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Abstract—The paper presents the topological reduction method
applied to gas transport networks, using contraction of series,
parallel and tree-like subgraphs. The contraction operations are
implemented for pipe elements, described by quadratic friction
law. This allows significant reduction of the graphs and accelera-
tion of solution procedure for stationary network problems. The
algorithm has been tested on several realistic network examples.
The possible extensions of the method to different friction laws
and other elements are discussed.
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I. INTRODUCTION

The physical modeling of gas transport networks is com-
prehensively described in works [1]–[3]. The element equa-
tions for pipes vary from the simplest quadratic form to more
complex formulae by Nikuradze, Hofer and Colebrook-White.
In our paper [4], we have shown how to continue these
formulae to the whole domain of model variables, in order to
achieve a global convergence for non-linear solvers. Further, in
paper [5] we have constructed a universal translation algorithm,
capable of formulating network problems for non-linear solvers
with arbitrary problem description language. In paper [6],
we presented theoretical foundations of topological reduction
methods for generic stationary network problems.

Figure 1. Main operations in GSPG reduction: series (a), parallel (b) connec-
tions to be reduced, contraction of a leaf (c).

In this paper, we continue the development of topological
reduction methods in application to gas transport networks.
Our motivation is to accelerate solution procedure for station-
ary gas network problems. The goal is to perform signifi-
cant reduction of the graphs, preserving the accuracy of the
modeling. The main idea is to reduce the series and parallel
connections of elements in the network, with the operations,
known in the theory of Series-Parallel Graphs (SPG) [7]. These
operations can also be extended by contraction of a leaf,
which after recurrent application contracts tree-like subgraphs,
leading to Generalized Series-Parallel Graphs (GSPG) [8].
Such elementary operations are shown in Figure 1. In paper
[6], we have estimated the efficiency of this method and shown
on realistic gas transport networks that high reduction factors
can be achieved. In our current work, we perform an actual

implementation of the topological reduction for pipes, which
form a considerable part of the networks.

In Section II, we present the details of a topological
reduction procedure for pipes, modeled by quadratic friction
law. In Section III, the results of numerical experiments with
estimation of reduction factors and acceleration rates are given.
In Section IV, we perform a comparison of our method with
[9], which is also based on graph theory but using a different
approach. In Section IV, we also discuss possible extensions
of our method.

The described algorithms are implemented in the software
MYNTS (Multi-phYsics NeTwork Simulator) [10], developed
in our group.

II. TOPOLOGICAL REDUCTION ALGORITHM FOR PIPE
NETWORKS

For the equations representing the pipes, one can use the
simplest quadratic friction law from [1][9]:

Pin|Pin| − Pout|Pout| = RQ|Q|, (1)

where Pin,out are the input and output pressures and Q is
the mass flow through the pipe. R is a resistance coefficient,
depending on the pipe length L, diameter D, roughness
parameter k, universal gas constant Rgas, temperature T ,
compression factor z and molar mass µ:

R = 16L/(π2D5)/(2 log10(D/k) + 1.138)2

×RgasTz/µ · 10−10. (2)

All parameters are given in SI units (French, Système Inter-
national), except of pressures, given in bar, hence the scale
factor at the end of the formula. The structure of the term
Q|Q| ensures the symmetry of the equation when reversing
the flow direction Q→ −Q. The similar structure of P -terms
has a very special reason: it provides a monotonic continuation
of the equation to the non-physical domain P < 0.

It was shown in [4] that, as a result of such continuation,
the solver maintains stability also in the non-physical domain,
where it can occasionally wander during the iterations. In
addition, with such an extension, the system describing the
stationary state of the network has a unique solution, even
if the problem was set infeasibly. The simplest example of
such an infeasible setting is to take a real network, such as
shown in Figure 2, require a large throughput from suppliers to
consumers, but at the same time switch off all the compressors.
This problem, obviously, will not have a solution. On the other
hand, if one uses the techniques from [4], the solution will exist
and will be unique even in this case, but it will be located in
the nonphysical domain P < 0. Thus, in this approach, one
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has a necessary and sufficient feasibility indicator, lacking for
other solvers, for which the infeasible statement of the problem
is indistinguishable from the occasional divergence.

Let us consider the above described GSPG elementary
operations for pipe networks.

The series connection is (see Figure 1a):

P1|P1| − P2|P2| = R1Q|Q|, (3)
P2|P2| − P3|P3| = R2Q|Q|.

From here, we add the 2 formulas to get:

P1|P1| − P3|P3| = Rs12Q|Q|, Rs12 = R1 +R2. (4)

The inverse reconstruction of the eliminated variable P2 is:

P2|P2| = P1|P1| −R1Q|Q|. (5)

The parallel connection is (see Figure 1b):

P1|P1| − P2|P2| = R1Q1|Q1| = R2Q2|Q2|, (6)
Q = Q1 +Q2.

