
Implementation of Data Distribution Service Listeners on Top of FlexRay

Driver

Rim Bouhouch, Wafa Najjar, Houda Jaouani, Salem Hasnaoui

SYSCOM Laboratory

National Engineering School of Tunis

Tunis, Tunisia

{rim.bouhouch@yahoo.fr, wafa_najjar@yahoo.fr, jouani_houda@yahoo.fr, salem.hasnaoui@enit.rnu.tn}

Abstract-In this paper, we present a way to use Data

Distribution Service Listeners implemented in the C language

over FlexRay driver under µC-OSII. Our method is based on

implementing all the DDS Listeners as callback operations

and storing each kind of Listeners in a vector of linked list.

The main goal is to create an interaction between the FlexRay

Driver’s Read and Write operations and the DDS Listeners to

define a default communication behavior for the Interrupt

Service Routine. Since every real-time network works as basis

software for regular middleware such as AUTOSAR, we

propose the use of the real-time middleware DDS, which has a

wide range of qualities of service. Specifically, we explain in

this paper our approach to implement DDS on top of FlexRay

driver and its related state manager using the DDS Listeners.

Keywords-DDS; FlexRay; Listeners; callback functions;

ISR; µC-OSII.

I. INTRODUCTION

Real-Time Networks are the main field of
communication systems studies since all new generations of
applications not only have distribution requirements, but
also are subject to deadlines. The uses of these networks
vary from military to vehicular networking.

This kind of networks needs a driver to specify and
control its functionality according to the normalized
protocol and releases. The aim of the driver is to manage the
communication system in the low communication layers
regardless of the application layer. On the other hand, the
OMG (Object Management Group) Data Distribution
Service (DDS) provides a real-time Middleware that ensures
the interaction between the physical layer and the
application layer providing a communication pattern. In this
paper, we will see how DDS Entities Listeners are
implemented in the C language, and how to use them with
the FlexRay driver according to the occurred interrupt
service routine. Listeners allow communication between the
middleware entities, FlexRay driver’s tasks and real-time
applications. We chose the C language because it is not only
an embeddable language, but it is also compatible with
FlexRay driver API description language under µC-OSII,
the real-time OS (operating system). Also, the C language
allows us to easily create the blocks Simulink of the
communication model.

II. DDS OVERVIEW

DDS is a real time middleware specified by the OMG
based on Subscriber/Publisher communication model [1].

The OMG DDS specification defines a data-centric
communication standard for a wide variety of computing
environments, ranging from small networked embedded
systems up to large-scale information backbones. DDS

provides a scalable, platform-independent, and location-
independent middleware infrastructure to connect
information producers (Publishers) with consumers
(Subscribers). DDS also supports many quality-of-services
(QoS) properties, such as asynchronous, loosely-coupled,
time-sensitive and reliable data distribution at multiple
layers (e.g., middleware, operating system, and network).

At the core of DDS is the Data-Centric Publish-
Subscribe (DCPS) model, which defines standard interfaces
that enable applications running on heterogeneous platforms
to write/read data to/from a global data space in a net-centric
system. Applications can use this global data space to share
information with other applications by declaring their intent
to publish data that are categorized into one or more topics
of interest to participants. Similarly, applications can use
this data space to access topics of interest by declaring their
intent to become subscribers.

The underlying DCPS middleware propagates data
samples written by publishers into the global data space,
where it is disseminated to interested subscribers. The DCPS
model decouples the declaration of information access intent
from the information access, thereby enabling the DDS
middleware to support and optimize QoS-enabled
communication.

The following DDS entities (also shown in Fig. 1) are
involved in creating and using a DCPS-based application:

• Domain – DDS applications send and receive data
within a domain, which provides a virtual communication
environment for participants having the same domain id.
This environment also isolates participants associated with
different domains, i.e., only participants within the same
domain can communicate, which is useful for isolating and
optimizing communication within a community that shares
common interests.

• Domain Participant – A domain participant is an
entity that represents a DDS application’s participation in a
domain. It serves as factory, container, and manager for the
DDS entities described below.

• Data Writer and Publisher – Applications use data
writers to publish data values to the global data space of a
domain. A publisher is created by a domain participant and
used as a factory to create and manage a group of data
writers that publish their data in the same logical partition
within the global data space. Data writers and publishers
have related QoS policies that drive their behavior as DDS
entities.

