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Abstract—Direct alkaline methanol fuel cell is a perspective
technology for economic energy sources. The development of
this technology requires advanced methods for the analysis of
underlying chemical reactions. Electrochemical impedance spec-
troscopy is a popular method for analysis of dynamical processes
in cells by a direct measurement of linear response function
of the system to harmonic perturbations. In this paper, we
propose a parameter identification procedure for electrochemical
impedance spectroscopy of alkaline methanol oxidation. The
procedure is based on decomposition of the linear response
function in terms of poles and zeros and cross-fit of the obtained
decomposition to the kinetic model using the methods of non-
linear programming. The necessary conditions of the applicability
of the proposed procedure have been derived and the stability of
the method has been confirmed by the numerical experiments.

Keywords–Modeling of complex systems; Non-linear optimiza-
tion; Parameter identification; Applications; Electrochemistry.

I. INTRODUCTION

Methanol-powered fuel cells combine very high energetic
density of methanol with the highly efficient energy converter
concept of the fuel cell. Therefore, they are very attractive
for portable and mobile power supplies. A widespread type
of methanol fuel cells is based on acid medium, where the
layers with a noble metal catalyst are used for accelerating the
electrochemical oxidation of methanol. Since only platinum
or platinum-ruthenium catalyst is sufficiently stable and active
in an acid medium, the resulting material costs are very high,
which makes these fuel cell systems less competitive. The costs
can be reduced by the use of alkaline media, where the stability
and activity of base metals, such as nickel, may approach that
of platinum.

Electrochemical Impedance Spectroscopy (EIS) is a
method for experimental analysis of dynamical electrochemical
processes, based on a measurement of response of the system
to harmonic oscillations of small amplitude over a wide
frequency range [1–4]. The measured linear response function
carries the information about kinetics of the electrochemical
processes and allows to reconstruct the related reaction con-
stants. Similar methods use signals of high amplitude to trigger
non-linear effects, one can also use signals of different profiles,
e.g., triangular signals of high amplitude are used in Cyclic
Voltammetry (CV, [5], [6]), harmonic signals of high amplitude
– in analysis of Total Harmonic Distortion (THD, [7]), etc.

Interpretation of the response is aided usually by model-
based analysis. This commonly involves fitting of experimental

data by parametric models using a kind of Non-linear Least
Squares Fit (NLSF, [8], [9]). The problem becomes more
difficult when complex processes are investigated, comprising
many reagents and multiple chains of reactions. The reason is
that the underlying kinetic models produce highly non-linear
systems of equations of increasing size, impairing stability of
the fit.

On the other hand, there are well established methods
in electrotechnics, based on system identification in terms of
poles and zeros of its transfer function. These methods are
commonly used, e.g., in analysis of stability of power networks
and electronic devices [10–12].

In this paper, we use a synergy of both approaches. At first,
we perform a general system identification in terms of poles
and zeros, with a possible cancellation of unstable elements.
After that, the observed spectra are well described by a small
number of parameters, for which a cross-fit to a kinetic model
is performed. As a result, we reduce the dimension of the
problem and improve stability of the fit.

The purpose of our work is to verify the stability of this
procedure on the example of methanol oxidation in alkaline
medium. Our motivation is triggered by the necessity of new
design of the fuel cells allowing to reduce the costs of energetic
resources. The goal is to develop a stable procedure for the
determination of electrochemical kinetics in such systems.
Synthetic data are used for the analysis, allowing to compare
directly the specified and the reconstructed values of model
parameters. This way, the precision of the reconstruction can
be controlled.

In Section II, we describe a general problem setting in
EIS analysis and the proposed parameter identification proce-
dure. Section III is devoted to the details of kinetic model
of methanol oxidation in alkaline medium. In Section IV,
numerical experiments are presented and the obtained results
are discussed.

II. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

Electrochemical processes have kinetics described by a
system of differential equations:

dθi/dt = Fi(θ, η), i = 1 ... n− 1, (1)
dη/dt = Fn(θ, η) + Icell/Cdl,

where θi are surface coverages of the electrode by adsorbed
reagents, η is electrode potential, Icell is cell current, Cdl is cell
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capacitance. Details of (electro)chemical reactions are encoded
in functions F1...n. These functions are generally polynomial
w.r.t. θi, while η-dependence has exponential form, defined
by Tafel equation: exp(±αF/(RT ) · η). Here, α is charge
transfer coefficient, F is Faraday constant, R is universal gas
constant, T is absolute temperature. The measurable quantities
in these equations are η and Icell, while the detailed dynamics
of variables θi is not directly measurable. Particular reactions
define the form of the polynomials, while the coefficients are
defined by reaction constants, which are generally unknown.
Parameter identification, EIS method in particular, has the
purpose of reconstructing the reaction constants from the
measured data.

Let us consider a stationary point of the system (1):

0 = Fi(θ
∗, η∗), i = 1 ... n− 1, (2)

0 = Fn(θ
∗, η∗) + I∗cell/Cdl,

and linearize the system in this point:

dv/dt = Jv + b, Jij = ∂Fi/∂xj . (3)

Here, J is n× n Jacobi matrix, evaluated in stationary point,
x = (θ1, ..., θn−1, η)

T is n-dimensional vector of variables,
v = δx, b = (0, ..., 0, δIcell/Cdl)

T are variations of vectors.
Equations (3) define the evolution of the system near the
stationary point, when the current (or potential) is varied
according to a given profile. In EIS method, the harmonic
profiles are taken, in complex denotation: δη = η0 exp(iωt),
δIcell = I0 exp(iωt), while their ratio gives a transfer function,
or complex resistance, impedance Z = η0/I0. Harmonic
substitution v = v0 exp(iωt), b = b0 exp(iωt) transforms (3)
to

(iω − J)v0 = b0 (4)

and we obtain as a result:

CdlZ(ω) = ((iω − J)−1)nn. (5)

This expression can be written in a rational form

CdlZ(ω) = Qn−1(iω)/Qn(iω), (6)

i.e., as a ratio of two polynomials of (n−1)-th and n-th degree,
respectively. Here, the denominator represents the determinant
of the matrix (iω − J) and nominator – its (n, n)-minor. For
the rational functions, the following equivalent representations
are often used:

CdlZ(ω) =

n−1∏
j=1

(iω − qj)/
n∏
j=1

(iω − pj), (7)

where pj are poles and qj are zeros of Z, or

CdlZ(ω) =

n∑
j=1

rj/(iω − pj), (8)

where rj are residues at the poles pj . Equivalently, pj are
eigenvalues of Jacobi matrix J and qj are eigenvalues of its
left-upper (n− 1)× (n− 1) submatrix.

The curve Z(ω) on a complex plane is known as Nyquist
plot, see Figure 1 left. Z is a complex resistance (impedance,
in Ohm), ω is cyclic frequency (in rad/s). The green curve
corresponds to experimentally relevant positive values of ω.

The red curve corresponds to negative ω, artificially introduced
to represent complete rational curves, closed by complex
conjugation.

The plot on Figure 1 left represents a typical measure-
ment result in the EIS method. To obtain decomposition of
impedance in form (7) or (8), one can use rational fitting tech-
niques. There is a variety of methods and software packages
available for this purpose [13–15]. The forms (7),(8) can also
be directly fitted to experimental data with general purpose
optimizing routines [16–19]. These procedures are known to
be extremely robust. They encode the whole set of measured
curves in a small number of poles and zeros, giving a compact
equivalent representation of the experimental data for further
fits.

The advantage of poles-zeros representation is not only
improvement of stability of fitting procedures, but also de-
termination of important characteristics of electrochemical
kinetics. In particular, the poles are eigenvalues of Jacobi
matrix which determine such processes as relaxation of the
system to the stationary state, delay and hysteresis effect in
high-amplitude dynamic scans of the cell, etc.

Figure 1 right shows a typical pattern of poles and zeros
displayed on a complex plane. In the considered case all
eigenvalues are real, negative and strongly hierarchical, here
shown in logarithmic scale. Indeed, in view of the stability of
the system, the poles should be located at Re < 0, they can be
real-valued (corresponding to exponential decay of exp(pt))
or form complex conjugated pairs (corresponding to decaying
oscillations). Closely located poles and zeros can be canceled
from nominator and denominator of (7). Generally this will
only influence small local features near the canceled poles and
zeros, producing the effects under the limit of experimental
precision, while the rest of the function will not be changed
[10]. The cancellation can be useful, since it reduces the
degrees of polynomials and a number of constraints used for
cross-fit.

