Reachable node.

Information regarding the remaining energy of the nodes
is sent on a periodic basis to the controller. Thus, a minimum
communication duty cycle is required for the proper function-
ality of the controller. Note that the remaining energy must be
estimated because it cannot be measured directly.

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-514-2

ICWMC 2016 : The Twelfth International Conference on Wireless and Mobile Communications (includes QoSE WMC 2016)

B. Communication architecture

In order to exchange data between the nodes and the sink,
a communication topology is chosen. Here, a star topology is
considered and the sensor nodes communicate directly with
the sink through a router. Hence, the controller can choose
to increase the communication period of one node, without
affecting the communication with the other ones.

Note that a cluster-tree topology can be easily imple-
mented. For this topology, the cluster coordinators are respon-
sible for forwarding information from nodes in the cluster.
Thus, coordinators are duty cycled and synchronized with the
associated nodes for data reception and forwarding. Hence,
to communicate with all the associated nodes, the wake-up
(or communication) period of the coordinator must be at most
the shortest communication period of all the associated nodes.
Therefore, the controller can change the functioning mode
of all end-nodes in the network. The functioning mode of
the coordinators are then set accordingly. Besides, further
parameters have to be taken into account by the controller. For
example, the number of hops required to send a packet to the
sink, which is proportional to the communication energy cost,
must be considered. All these factors can be easily integrated
in the controller. Nodes must inform their role in the network
(coordinator or end node) and the number of hops to the sink.
The controller will take into account all these aspects when
control decisions are provided, as in the star topology case.

More complex topologies, such as mesh networks, require
the controller to know the current topology and routing infor-
mation, which is highly dynamic. Indeed, the controller cannot
arbitrarily change the functioning mode of the nodes because it
can break the routing and topology maintenance mechanisms.
Thus, the integration with a mesh network requires extra
extension of our control strategies.

C. Data collection and synchronization

This third layer is in charge of data collection and syn-
chronization of the sensor nodes. It calls the controller when
its mandatory inputs are “ready”. These tasks are achieved
through the LINC [10] coordination middleware.

LINC uses an associative memory [12] implemented as
a distributed set of bags. This offers a decoupling in space
and time between data producers (here, the sensor nodes)
and data consumers (here, the controller). LINC has been
successfully used in various application domains. It currently
supports around 30 communication technologies. The associa-
tive memory also provides an abstraction layer to present all
the measurements in the same format to the controller.

To ensure the expected application QoS, the sensor nodes
communicate with the sink at a given time period (depending
on their functioning mode) that depends on the application
domain. Between two communication instants, the external
timer of the sensor node is activated according to the desired
period. Then, the nodes enter the sleep state, waiting for a timer
interrupt. However, the node oscillators may experience drift
over time. Therefore, if the clocks are not re-synchronized,
some nodes may wake up outside of the time-window accepted
by the sink. Moreover, if they wake up too early, their
measurements will be outdated when used by the controller. If

they wake up too late, the controller will not take their readings
into account as the nodes will be considered Unreachable.

To avoid synchronization issues, LINC ensures that the
clocks of the nodes are synchronized, with a synchronization
frame periodically exchanged. The synchronization period
depends on the type of oscillators being implemented in
the nodes (the more precise the oscillator, the longer the
synchronization period). This parameter can be determined
empirically or according to the characteristics of the nodes.
The synchronization procedure is completely independent from
the controller. Thus, this latter does not need to take care of
synchronization burden. It only processes the measurements
currently received from the Reachable nodes.

The time/space decoupling and the abstraction offered
by LINC have been particularly useful here. Indeed, it is
straightforward to ensure that the latest measurements are
available in the associative memory. The measurements are
simply added to a dedicated bag whenever this is required
(sampling/ synchronization periods). The controller is called
when the current state of the nodes is known. The LINC
application waits during a configurable time period to receive
information from nodes. If no information is received after this
time, the node is considered Unreachable.

D. Control design

The controller is based either on a Model Predictive Control
(MPC) or on a HDS approach. Details on these strategies are
provided in [7],[8],[9] and will not be reported here.