From here, we solve this system for Q1,2 to get:

P1|P1| − P2|P2| = Rp12Q|Q|, (7)

Rp12 =
(
R

−1/2
1 +R

−1/2
2

)−2

.

The inverse reconstruction of the eliminated variables Q1,2 is:

Q1 = Q/((R1/R2)
1/2 + 1), (8)

Q2 = Q/((R2/R1)
1/2 + 1).

Contracting the leaf, see Figure 1c, in the simplest case of
zero flow results in the removal of P2, Q variables. The inverse
reconstruction consists of the setting Q = 0 and copying P2 =
P1.

It should be noted that there are two types of source/sink
nodes in gas networks. Qset is the node in which the flow
is set. Pset is the node where the flow is not fixed, but the
pressure is set. For parallel connections, nodes of this type at
the ends do not pose a problem. For series connections, the
presence of such specifiers in the intermediate node leads to
deviations from Kirchhoff’s law and represents an obstacle to
the reduction. Next, we discuss a special algorithm that allows
to move the Qset specifiers over the network. In combination
with it, the reduction can be continued.

For contraction of the leaf, the Pset specifier represents an
obstacle, because when shifting to the neighboring node, the
Pset specifier gets an unfixed pressure value that depends on
the flow. To contract a leaf with the Qset specifier, two options
are possible. First, block contracting leafs with a nonzero Qset.
As a result, the reduction will be incomplete, but the end
Qset nodes will be intact, which is convenient for formulating
scenarios with different values of Qset and for controlling the
feasibility condition P > 0 at endpoints. Second, allow such
leafs to be moved, with Qset moving to the other side and
summing it up with another Qset that may be located there.
For the inverse reconstruction, the value of Qset must be saved,
after that the inverse operations can be performed. The pressure
at the free end is not determined by simple copying, but is
found from the equation of the element:

P2|P2| = P1|P1| −RQset|Qset|. (9)

III. THE RESULTS

We have implemented GSPG reduction algorithm with
fixed Qsets and tested it on three realistic networks. The
simplest network N1 is shown in Figure 2. It includes 4
compressors (2 stations with 2 compressors each), 2 Psets
(shown by rhombi n56, n99) and 3 Qsets (triangles n76, n80,
n91). Originally (level0), the network contains N=100 nodes
and E=111 edges, including P=34 pipes. Then (level1), a topo-
logical cleaning algorithm from [6] is used, removing (if any)
parts of the graph, disconnected from pressure suppliers, as
well as contracting superconducting edges, such as shortcuts,
open valves and short pipes (D = L = 1 m). This operation
is absolutely necessary for the stability of the solver, since
disconnected parts possess undefined pressure and loops of
superconducting edges have undefined circulating flow. This
level of reduction looks similar to level0, just some valves,
shortcuts and internals of stations are removed. The total count
on this level is N=39, E=40, P=34.

TABLE I. PARAMETERS OF TEST NETWORKS

network compressors regulators Psets Qsets

N1 4 0 2 3

N2 7 18 4 64

N3 25 54 6 290

TABLE II. NODES:EDGES:PIPES COUNT FOR DIFFERENT REDUC-
TION LEVELS

network level0 level1 level2 level3

N1 100:111:34 39:40:34 13:14:8 8:9:3

N2 973:1047:500 528:541:479 198:208:146 126:134:72

N3 4721:5362:1749 1723:1814:1666 705:755:607 296:332:184

TABLE III. TIMING FOR TWO REDUCTION LEVELS*

network level1 level2

filter solve filter solve

N1 0.006 0.044 0.009 0.02

N2 0.063 0.5 0.09 0.196

N3 0.243 2.103 0.371 0.944

* in seconds, for 3 GHz Intel i7 CPU 8 GB RAM workstation; ’filter’ includes removing
disconnected parts and superconductive elements (for level1,2) and GSPG reduction (for
level2); ’solve’ includes translation procedure, actual solving and extracting the result;
the actual solving is performed with IPOPT.

After that (level2), GSPG reduction with fixed Qsets is
applied, leaving N=13, E=14, P=8 elements. This corresponds
to the reduction factor 2.9. Then, we have implemented all
necessary GSPG operations described by the formulae above.
For the solution procedure, after the reduction, we obtain the
acceleration factor 2.2. The solution on level2 is identical
with level1 up to the solver tolerance (set to tol=10−5 in our
numerical experiments).

16Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation



Figure 2. Realistic gas transport network N1 at different reduction levels: level0 = original network; level2 = GSPG reduction with fixed Qsets; level3 = GSPG
reduction with moving Qsets. (Not shown: level1 = removing disconnected parts and superconductive elements, looking similar to level0.)

