
Design and Implementation of Context-aware Hadoop InputFormat for Large-scale
Scientific Dataset

Jae-Hyuck Kwak, Jun Weon Yoon, and Soonwook Hwang
Supercomputing Center

Korea Institute of Science and Technology Information (KISTI)
Daejeon, Republic of Korea

e-mail: {jhkwak,jwyoon,hwang}@kisti.re.kr

Abstract—Hadoop is a open-source software framework for the
distributed processing of large-scale data analysis across
computer clusters using a MapReduce programming model. It
is becoming more popular to scientific communities including
bioinformatics, astronomy and high-energy physics due to its
strength of reliable, scalable data processing. Hadoop
InputFormat describes the input-specification for a
MapReduce job and defines how to read data from a file into
the Mapper instance. Hadoop comes with several
implementations of InputFormat. However, it is basically line-
oriented and not suitable for context-oriented scientific data
processing. In this paper, we have designed and implemented
CxtHadoopInputFormat, context-aware Hadoop InputFormat
for large-scale scientific dataset. Scientific dataset consists of
numbers of variable-length data compartmented by user-
defined context. CxtHadoopInputFormat is aware of the
context in the scientific dataset and enables Hadoop to be used
for distributed processing of context-oriented scientific data.

Keywords-Data-intensive computing; Hadoop; MapReduce;
Context-aware InputFormat

I. INTRODUCTION

Data-intensive computing [1] is one of the evolving

scientific area which needs large-scale data analysis. Typical
application areas are including bioinformatics, astronomy
and high-energy physics. These scientific communities are
dealing with high volume of experimental data and need
reliable and scalable data management.

Hadoop [2] is a open-source software framework for the
distributed processing of large-scale data analysis across
computer clusters using a MapReduce programming model.
Hadoop is becoming more popular to data-intensive
computing application due to its strength of reliable, scalable
data processing. However, it has the limitations of data
processing, depending on the characteristics of scientific
dataset because its default implementation is based on line-
oriented and not appropriate for context-based scientific data
processing.

In this paper, we have implemented
CxtHadoopInputFormat, context-aware Hadoop InputFormat
for large-scale scientific dataset. Scientific dataset consists of
numbers of variable-length data compartmented by user-
defined context. CxtHadoopInputFormat is aware of context

information within scientific dataset and enables Hadoop to
be used for distributed processing of large-scale scientific
dataset.

The rest of this paper is as follows. We introduce Hadoop
in Section 2. Then, we examine Hadoop InputFormat in
Section 3, what it is and how it works. Section 4 describes
the limitation of default Hadoop InputFormat
implementation and the necessity of developing context-
aware Hadoop InputFormat for scientific data processing. In
Section 5, we describe the implementation details of context-
aware Hadoop InputFormat implementation for large-scale
scientific dataset. Finally, we give conclusion and future
work in Section 6.

II. HADOOP OVERVIEW

Hadoop is the Apache project to develop open-source

software for reliable, scalable and distributed computing.
Basically, it is a framework that allows for the distributed
processing of large data sets across computer clusters using a
simple programming model. It can be scaled up to thousands
of machines, each offering local computation and storage
and delivering a highly-available service on top of that.

Hadoop consists of HDFS (Hadoop Distributed
FileSystem) and MapReduce. HDFS is a distributed file
system, which is highly fault-tolerant and provides high
throughput access to application data.

Figure 1 shows HDFS architecture. HDFS cluster
consists of a single NameNode and a number of DataNodes.

Figure 1. HDFS Architecture

90Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

A File in HDFS is split into one or more blocks and these

blocks are stored and replicated in a set of DataNodes.
NameNode executes file system namespace operations like
opening, closing, and renaming files and directories and
determines the mapping of block to DataNodes. DataNode is
responsible for serving read and write request requests from
the file system’s clients and performs block creation,
deletion, and replication under the NameNode’s instruction.

MapReduce is a simple programming model for
processing and generating large data sets. It consists of Map
and Reduce functions, respectively.

Map(key1, value1)  list<key2, value2>
Reduce(key2, list<value2>)  list<value3>

Figure 2 shows MapReduce dataflow. A map function

transforms input data row of key and value to an
intermediate output key/value. A reduce function take all
values for a specific key, and generate a new list of the final
output.

Figure 2. MapReduce Dataflow

The key advantage of the MapReduce is that every Map

and Reduce is independent of all other ongoing Maps and
Reduces, then the operation can be run in parallel on
different keys and lists of data. If you write an application in
the MapReduce form, scaling the application to run over
hundreds of machines in a cluster is merely a configuration
change. Furthermore, Hadoop runs the Map functions on
compute nodes where the data lives, rather than copy the
data over the network to the program. The output list can
then be saved to HDFS and the Reduce functions run to
merge the results.