The energy consumption of each node during a sampling
period depends on the functioning mode that is assigned by
the controller. To increase the network lifetime (i.e., the time
the network can ensure the application QoS), the controller
must choose the functioning mode of each mode (which cor-
responds to the “control value”) in order minimize the energy
consumption of the whole set of nodes while the application
QoS is met. This objective is indeed an optimization problem
that can be solved using Model Predictive Control. Actually,
at each control sampling time, MPC minimizes a given cost
function (possibly under constraints) over a control horizon in
order to fix the control values. Due to the discrete nature of the
functioning mode (on, of, sleep, unreachable), the optimization
problem is a Mixed Integer Quadratic Programming (MIQP)
one, the optimization variables being both boolean values
(control value) and positive real values (available energy in
the node battery) with bounds. Moreover, a set of constraints
must be taken into account. The first subset is related to
the remaining energy in the batteries that must be strictly
positive to avoid battery damages (lower bound). Moreover,
the remaining energy cannot be infinite and a maximum value
cannot be exceeded. The second subset of constraints expresses
that each node can be in a unique functioning mode. The last
subset expresses the application QoS. The reader can refer to
[7] where theoretical details are provided.

The control objectives can also be achieved using a Hybrid
Dynamic System approach. Actually, the system under control
is hybrid per se: the remaining energy in the node battery
is conducted by differential equations while the functioning
modes are discrete values. Moreover, a given node will ex-
perience “jumps” from one mode to another one, depending

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-514-2

ICWMC 2016 : The Twelfth International Conference on Wireless and Mobile Communications (includes QoSE WMC 2016)

TABLE I. POWER CONSUMPTION OF FLYPORT PLATFORM AND
ENOCEAN TRANSCEIVER (Supply Voltage 3.3 V) [13], [14]

Mode Power Remarks
Wi-Fi connected

162, 70 mA MCU on / Wi-Fi on, connected to access
point

Wi-Fi not con-
nected 39, 75mA MCU on / Wi-Fi on but not connected

EnOcean Rx 61.21 mA No Wi-Fi
EnOcean Tx 52.21 mA No Wi-Fi
Hibernate 28,21 mA MCU on and Wi-Fi off
Sleep 1,44 mA MCU off and Wi-Fi off

on the controller decisions. This will modify the differential
equation that models the node energy consumption. The reader
can refer to [9] where theoretical details are provided.

Both controllers have been first designed in the Matlab
environment, and evaluated in simulations. The numerical
values used in simulation (e.g., maximum energy in the node
batteries, energy consumption in each functioning mode) have
been extracted from datasheets [13]. Then, the controllers have
been written in python, and optimized to reach an efficient
implementation in terms of computational time.

III. IMPLEMENTATION DESCRIPTION

The main objective of this work was to validate the
theoretical and simulation results obtained with the energy
management strategy at application level, on a real test-bed.
This latter is now described, along with the data collection
approach.

A. Test-bed description

The hardware test-bed consists of one sink, one router,
and 6 sensor nodes spread over a given zone. The sensor
nodes are the Openpicus Flyport Wi-Fi 802.11g [13] with
either Wi-Fi or EnOCean TCM-310 [14] transceivers, leading
to a heterogeneous network. Table I summarizes the power
consumption of the Flyport platform. The Openpicus Flyport
Wi-Fi 802.11g platforms embed a Microchip PIC 16-bits
processor with a Wi-Fi radio module and ready-to-use proto-
col stacks. Openpicus provides a FreeRTOS-based framework
implementing the CSMA-CA MAC protocol and the TCP
transport protocol. Applications are written as FreeRTOS tasks.

When using Wi-Fi, Openpicus nodes form an infrastructure
topology: they connect to one access point or router. This latter
forwards all the received packets from/towards the sink. For the
EnOcean protocol, an EnOcean transceiver is connected to the
GPIOs of the Openpicus platform. This transceiver exhibits
very low-power serial communication, that permits the ex-
change of very short frames. The EnOcean node communicates
directly with the sink, this latter making use of an EnOcean
USB dongle module.

B. Functioning mode definition

Two functioning modes and an Unreachable state are
defined for each node, for both the Wi-Fi and the EnOcean
transceiver:

• in Mode 1 (Active), both the communication and sens-
ing tasks are activated periodically. The sensing period
is equal to the communication duty cycle Ts = 1min;

• in Mode 2 (Standby), the node sensing unit is disabled.
The node wakes-up periodically, as requested by the
controller, to report to the sink its battery state-of-
charge and to receive its functioning mode for the
next period of time as computed by the controller.
The communication period of a node in this mode is
equal to the controller period Tc = 1hour;

• nodes enter the Unreachable state when they are
unable to communicate with the sink due to network
issues, hardware damage, or lack of energy.