For GSPG reduction with moving Qsets (level3), we have
implemented the formal reduction algorithm, sufficient for the
estimation of the reduction factor. On this level, we have
N=8, E=9, P=3 elements, comprising the reduction factor 1.6
relative to the previous level. The numerical counterpart of
the algorithm has not been implemented yet, that is why the
reduced network for level3 on Figure 2 does not have pressure
data. In the next section, we will discuss the details of Qset
movement algorithm necessary for this level.

The same tests have been performed on more complex
networks N2 and N3, provided by our industrial partners for
benchmarking. The parameters of the networks and the results
of the reduction are presented in Tables I-III. The obtained
level1/level2 reduction factors vary in the range 2.4-2.9, while
acceleration factors solve1/solve2 are 2.2-2.6. The ’filter’ step
in Table III includes the necessary preprocessing and reduction
of the networks. The ’solve’ step includes translation of the
network to the form suitable for the solver and the solution
procedure itself, which share the timing in 1:1 proportion.
Currently, our system uses the universal translation algorithm
from [5]. It allows to plug in generic non-linear solvers with an
arbitrary problem description language, requiring only to adjust
a translation matrix in the algorithm. In particular, we have
experimented with IPOPT (Interior Point OPTimizer) [11],
Mathematica [12], MATLAB (MATrix LABoratory) [13] and a
Newton solver, developed in our group. The best results for our
type of problems have been obtained with IPOPT and Newton,
while these two solvers among themselves have comparable
performance. The details of the implementation of the Newton
solver will be published elsewhere.

The solution procedure involves a multiphase workflow, de-
scribed in [5]. Although global convergence from an arbitrary
starting point for stationary network problems is guaranteed
theoretically [4], the multiphase procedure is still empirically
faster. This procedure gradually increases the complexity of the
modeling and uses the result of the previous phase as a starting
point for the next one. In our numerical experiments, a 3-phase
procedure is used, relevant to the modeling of compressors and
regulators in the network. In the first phase, compressors and
regulators have enforced goals, e.g., Pout = Const. Then,
they are set to a simplified universal free model and, finally,
to the individually calibrated advanced model [6]. The timing
in Table III presents the sum over 3 phases.

IV. DISCUSSION

At first, we perform a comparison with paper [9], where
a different approach for topological reduction was taken.
Then, we describe possible generalizations of our topological
reduction algorithm.

a) Comparison with paper [9]: in this paper, the sta-
tionary problem in gas transport networks was studied, where
subgraphs consisting of pipes only were considered. The pipes
were modeled by the expressions of type (1) and the 2nd
Kirchhoff law was consistently applied, by summing this
expression over independent cycles in the subgraph. As a
result, P -variables drop off from such sums and a system of
smaller size depending only on Q-variables remains, for which
the existence and uniqueness of the solution is proven.

Although the approach looks promising, for its practical
implementation, some problems exist.
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This approach does allow to reduce the dimension of the
system by extracting from it a subsystem that depends only on
Q-variables. The dimension of the subsystem is equal to the
number of independent cycles in the subgraph. The subsystem
has a unique solution for which, however, it is generally
impossible to obtain an analytic expression. Thus, it should
be solved numerically, for example, by Newton’s method.
The remaining variables in the subgraph are obtained by an
unambiguous analytical reconstruction procedure. The problem
appears when this subgraph is considered in the context of
a complete graph containing other elements than pipes, for
example, compressors. The solution of the complete problem is
usually also found by the Newton’s method. For the subgraph,
this means that the solution must be found many times, with
variable boundary conditions. In this case, a combination of
two Newton’s methods, external and internal, will require from
the subgraph not only a solution, but also its derivatives with
respect to the boundary conditions. Such a combination is in
any case not an efficient way to solve the system.

Figure 3. Shrinking a subgraph (a) creates a generalized network element with
a fixed number of pins (b), a multipin (M).

Figure 4. Particular examples: (a) 5-pin star; (b) 6-pin with 3 parallel
connections; (c) empty 6-pin. In all cases, the number of equations describing
the multipin is equal to the number of pins.

Another problem is that, according to [9], a pure pipe
subgraph, contained in a general graph, can be shrunk to
a single point. We cannot agree with this statement, since
a subgraph can have many boundary points in which nodal
P -variables are different, see Figure 3. The subgraph is not
shrunk to a point, but to a generalized element containing Nb
boundary points, or pins like in a microchip. We refer to such
a generalized element further as multipin. As we show below,
this element introduces not one, but Nb equations.