Hadoop is suitable for applications which have large data
sets due to HDFS block size (64MB by default) and in-
memory representation of the filesystem metadata.
Applications that run on HDFS need streaming access to
their data sets and write-once-read-many (WORM) access
model for files. As a result, Hadoop is suitable for
applications which need high-throughput access of large-
sized data.

III. HADOOP INPUTFORMAT IMPLEMENTATION

The InputFormat describes the input specification for a

MapReduce job and defines how to read data from a file into

the Mapper instances. MapReduce relies on the InputFormat
of the job to:

1. Validate the input-specification of the job
2. Split-up the input files into logical InputSplits, each

of which is then assigned to an individual Mapper.
3. Provide the RecordReader implementation to be

used to glean input records from the logical
InputSplit for processing by the Mapper.

Main goal of the InputFormat is to divide the input data

into fragments that make up the inputs to individual map
tasks. These fragments are called “splits” and are
encapsulated in instances of the InputSplit interface. Most
files are split up on the boundaries of HDFS block size, and
are represented by instances of the FileInputSplit class.
RecordReader ensures that the splits do not necessarily
correspond neatly to line-ending boundaries and do not miss
records that span InputSplit boundaries.

Hadoop comes with several implementations of
InputFormat. TextInputFormat is the default InputFormat
that each record is a line of input. Within TextInputFormat,
the key is the byte offset within the file of the beginning of
the line and the value is the contents of the line.
NLineInputFormat receives a fixed number of lines of input.
Like TextInputFormat, the keys are the byte offsets within
the file and the values are the lines themselves.

IV. IMPLEMENTATION OF CONTEXT-AWARE HADOOP

INPUTFORMAT

Hadoop InputFormat handles input data formats, how it

handles the way input data is split into parts for processing
by the map tasks, and how it handles the extraction of atomic
data from the split data. Figure 3 describes default
InputFormat implementation.

Figure 3. Default Hadoop InputFormat Implementation

91Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

In default InputFormat implementation, the atomic data

is mostly a line of text (bold yellow line) in a file separated
by carriage returns. Hadoop normally processes a very large
data file containing a long sequence of atomic data that each
can be processed independently. The file is split
automatically, normally along HDFS block boundaries
(dotted red line) and each split data (dotted green line) is
passed to the separate map task for processing.

However, the situation in the scientific data processing
could be different in two aspects at least. First, atomic data
could be not only a line, but also a multi-line block, the rows
of a DB table or a file in the folder. Second, the split data
should be made on the boundary of atomic data. It could be
not only end of line, but also end of multi-line block, end of
row records or end of a file. These aspects are depending on
the characteristics of scientific data processing application.

Default InputFormat implementation has some
limitations to accommodate this situation and could result in
a incorrect data processing. Figure 4 describes a broken
context in default InputFormat implementation. In this
example, multi-line block (yellow box) should be processed
atomically by the map task. However, default InputFormat
implementation does not know about this and try to split the
data in the middle of atomic data, which is on the boundary
of HDFS block. As a result, the data context in the file could
be broken.

Figure 4. Broken context in default Hadoop InputFormat Implementation

To overcome this situation from scientific data

processing on Hadoop, we have implemented context-aware
Hadoop InputFormat. Section 5 describes the
implementation details about this.

V. IMPLEMENTATION OF CONTEXT-AWARE HADOOP

INPUTFORMAT

Scientific dataset, especially from large-scale

experiment-oriented science such as high-energy physics,

astronomy and bioinformatics mostly consists of
unstructured data. For example, high-energy physics uses
distributed Monte-Carlo simulation and outputs data files
what you got from the experiment. Astronomy deals with
observation data files which is extracted from the
observation instruments.

Hadoop is suitable for large-sized data processing.
Scientific dataset could be merged depending on scientific
data processing framework. Typical data structure comes
with numbers of variable-length data compartmented by
user-defined context, depending on the data structure from
the field of science application. As mentioned in Section 2,
though Hadoop can be used for reliable, scalable and
distributed processing of large-scale scientific dataset,
default InputFormat implementations are line-oriented, not
context-oriented. MapReduce framework reads data from
computed input splits and assigned to the Mapper. However,
input split is calculated by the formula of file size and HDFS
block size, not taking into account the data context in the file.
This is likely that file can be split at the wrong position and
then cause the incorrect result.

We have implemented CxtHadoopInputFormat, context-
aware Hadoop InputFormat. Figure 5 shows
CxtHadoopInputFormat implementation.