When a node transmits a frame to the sink (e.g., sensed
value, available energy) it waits for an answer. The answer
can be an acknowledgement, a resynchronisation frame, or
a command frame asking the node to change its functioning
mode.

C. Application QoS

The application QoS is expressed as the minimum number
of measurements that must be provided by the WSN to the
application at each control sampling time. It is related to the
mission that must be performed by the controller.

In the scenario implemented, d1 nodes must be assigned to
the Active mode in order to meet the mission. The mission can
also change dynamically, i.e., depending on a time schedule
or on external events. This dynamic feature permits following
the needs of the application over time. In the present setup,
we consider that during working hours, d1 = 3 nodes must be
in Mode 1 while during the night periods d1 is equal to 1.

The lifetime of the WSN is defined as the period of time
during which the mission can be fulfilled. This corresponds to
the time when the number of reachable nodes becomes smaller
than the minimum number of required active nodes d1.

D. Data collection

To collect data from the sensor nodes, the nodes must be
encapsulated in LINC. This is made easy using the PUTUTU
framework [15] that provides generic LINC objects to speed
up integration of sensor and actuator technologies. Fig. 2
illustrates the LINC application put in place. The application
is composed of three LINC objects all running in the sink:

• the openpicus wifi object acts as a TCP server that
listens for connections from Wi-Fi nodes. It stores
measurements and battery information sent by these
nodes;

• the openpicus enocean object opens a serial connec-
tion with the EnOcean dongle to communicate with
the EnOcean nodes. It stores the measurements and
battery information sent by these nodes;

• the controller object collects information about the
battery status of all reachable nodes (from the two
other objects). It periodically calls the controller to get
the new functioning mode for each node. The updates
are propagated to the openpicus_wifi_object
and the openpicus_enocean_object that send
the new functioning mode to each node if it has
changed.

56Copyright (c) IARIA, 2016. ISBN: 978-1-61208-514-2

ICWMC 2016 : The Twelfth International Conference on Wireless and Mobile Communications (includes QoSE WMC 2016)

openpicus_WiFi

 object

TCP Server

openpicus_enOcean

 object

enOcean dongle

controller_object

Commands

Battery

 Levels

Battery/Sensor(s)

values
Battery/Sensor(s)

values

CommandsCommands

Figure 2. LINC Application for integration
d1 = 3 d1 = 1 d1 = 3

Figure 3. Functioning mode of each sensor node vs. time. Example with
MPC strategy

The first time the nodes communicate with the sink, their
clock is synchronized with the sink clock and keep synchro-
nized according to the synchronization period. This latter can
be adjusted dynamically. Empirical experiments have shown
that a synchronization period of approx. 6hours is appropriate
for this implementation. This synchronization period leads
to a maximum clock drift of a couple of seconds, which is
acceptable given the dynamics of the application.

IV. EXPERIMENTAL RESULTS

An experiment of 30 hours duration was run to eval-
uate both power control strategies at application level. The
experiments started at T0 = 8 a.m. S6 is the EnOCean
node, the other ones being Wi-Fi. During working hours (resp.
night period), 3 (resp. 1) sensors must be Active. Fig. 3
shows the functioning modes of the sensor nodes during the
experiment when the MPC strategy is implemented. As can
be seen, the mission is fulfilled during all the experiment
duration. It can be observed that S6 became Unreachable after
6 hours, when its battery reached the minimum energy level.
S4 was disconnected twice from the network at time10 hours
during 1 hour, and at time 14 hours during 2 hours. The
disconnection is due to radio channel perturbations. The same
phenomenon happens with nodes 2 and 5. When a node falls
in the Unreachable state, it is no longer taken into account by
the controller. When the controller receives again information
related to the remaining energy of this sensor node, it adds
the node again in the set of nodes to be controlled. Note
that the nodes do not possess “wake-up-on-event” capability.
Therefore, if an active node becomes unreachable during a
control period Tc, the controller will switches a node from
mode 2 to mode 1 when Tc is elapsed. This means that we
may experience periods of time no longer than Tc when the
mission is not strictly speaking fulfilled. If the nodes could be
woken up at any time by an external mechanism, before the
end of the duty cycle, this issue would be solved.