64

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

mailto:rim.bouhouch@yahoo.fr
mailto:wafa_najjar@yahoo.fr
mailto:jouani_houda@yahoo.fr

Figure 1. DDS Architecture

• Subscriber and Data Reader – Applications use data

readers to receive data. A subscriber is created by a domain

participant and used as a factory to create and manage data

readers. A data reader can obtain its subscribed data via two

approaches, as shown in Fig. 2: (1) listener-based, which

provides an asynchronous mechanism to obtain data via

callbacks in a separate thread that does not block the main

application and (2) waitset-based, which provides a

synchronous mechanism that blocks the application until a

designated condition is met.

• Topic – A topic connects a data writer with a data

reader, i.e., communication does not occur unless the topic
published by a data writer matches a topic subscribed to by a
data reader. Communication via topics is anonymous and
transparent, i.e., publishers and subscribers need not be
concerned with how topics are created or who is writing /-
reading them since the DDS DCPS middleware manages
these issues [3].

III. STATE OF ART

The OMG DDS is an API specification and an

interoperability protocol that defines a data-centric publish-

subscribe architecture. Since the DDS creation, the OMG

has identified several implementations including RTI [6]

(Real Time Innovations) Inc, which has developed the Java

DDS, the PrismTech OpenSplice DDS [2] [7] that provides

an academic and commercial API in the C and the C++

languages and a multitude of others companies [8] that

provide a minimum profile of DDS. All these

implementations are either too voluminous to be embedded

or operate over a CORBA (Common Object Request Broker

Architecture) platform [9]. Our approach is different, in that

we associate DDS with a real-time network like CAN [10]

or FlexRay.

The goal is to take advantage of the wide range of QoS

available in the DDS specification and associate it with a

real-time network to improve its performances, considering

that DDS provides real-time QoS like Deadline or Latency

Budget. But, the actual challenge of this association is how

to ensure the interaction between the middleware and the

real-time network, our approach is to integrate some DDS

components and functionality into the network driver. The

purpose is to guarantee that the driver Read and Write

operations are taken in charge by the DDS Reader and

Writer.

Figure 2. Listeners and wait-set Notifications[2]

Listeners and conditions (in conjunction with wait-sets)

are two alternative mechanisms provided by DDS allowing

the application to be made aware of changes in the

communication status.

Since the condition mechanism involves the creation of a

set of StatusCondition, ReadCondition and QueryCondition,

we have chosen to use the Listeners mechanism to trigger

the driver operations.

IV. DDS IDL TO C MAPPING RULES

In this section, we give some summarized rules to get
DDS-DCPS API in the C language from its IDL
specification. In fact, the OMG DDS specification is given
as an idl (Interface Description Language) file, which is
organized into Modules, Interfaces and operations. The
Interface Description Language can be mapped into several
programming languages including the C according to
specific mapping rules. These rules can be applied to DDS-
DCPS idl specification in order to get the correspondent C-
API. The results obtained by this method have modified the
naming of the DDS constants, types, entities and operations;
thus each of these elements name is prefixed by the module
name DDS_.

Example: the interface Entity in the idl description is

mapped into DDS_Entity in the C API.

V. DDS LISTENERS PATTERN

The Listener provides a generic mechanism for the Data
Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed
deadline, violation of a DDS_QosPolicy setting... The
Listener is related to changes in communication status.

Each DDS_Entity can be associated with a listener, but
the implementation of these Interfaces must be done by the
application. Therefore, the following Listeners are available:

• DDS_DomainParticipantListener
• DDS_TopicListener
• DDS_PublisherListener
• DDS_DataWriterListener
• DDS_SubscriberListener
• DDS_DataReaderListener

All the operations associated with each Listener must be

implemented, but it is up to the application whether an
operation is empty or contains some functionality [2].

65

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

Figure 3. DDS Listeners Inheritance [4]

The structure DDS_<Entity>Listener represents the
implementation of the Listener for an <Entity>. Since a
Listener is implemented as a structure of pointers, the
application must allocate this structure and initialize these
pointers; all the function pointer attributes within the
structure must be assigned to a function.

The entities listeners can inherit from each other those
inheritances, shown in Fig. 3, are conformed to the classes
inheritances presented in the DDS specification PIM model.