Cross-fit matches the reaction constants to the obtained
pattern of poles and zeros. It can be formulated as a generic
problem of Non-Linear Programming (NLP, [20]):

find min
x
f(x), such that g(x) = 0 and h(x) ≥ 0, (9)

i.e., minimization of an objective function in a domain, speci-
fied by equality and inequality constraints. In our application,
the optimization variables x combine the reaction constants kr
entering in (1) and position of stationary point θ∗ in (2). The
functions g collect the equations for stationary point (2), the
definition of Jacobi matrix in (3) and the definition of poles
and zeros:

Qn−1(qj) = 0, Qn(pj) = 0. (10)

In these equations, Q are recorded in terms of the minors,
while q, p are set to the values found from experimental data.
The inequalities provide non-negativity of reaction constants
and surface coverage:

kr ≥ 0, θ∗i ≥ 0, θ∗0 = 1−
∑

θ∗i ≥ 0. (11)

In the case if the number of equality constraints becomes
greater than the number of optimization variables (overdeter-
mined problem), a part of the constraints should be moved to
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Figure 1. On the left: Nyquist plot Re(Z(ω)), Im(Z(ω)) for synthetic data. On the right: position of poles (red crosses) and zeros (blue circles) on the
complex plane, formed by eigenvalues of linearized problem. See details in the text.
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Figure 2. Nyquist plots for different types of the rational curves. The upper sequence shows the case of hierarchically separated real poles with positive
residues. The bottom sequence shows the influence of the sign of the residue and the effects of complex poles.
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the objective function, e.g.:

f(x) : χ2 =
∑
j |Qn−1(qj)|2 +

∑
j |Qn(pj)|2. (12)

There is a number of general purpose optimizing routines [16–
19], suitable for the solution of so formulated problem.

We prefer to use algorithm NMinimize from Mathematica
[16], since it comprises strategies for finding a global opti-
mum and can be easily combined both with derivative-based
and derivative-free optimization methods. Mathematica also
possesses powerful capabilities for formulating the equations,
computing partial derivatives in analytical form and provides
a convenient interface for the modeling of complex dynamical
systems. Typically, in the considered electrochemical problem
NMinimize converges to the optimum in 5000 iterations, taking
35 minutes on 3GHz CPU.

The description in terms of poles and zeros (or residues)
specifies a rich family of rational curves. Some typical repre-
sentatives are shown in Figure 2. A single real pole defines
a semi-circular arc. It closes the complete circle through
the domain of negative frequencies, formally representing a
complex conjugation of the transfer function. The diameter of
the circle D and the derivative dZ/dω are defined by values
of the pole and the residue: D = |r/p|, |dZ/dω| = |r|/p2,
Cdl = 1. Several poles give a combination of several arcs. If
the poles are hierarchically separated: |p1| � |p2| � |p3|...,
there will be several clearly visible arcs, shown on upper
sequence on Figure 2. The bottom sequence on Figure 2 shows
the influence of the sign of the residue as well as the effects
of complex poles, creating typical windings on the curves.

Analyzing the influence of noise in Nyquist data to the
determination of poles and zeros, take a variation of (7):

δZ(ω)/Z(ω) = −
∑
δqj/(iω − qj) (13)

+
∑
δpj/(iω − pj).

In the case when the poles and/or zeros start to collide, i.e.,
there are nearly coincident complex numbers in the set of
{qj , pj}, one can form unstable combinations, e.g.,

(δp1 + δp2)/(iω − p1,2) at p1 ≈ p2. (14)

In this way, one can select an arbitrary large but compensating
variation of the poles without significant variation of the
Nyquist plot. As a result, the reconstruction of such poles
and zeros becomes unstable. This situation includes the case
when a pole-zero pair wanders randomly on the complex plane
without actual influence to the observable data. It also includes
the cases when pole-pole or zero-zero collisions happen, e.g.,
collision of two real poles leading to their transformation to
a complex conjugated pair. All such cases are highly singular
and sensitive to the influence of noise in data.