In the present scenario, harvesting systems are not inte-
grated in the sensor nodes. When available, they can help a
node re-enter the “game” when it has regained enough energy

TABLE II. SCALABILITY OF THE MPC AND HDS APPROACHES

Number of nodes 6 18 54
MPC Computational Time [sec] 0.051 0.052 0.053
HDS Computational Time [sec] 0.004 0.043 0.375

to communicate and be placed by the controller in the Active
or Standby mode.

Using the MPC (resp. HDS) approach, the lifetime is
increased up to 36, 7% (resp. 30.8%) when compared to the
“basic” control. This latter corresponds to the situation where
only the mission is considered, without any concern regarding
energy consumption.

The scalability of the MPC (when a MILP solver is used)
and HDS approaches has been analyzes. Table II shows the
controller computational time obtained in the Matlab environ-
ment (on an Intel Xeon Processor E5620 with 12MB of cache,
2.50 GHz) for 6, 18 and 54 sensor nodes. Notice that the HDS
computational time becomes higher that the MPC one due to
state space explosion.

V. RELATED WORK

To the authors’ knowledge, most of research works related
to power management in WSN focus on the protocol stack
[5], [6] or on the node hardware optimization. The application
needs are seldom taken into account in the energy/power
management strategies [16]. This latter proposes a Dynamic
Power Management (DPM) strategy at node level that takes
into account application constraints to keep the sensor node,
as much as possible, in sleep or idle mode without losing
the real time responsiveness of the application. The DPM
strategy is based on a hybrid automaton. It is implemented
within the node. Its main advantage compared to our approach
is that the control strategy is fully distributed. However, the
DPM strategy does not have knowledge of the WSN state
and of the changes in the application needs. Moreover, having
the DPM strategy embedded within the node induces over-
consumption. Note that there is no real implementation of
the DPM strategy proposed in [16]. The present paper relies
on a middleware layer to apply the control approach. The
controller collects information from the nodes and it can fix
some parameters (e.g., the functioning mode of each node).
Middlewares and frameworks have been previously proposed
with similar purposes. PyFUNS [17] is a framework that
modifies network parameters according to the application. In
PyFUNS, applications are written as python scripts. Then, the
framework calibrates the network for energy efficiency. How-
ever, it is suitable only for nodes running the ContikiOS. The
architecture described here may support any operating system
and communication stack thanks to LINC. MILAN [18] is a
middleware that continuously controls the network functional-
ity according to the application demands. The implementation
of such mechanism is very complex given the huge number of
parameters that must be taken into account. Moreover, it seems
difficult to integrate a control strategy with MILAN where
several assumptions are made on the WSN behaviour. Other
coordination middlewares, also using associative memory, have
been used for WSN, such as Agimone [19], TeenyLIME [20]
or Agilla [21]. However, they do not offer the same proper-
ties as LINC (e.g., distributed transactions, support of many

57Copyright (c) IARIA, 2016. ISBN: 978-1-61208-514-2

ICWMC 2016 : The Twelfth International Conference on Wireless and Mobile Communications (includes QoSE WMC 2016)

protocols and integration frameworks). Moreover, these works
focus on developing applications.

VI. CONCLUSIONS

This paper presents the implementation of control strategies
(MPC and HDS) for global energy management of a WSN.
The implementation uses the LINC coordination middleware.
The different aspects taken into account for the proper im-
plementation, such as data collection and synchronisation, are
described Experimental results on a star topology are reported.
The functioning mode of each reacheable node is set according
to decisions taken by the global controller whose objective
is to minimize the energy consumption of the whole set of
sensor nodes while ensuring the application Quality of Service.
Simulation results show that the control strategies are scalable.
The control approach is based on Model Predictive Control.
This permits to add new constraints or control objectives if
needed. LINC has been used in various application domains
(e.g., smart buildings, smart cities or smart parking). Hence
the proposed approach may be extended to other application
domains.

Future work directions include the implementation of the
control strategy on a WSN with a more complex topology, such
as mesh networks. Such implementation will require a deeper
knowledge about the network status, i.e., routing information
and current topology.