Example: the DDS_DataReaderListener structure of Pointers:
#include <dds_dcps.h>

Typedef struct DDS_DataReaderListener *

DDS_DataReaderListener;

struct DDS_DataReaderListener

{

void *listener_data;

DDS_DataReaderListener_RequestedDeadlineMissedList

ener on_requested_deadline_missed;

DDS_DataReaderListener_RequestedIncompatibleQosLis

tener on_requested_incompatible_qos;

DDS_DataReaderListener_SampleRejectedListener

on_sample_rejected;

DDS_DataReaderListener_LivelinessChangedListener

on_liveliness_changed;

DDS_DataReaderListener_DataAvailableListener

on_data_available;

DDS_DataReaderListener_SubscriptionMatchListener

on_subscription_match;

DDS_DataReaderListener_SampleLostListener

on_sample_lost;

};

VI. USE OF CALL BACK FUNCTION TO IMPLEMENT

LISTENERS

A call back function represents the storage of the address
of a sequence of instructions that the execution will trigger
later on a precise event.

In fact, it involves handing over to a third routine,
passing to it as an argument the address of one of our duties,
so it can then call it when it needs it. In the implementation,
we perform the routine that we want, but what is certain is
that to save the address and call a function, it takes a
function pointer that is used to perform an action, which is
not known at the time of writing the code (system,
library…).

All the entities listeners in DDS-DCPS are implemented
as callback functions so that the notification process can be
event triggered. Each listener is a structure of pointers that
refers to a specific communication status change. Modifying
a pointer, results in the execution of the associated function
representing the default behavior of DDS regarding the
happening event, as shown in Fig. 4.

The Listener is invoked on the changes of
communication statuses. A change of a communication
status sets a status flag. The status flag is only reset when the
status is being read. The Listener’s operations will only be
invoked on the communication statuses for which they are
enabled by the mask. This invocation is based on the listener
own status changes and/or on the status changes of the
Listeners inherited from. Each bit in the bit-mask represents
one of the statuses that can trigger the response of the
Listener to the specified status change.

To access the Listeners all the entities define a generic
operation and a specific subclass operation to access the
class listener.
Example: the DDS_DataReaderListener structure of Pointers

implement as call back functions:
#include "dds_dcps.h"

static struct DDS_DataReaderListener msgListener;

DDS_FooDataReader FooDR;

/* at this point, it is not important how to

create the FooDR*/

DataWriterListenerData UserDefined_ListenerData;

/* at this point, it is not important how

UserDefined_ListenerData is implemented. This

parameter can be used for Listener identification.

If not used, the parameter may be NULL. */

/* Prepare a listener for the Foo DataReader. */

msgListener = DDS_DataReaderListener__alloc();

msgListener.listener_data =

UserDefined_ListenerData;

msgListener.on_requested_deadline_missed = NULL;

msgListener.on_requested_incompatible_qos = NULL;

msgListener.on_sample_rejected = NULL;

msgListener.on_liveliness_changed = (void (*)(void

*, DDS_DataReader)) on_live_change;

msgListener.on_data_available = NULL;

msgListener.on_subscription_match = NULL;

msgListener.on_sample_lost = NULL;

/* Set the Listener with a mask only to trigger on

on_liveliness_changed. */

status = DDS_DataReader_set_listener (FooDR,

&msgListener, DDS_LIVELINESS_CHANGED_STATUS);

This example presents the allocation and initialization of
a DDS_DataReaderListener which is only enabled for the
status on_liveliness_changed. The Listener msgListener will
be attached to the created DDS_DataReader named FooDR.
As we can see, we have associated to the pointer
msgListener.on_liveliness_changed a call back function
named on_live_change that will be triggered if the status is
matched.

VII. FLEXRAY DRIVER UNDER µC-OSII

For our research studies, we developed a FlexRay driver
under the µC-OSII Real-Time Operating System and some

66

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

Phycore PCM023 cards. We added for each a daughter card
containing the Fujitsu MB88121C component. The driver
behavior, as shown on Fig. 5, is based on the
communication between the ISR (Interrupt Service Routine)
and FlexRayTx/ FlexRayRx Tasks that manage the
communication process. Note that the FlexRayTx task has
the publisher as type where the FlexRayRx has the
subscriber as type.

 FlexRayReceiveTask ~Subscribtion task: the

FlexRayReceiveTask pends (reads from the mailbox) for the

received message in its mailbox posted by the

corresponding Interrupt Service Routine (ISR). When a

data sample FlexRay Frame arrives, this task is responsible

for the deserialization (extracting Frame-ID) and for storing

the data in the receive queue of the DataReader.