In the case when poles and zeros are well separated from
each other, the functions (iω−qj)−1, (iω−pj)−1 form linearly
independent set. In this case vanishing variations of Z(ω)
correspond to vanishing variations of poles and zeros, so that
the reconstruction becomes more stable.

In the case if poles and zeros are hierarchically separated,
i.e., well separated in logarithmic scale, the stability of recon-
struction is drastically increased. The reason is that every pole
and zero contributes to a wide range of frequencies, containing
a lot of the measurement points (Npt � 1). This leads to
statistical improvement of precision by a factor of

√
Npt, for

the reconstructed poles and zeros in comparison to the noise
in Nyquist data.

III. ALKALINE METHANOL OXIDATION

For the description of alkaline methanol oxidation, we will
use the following model, based on the analysis of experimental
data from [6].

Reactions:

r1 : OH− + Pt −−⇀↽−− OHad + e−

r2 : CH3OH+ Pt −−⇀↽−− CH3OHad

r3 : CH3OHad + 3OHad −−⇀↽−− CHOad + 3H2O

r4 : CHOad +OHad −−→ COad +H2O

r5 : COad + 2OHad −−→ CO2 +H2O+ 2Pt

r7 : CHOad + 2OHad −−→ COOHad +H2O+ Pt

r8 : COOHad + e− −−⇀↽−− HCOO− + Pt

r9 : COad +OHad −−→ COOHad + Pt

r10 : COOHad +OHad −−→ CO2 +H2O+ 2Pt

The corresponding formal reaction kinetics and the charge
balance yield the following set of equations:

F1 = (r1 − 3r3 − r4 − 2r5 − 2r7 − r9 − r10)/Cact,
F2 = (r2 − r3)/Cact,
F3 = (r3 − r4 − r7)/Cact,
F4 = (r4 − r5 − r9)/Cact, (15)
F5 = (r7 − r8 + r9 − r10)/Cact,
F6 = (−r1 + r8) · FA/Cdl,

where

r1 = k1c1θ0 − k−1θ1, r2 = k2c2θ0 − k−2θ2,

r3 = k3θ2θ
3
1 − k−3θ3c

3
3, r4 = k4θ3θ1,

r5 = k5θ4θ
2
1, r7 = k7θ3θ

2
1, r8 = k8θ5, (16)

r9 = k9θ4θ1, r10 = k10θ5θ1, θ0 = 1−
∑5

1
θi,

k1 = k01 exp(αβη), k−1 = k0−1 exp(−(1− α)βη),
k8 = k08 exp(−(1− α)βη), β = F/(RT ).

The parameters in the equations are described in Tables I-III.
Additional constants, introduced here are: ci – mole fractions
of the reagents, Cact – surface concentration of catalyst, A –
geometric electrode area.

TABLE I. NUMERATION OF VARIABLES AND CONSTANTS.

θ1 OHad

θ2 CH3OHad c1 OH–

θ3 CHOad c2 CH3OH

θ4 COad c3 H2O

θ5 COOHad

For generation of synthetic data for numerical experiments,
we specify reaction constants as given in Table III. Then we
find a stationary point by solving (2), Jacobi matrix by (3),
impedance function by (5) and its poles and zeros by (7). The
function is displayed on Figure 1 left and its poles and zeros
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TABLE II. MODEL CONSTANTS.

Constant, units Value

F , C/mol 9.649 · 104

R, J/(K mol) 8.314

T , K 303.35

η∗, V −0.3

A, m2 1.96 · 10−5

Cdl, F 10−3

Cact, mol/m2 1.424 · 10−4

α 0.5

TABLE III. REACTION CONSTANTS.