ACKNOWLEDGMENT

This work has been partly funded by the Artemis ARROW-
HEAD nb332987 and the H2020 TOPAs nb676760 projects.

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Computer Networks, vol. 52, no. 12, 2008, pp. 2292 – 2330.

[2] F. D. Hutu, A. Khoumeri, G. Villemaud, and J.-M. Gorce, “A new wake-
up radio architecture for wireless sensor networks,” EURASIP Journal
on Wireless Communications and Networking, Oct. 2014, p. 177.

[3] M. Hempstead, M. J. Lyons, D. M. Brooks, and G.-Y. Wei, “Survey
of hardware systems for wireless sensor networks.” J. Low Power
Electronics, 2008, pp. 11–20.

[4] Y. Akgul et al., “Power management through dvfs and dynamic body
biasing in fd-soi circuits,” in Proceedings of the 51st Annual Design
Automation Conference. ACM, 2014, pp. 1–6.

[5] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad Hoc Networks,
vol. 7, 2009, pp. 537 – 568.

[6] N. Pantazis and D. Vergados, “A survey on power control issues in
wireless sensor networks,” IEEE Communications Surveys, vol. 9, 2007,
pp. 86 – 107.

[7] O. Mokrenko et al., “Dynamic power management in a wireless sensor
network using predictive control,” in 40th Annual Conference of the
IEEE Industrial Electronics Society, 2014.

[8] Mokrenko et al., “Design and implementation of a predictive control
strategy for power management of a wireless sensor network,” in IEEE
European Control Conference, 2015.

[9] O. Mokrenko, C. Albea, L. Zaccarian, and S. Lesecq, “Feedback
scheduling of sensor network activity using hybrid dynamical system
approach,” in 54th IEEE Conference on Decision and Control, 2015.

[10] M. Louvel and F. Pacull, “Linc: A compact yet powerful coordination
environment,” in Coordination Models and Languages, ser. Lecture
Notes in Computer Science. Springer, 2014, pp. 83–98.

[11] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer networks, 2002, pp. 393–422.

[12] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM,
vol. 32, 1989, pp. 444–458.

[13] openpicus, “http://www.openpicus.com, 2015.” [Online]. Available:
http://www.openpicus.com

[14] enocean, “www.enocean.com.” [Online]. Available: www.enocean.com/
en/enocean modules/tcm-310/

[15] F. Pacull et al., “Self-organisation for building automation systems:
Middleware linc as an integration tool,” in IECON 2013-39th Annual
Conference on IEEE Industrial Electronics Society. Vienna, Austria:
IEEE, 2013, pp. 7726–7732.

[16] R. Passos, C. Coelho, A. Loureiro, and R. Mini, “Dynamic power man-
agement in wireless sensor networks: An application-driven approach,”
in Second Annual Conference on Wireless On-demand Network Sys-
tems and Services (WONS’05), pp. 109–118.

[17] S. Bocchino, S. Fedor, and M. Petracca, “Pyfuns: A python frame-
work for ubiquitous networked sensors,” in Wireless Sensor Networks.
Springer, 2015, pp. 1–18.

[18] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, M. Perillo et al.,
“Middleware to support sensor network applications,” Network, IEEE,
vol. 18, no. 1, 2004, pp. 6–14.

[19] G. Hackmann, C.-L. Fok, G.-C. Roman, and C. Lu, “Agimone: Mid-
dleware support for seamless integration of sensor and ip networks,” in
Distributed Computing in Sensor Systems. Springer, 2006, pp. 101–
118.

[20] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco, “Teenylime:
transiently shared tuple space middleware for wireless sensor networks,”
in Proceedings of the international workshop on Middleware for sensor
networks. ACM, 2006, pp. 43–48.

[21] Fok, Chien-Liang and Roman, Gruia-Catalin and Lu, Chenyang, “Ag-
illa: A mobile agent middleware for self-adaptive wireless sensor
networks,” ACM Transactions on Autonomous and Adaptive Systems
(TAAS), vol. 4, no. 3, 2009, p. 16.

58Copyright (c) IARIA, 2016. ISBN: 978-1-61208-514-2

ICWMC 2016 : The Twelfth International Conference on Wireless and Mobile Communications (includes QoSE WMC 2016)