 FlexRayPublishingTask (only one by

publisher): Every user task calling Write () operation may

use a semaphore that will lock the task when the

DataWriter's send queue is full. The Frames are transmitted

using one of the two following modes.

Synchronous Publishing Mode: the user task

invokes the DataWriter's Write() operation which puts the

samples (FlexRay Frame) on a separate "queue" and then

calls the Write() operation within the FlexRay API Driver

to put the frame in the FlexRay controller’s transmit buffer

before returning to the user task.

Asynchronous Publishing Mode: In this mode the

Write () operation returns immediately to user task leaving

the corresponding ISR to transfer frame from the queue to

the controller transmit buffer. However, a flow controller (a

separate task) is needed to reorganize the transmit queue

depending of the FlexRay frame ID.

The TX/RX tasks react to the messages posted by the
ISRs according to the related mailbox; in fact each mailbox
is associated with an interruption event. Since FlexRay has
two buses (channel) that can either send or receive the data
frame, four mailboxes are needed to represent these
communication events.

For example, if the FlexRayRx task receives an
interruption on MailBox 2 (MB2) it knows that the related
event is that the reception buffer is full and so calls the Read
() function to read from the reception buffer.

The communication process using Mail Boxes under
µC-OSII is driven by the OS_MBPend() and OS_MBPost()
operations, as shown in Fig. 6, The ISR posts the messages
on the mailboxes and the FlexRayRx/Tx task pends them.

The Write () and Read () operations prototypes are
written as follow:

CR=Write (descriptor, @Buffer, size)

CR=Read (descriptor, @Buffer, size)

Where the descriptor indicates the channel that the event

is associated to, the descriptor is known by task according to
the Mailbox number (the OS_Event pointer) it refers to the
occurred event that caused the interruption. The buffer
address is the user buffer address where data should be
written to and from. And finally, the size argument is an
optional argument describing the user data size.

Figure 4. Listener implement as callback function

Figure 5. FlexRay Driver under µC-OSII

The returned value CR indicates whether the write/Read
operation was successful or if an error occurred during the
process and even the nature of the error.

If the ISR indicates the arrival of a frame, the FlexRayRx
task will call the Read () operation, but if the ISR indicates
that the emission buffer is empty the FlexRayTx task will
call the Write () operation to write into the controller
emission buffer.

According to the value of CR the FlexRayRx task will
decide the next step to take.

67

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

Figure 6. Message MailBox [5]

VIII. RELATIONSHIP BETWEEN DDS LISTENERS AND

FLEXRAY DRIVER

After developing the FlexRay driver, we have noticed
that for each kind of ISR the FlexRayRx/Tx task associates a
default behavior, we will use DDS listeners to set default
behavior for each ISR.
When an interruption occurs and the ISR sends the
corresponding message, the FlexRayRx/Tx task will only get
the ID from the frame. Since in FlexRay protocol an ID is
usually associated to a data type we will assume that the
flexRay ID is equivalent to the Topic Key in DDS.
Therefore, getting the ID from the frame is the same as
identifying the Topic.

The couple (ID, MB number) is now the unique

identifier used by the FlexRayRx/Tx task to choose whether
to call the Topic Publisher or the Subscriber. Actually, the
MB number helps identifying if the event is a received data
or an empty space in emission buffer, and the ID represents
the Topic identifier.

A. Subscription Case

The subscription is related to the ISR event

“controller’s reception buffer full”, in this case after

identifying the event and the topic, the FlexRayRx task will

call the appropriate DDS_Subscriber related to the identified

Topic. In fact, it’s the DDS_SubscriberListener

on_data_on_readers operation that is called. This listener is

identified by FlexRayRx task thanks to the pointer

listener_data, attribute that can be used to supply the

identity of the Listener.
This operation will then search for the linked list

representing the DDS_DataReaders corresponding to the
Topic. Since a DDS_DataReaderListener is attached to each
DDS_DataReader, while browsing the linked list the
DDS_DataReaderListener’s operation on_data_available
will be triggered on each listener object. The listener will
have as parameter the related DDS_DataReader and so can
call its operation DDS_read to get the data.

Note that if on_data_on_readers is called, then the
middleware will not try to call on_data_available. However,
in this case, the application will force this call and the
DDS_DataReader objects will get data by the mean of the
notification process.