Constant Specified Reconstructed

[mol/(m2s)]

k01 1.056 · 102 1.056 · 102

k0−1 10−5 0.966 · 10−5

k2 5.672 · 10−1 5.665 · 10−1

k−2 10−5 0.966 · 10−5

k3 3.629 · 103 3.629 · 103

k−3 10−5 3.554 · 10−5

k4 10−5 1.008 · 10−5

k5 3.697 · 10−4 3.921 · 10−4

k7 6.192 · 101 6.192 · 101

k08 10−5 1.037 · 10−5

k9 10−5 0.984 · 10−5

k10 7.879 · 10−1 7.879 · 10−1

on Figure 1 right. Then we add a noise on the level of 3%, as
shown by points on Figure 1 left, to simulate typical scatter
in experimental data.

IV. PARAMETER IDENTIFICATION

Solving the inverse problem, we take the noisy points on
Figure 1 as input data and fit them by the rational function (8).
The obtained poles and residues are used to find zeros in (7).
Closely located poles and zeros are canceled. The remaining
poles and zeros are used to reconstruct reaction constants
by cross-fit procedure (9)-(12). Estimating the number of
variables and equations in this procedure, we see that stable
reconstruction is possible if the number of experiments Nexp,
the number of obtained poles and zeros per experiment Np,z
and the number of the reaction constants Nk satisfy the
condition Nexp(Np+Nz+1) ≥ Nk. In our case 2 experiments
are sufficient for stable reconstruction. In the experiments we
set different methanol concentrations 0.1mol/l and 0.075mol/l,
while alkaline concentration was set to 1mol/l and 0.7mol/l
respectively.

The result is shown in the right column of Table III.
The reconstructed reaction constants are close to the specified
values, 6 constants are reconstructed with the precision <1%
and 5 constants with the precision in the range 1%-5%.
One constant, k−3, is increased by a factor of 3 after the
reconstruction. The contribution of this constant in the reaction
r3, with account of all θ-factors, is much smaller than the
neighbour contribution of k3. This is the reason why the
constant k−3 is reconstructed less precisely than the others.

In summary, our numerical experiment demonstrates that the
reconstruction procedure generally does not amplify the noise
in transition from input data to model parameters, except of
the constants giving a negligible contribution to the reactions.
Therefore, the proposed procedure is robust enough for the
usage in practical applications of parameter identification in
electrochemical impedance spectroscopy.

There are some possible modifications of the procedure.
There are special cases, when the stationary point becomes
inaccessible for experimental measurements, e.g., due to the
effects of electrode poisoning with intermediates or byproducts
of reactions, which can happen before the stationary point is
reached. The described methodology is still applicable in this
non-stationary situation, if the linearization point θ∗ performs
only a little change during the recording of EIS diagram.
In such case the stationary equations (2) should be removed
from the system, while the condition on poles and zeros (10)
will remain in force. The condition of stable reconstruction
becomes Nexp(Np+Nz−n+1) ≥ Nk. This condition can be
satisfied at sufficient number of poles and zeros per experiment
Np+Nz > n−1 and sufficiently large number of experiments.

Such quasistationary approximation can be used for esti-
mation of parameters and obtaining a starting point for more
sophisticated methods. Currently, we are performing various
measurements of alkaline-methanol oxidation in our laboratory
in Braunschweig. They include not only EIS experiments, but
also CV, THD, etc. Their analysis is similar, but due to the non-
linear effects involved they require numerical integration and
is, therefore, more complex. In particular, the search for the
optimum requires extensive Monte Carlo runs with a typical
complexity 120000 points per 6 hours on 3GHz CPU.

V. CONCLUSION

We have proposed a parameter identification procedure for
electrochemical impedance spectroscopy of alkaline methanol
oxidation process. The procedure is based on decomposition
of the measured linear response function in terms of poles and
zeros, elimination of unstable elements and the cross-fit of
the obtained decomposition to the kinetic model. The cross-fit
is solved with the methods of non-linear programming. The
number of experiments, necessary for stable reconstruction, is
estimated. Numerical experiments are performed, demonstrat-
ing stability of the method.

With the developed method, two experiments with a typical
Nyquist plot, shown on Figure 1, representing a problem with
12 parameters, 24 inequality constraints and containing 3%
noise, have been analyzed. The kinetic is reconstructed in 5000
iterations, taking 35 min on 3GHz CPU. The precision of the
reconstruction is <1% for 6 reaction constants, 1%-5% for 5
reaction constants. One constant has a negligible contribution
in the reactions and escapes the identification.
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