Figure 5. Context-aware Hadoop InputFormat Implementation

We assume that scientific dataset has the so-called

“context delimiter” that compartmentalized into input
records on per-context basis. Our implementation is aware of
context delimiter and ensures that input data are split up on
the boundaries of the context delimiter, not on the boundaries
of HDFS block size.

Figure 6 shows CxtHadoopRecordReader class which
implements RecordReader interface. We reuses
LineRecordReader class which is the RecordReader
implementation used by TextInputFormat. We wrapped the
LineRecordReader with our own implementation which
converts the value to the expected types.

92Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

The next method is called repeatedly to populate the key
and value objects. It reads input split in lines and add them to
value object until line is about to start by context delimiter.
The next method returns value object which contains input
records that have the same data context.

Figure 6. CxtHadoopRecordReader class

Figure 7 shows CxtHadoopInputFormat class that

extends FileInputFormat class. We need to define a factory
method for RecordReader implementations to return new
instance of CxtHadoopRecordReader class.

Figure 7. CxtHadoopInputFormat class

The getSplits method gets the desired number of map

tasks as the numSplits argument. This number is treated as a
hint and a different number of input splits can be made. In

our implementation, The getSplits method reads input file
from HDFS and calculates input splits on the boundaries of
context delimiter if the size of input split is larger than user-
defined splitSize.

VI. CONCLUSION AND FUTURE WORK

Hadoop is one of the emerging technologies for large-

scale data analysis. However, it has some limitations to deal
with context-oriented scientific dataset. In this paper, we
have implemented context-aware Hadoop InputFormat for
processing context-oriented scientific dataset using the
Hadoop. CxtHadoopInputFormat is aware of the context in
the scientific dataset and enables Hadoop to be used for
distributed processing of context-oriented scientific data by
spliting up the input data on the boundaries of the context in
the scientific dataset correctly.

We have a plan to apply CxtHadoopInputFormat to the
representative scientific data processing. We are working
with astronomy scientists who want to process data files
from SuperWASP project, which is the UK’s leading extra-
solar planet detection program. They have quite many data
files extracted from the observation cameras and are willing
to processs them on Hadoop framework to know how it can
help large-scale scientific data processing from the field of
astronomy. CxtHadoopInputFormat will be helpful to deal
with SuperWASP dataset on Hadoop framework.

REFERENCES

[1] Ian Gorton, Paul Greenfield, Alex Szalay, and Roy Williams,

Data-Intensive Computing in the 21st Century, Computer, vol.
41, Apr. 2008, pp. 30-32, doi:10.1109/MC.2008.122.

[2] Apache Hadoop Project, http://hadoop.apache.org
[3] Yahoo! Hadoop Tutorial,

http://developer.yahoo.com/hadoop/tutorial/
[4] Tom White, Hadoop: The Definitive Guide (2nd Ed), Oreilly,

2011.
[5] Chuck Lam, Hadoop in action, Manning, 2010.
[6] Jason Venner, Pro Hadoop, Apress, 2009.
[7] Hadoop 0.20.2 API,

http://hadoop.apache.org/common/docs/r0.20.2/api/
[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,

“The Google file system,” Proceedings of the nineteenth
ACM symposium on Operating systems principles
(SOSP’03), Oct. 19-22, 2003.

[9] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: simplified
data processing on large clusters,” Proceedings of the 6th
conference on Symposium on Operating Systems Design &
Implementation (OSDI’04), pp. 10-10, Dec. 06-08, 2004.

[10] Hadoop Performance Tuning, Impetus White Paper,
http://www.impetus.com

[11] Milind Bhandarkar, Suhas Gogate, and Viraj Bhat, Hadoop
Performance Tuning A case study, http://cloud.citris-
uc.org/system/files/private/BerkeleyPerformanceTuning.pdf.

public class CxtHadoopInputFormat extends
FileInputFormat<LongWritable, Text> implements
JobConfigurable {

…
public RecordReader<LongWritable, Text>

getRecordReader(InputSplit genericSplit, JobConf
job, Reporter reporter) throws IOException {

reporter.setStatus(genericSplit.toString());
return new CxtHadoopRecordReader(job,

(FileSplit) genericSplit);
}
…
Public InputSplit[] getSplits(JobConf job, int

numSplits) throws IOException {
// identify hostname, offset and size of data
// read file in lines
// generate new input split if line is started by

context delimiter and larger than user-defined
splitSize

}

}

public class CxtHadoopRecordReader implements
RecordReader<LongWritable, Text> {

…
public synchronized Boolean next(LongWritable

key, Text value) throws IOException {
// read input split in lines
// add line to value object until line is about

to start by context delimiter
}

}

93Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