Fig. 7 illustrates the whole subscription scheme
representing the callback routine.

Figure 7. Subscription Routine

B. Publication Case

The publication is related to the ISR event “controller
emission buffer empty”, in this case after identifying the
event and the topic, the FlexRayTx task will call the
appropriate DDS_Publisher related to the identified Topic.
In fact, it’s the DDS_PublisherListener
on_publication_match operation inherited from
DDS_DataWriterListener that is called. This listener is
identified by FlexRayTx task thanks to the pointer
listener_data.

The Publisher will then search for the linked list

representing the DDS_DataWriters corresponding to the
Topic. Since a DDS_DataWriterListener is attached to each
DDS_DataWriter, while browsing the linked list the
DDS_DataWriterListener’s operation on_publication_match
will be triggered on each listener object. The listener will
have as parameter the related DDS_DataWriter and so can
call its operation DDS_write to write the data into the buffer.

Note the DDS specification does not set a default

behavior in the Publication case, but since the use of
Listener is a given option we have set our own default
publication behavior matching the FlexRay Driver Needs.

Fig. 8 illustrates the whole publication scheme
representing the callback routine.

IX. CONCLUSION

The Real-Time Middleware DDS offers a
communication model between application level and
physical layer. One of the rational uses of this middleware
would be its association with a real-time network such as
CAN (Control Area Network) or FlexRay Networks so that
we increase the networks performances related to response
time.

68

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

Figure 8. Publication Routine

The aim of this work is to use DDS Listeners to define a
default response behavior for FlexRay ISR so that each time
an interruption related to communication status occurs, a
default routine is called. In this purpose we have used the
DDS Listeners based on callback functions to link each ISR
with the appropriate routine to replace the usual FlexRay
driver’s read and write operations.

The defined routine for the subscription process is
indicated according to the DDS specification, but for the
publication routine the DDS specification does not set a
default behavior so we had to implement one of our own to
match the FlexRay driver needs.

In the future works we will use this association (FlexRay

Network and DDS middleware) to study its performances on
a vehicle network based on the SAE (Society of Automotive
Engineers) benchmark network model. This model will
contain 13 nodes and applications reading and writing on the

FlexRay buffers and using for the first time the DDS
middleware instead of the usually used in the automobile
field, the middleware AUTOSAR. We have already
developed the SAE benchmark model and added the node
number 13 to it, and its validation has been made using the
Tasking compiler and PHYTEC XC167 cards [11].

ACKNOWLEDGMENT

 The research presented in this paper would not
have been possible without the support of our colleagues.
We wish to express our gratitude to the SYSCOM ENIT
members for their help and assistance.

REFERENCES

[1] Object Management Group- Manufacturing Domain Task, Data
Acquisition from Industrial Systems specification, OMG document
dtc/01-09-03, November 2002.
http://www.omg.org/technology/documents/recent/omg_manufacturi
ng.htm. 20.08.2011.

[2] Prism Tech, “Open splice C reference guide”, version 2.2,
Massachusetts: Burlington, 2006, pp. 22-25.

[3] N. Wang, D. Schmidt, H. Van’t Hag and A. Corsaro,
“Toward an adaptive data distribution service for dynamic
large-scale network-centric operation and warfare (NCOW)
systems”, IEEE, pp. 2-3, August 2010.

[4] Object Management Group, “Data distribution service for
real-time systems”, version 1.2, Massachusetts: Needham,
January 2007, pp. 129-130.

[5] JJ. Labrosse, “µcOS-II the real time kernel”, Kansas:
Lawrence, November 1998, pp. 6-7.

[6] RTI and R. Joshi, “Achitecting high performance distributed
real-time applications with Java”, April 2007.

[7] Prism Tech, “Open splice C++ reference guide”, version 2.2,
Massachusetts: Burlington, 2006.

[8] DDS vendors, http://portals.omg.org/dds/category/web-
links/vendors. 20.08.2011.

[9] Open DDS, http://www.opendds.org/. 20.08.2011.

[10] T. Guesmi, R. Rekik, S. Hasnaoui, and H. Rezig, “Design
and performance of DDS-based middleware for real-time
control systems”, IJCSNS Vol.7 No.12, December 2007, pp.
188-200.

[11] H. Jaouani, R. Bouhouch, W.Najjar, and S.Hasnaoui, “DDS

on top of FlexRay vehicle network”, IEEE- VCN 2011,

unpublished.

69

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