Without loss of generality, we can consider a connected
subgraph for which the pins have definite flows serving as
source/sink boundary conditions for the subgraph, as well as
Nb nodal P -variables. One condition necessary for the station-
ary problem is the annulation of the sums of boundary flows.
Here, for definiteness, we place all external sources/sinks in
the subgraph, including Qset and Pset nodes, on separate pins.
Further, considering one of the boundary nodes as a point with
a given pressure, the procedure from [9] uniquely reconstructs
all other Nb−1 boundary pressures in terms of the first pressure
and the boundary flows. The conditions for the equality of the
reconstructed pressures to the given boundary pressures are

the equations presenting the multipin for the external graph,
totaling Nb equations.

In principle, it seems possible to precompute these Nb
functions on a grid in the space of parameters and use fast
interpolation algorithms to represent the multipin. The problem
is the rapid increase of the grid data volume with the increasing
dimension of Nb. In our approach, we have restricted our
calculations to 2-pins, Nb = 2, which generally allows 2D tab-
ulation (the pixel buffer from [6]). In this paper, we concentrate
on the quadratic pipe model (1), which allows to encapsulate
all the characteristics in one R-parameter and to perform all
calculations analytically, without tabulated functions. Below,
we consider also an intermediate case, where 1D-tabulation
by splines is used. Thus, we avoid curse-of-dimensionality
problems existing for general multipins and are still capable
to reduce the dimension of the problem considerably.

In the remainder of this subsection, we consider in more
detail an interesting question, why the multipin, regardless of
its structure, is described by the same number of equations.
Indeed, the number of equations external to the excluded
subgraph is the same and does not depend on the topology of
the subgraph. After eliminating the subgraph, the system must
remain closed, meaning that the subgraph introduces the same
number of equations. To calculate this number, it is enough to
consider a specific configuration.

In Figure 4a, the star-like multipin is considered. One
equation is the zero sum of the flows into the multipin. The
Kirchhoff law in the center is equivalent to this equation.
There is one P -variable in the middle, but there are also
Nb conditions relating it to the boundary Pb and Qb. In
total, Nb-pin is equivalent to Nb equations on the boundary
P and Q. Figure 4b shows the case when Nb is even and
Nb-pin represents Nb/2 conditions for equality of incoming
and outgoing flows, as well as Nb/2 of element equations. In
total, we obtain Nb equations. In fact, even the connectivity
of the graph is not important here. In Figure 4c, the case of
an empty subgraph is considered, when all pins hang freely.
Then, Qb = 0 in all of them, comprising Nb equations.

b) Possible generalizations of friction laws: in the
equations of the element, a general power dependence can be
used, as was done in [9]. The consideration is quite similar. The
element equation, series and parallel connections are described
by:

Pin|Pin| − Pout|Pout| = RQ|Q|α−1, α ≥ 1, (10)
Rs12 = R1 +R2,

Rp12 =
(
R

−1/α
1 +R

−1/α
2

)−α
.

The quadratic law (1) corresponds to α = 2.

Contraction of the leaf and reverse reconstruction are done
in the same way.

Consider a more general case:

F (Pin)− F (Pout) = G(Q), (11)

where F,G are monotonously increasing functions, every
element has an own G, while F is the same for all elements
(strictly speaking, it is enough if F is the same in a connected
component of the graph).
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For series connections, the equations can be combined as
before:

F (P1)− F (P3) = Gs12(Q), (12)
Gs12(Q) = G1(Q) +G2(Q).

If the original functions were monotonic, then their sum will
also be. The inverse reconstruction is:

P2 = Finv(F (P1)−G1(Q)), (13)

where by subscript inv we denote the inverse 1D-function, so
as not to be confused with the algebraic inversion: x−1 = 1/x.

For parallel connections, the equations can be combined
analogously:

F (P1)− F (P2) = Gp12(Q), (14)
Gp12 = (G1,inv +G2,inv)inv.

Proof:

F (P1)− F (P2) = x = G1(Q1) = G2(Q2),

Q1 = G1,inv(x), Q2 = G2,inv(x), Q =

Q1 +Q2 = G1,inv(x) +G2,inv(x) = Gp12,inv(x),

x = Gp12(Q) = (G1,inv +G2,inv)inv(Q). �

It can be seen that the resulting G-function is also monotonic.
The structure of the formulas for quadratic and α-power
resistance is also clear: the inverse of the power function is
also a power function. Thus, the inverse reconstruction is:

Q1 = G1,inv(G
p
12(Q)), Q2 = G2,inv(G

p
12(Q)). (15)

To store 1D functions y(x), one can use lists of tabulated
values (xn, yn) and interpolate between them using cubic
splines. Outside the working area |P | ≤ 150 bar, |Q| ≤
1000 Nm3/h, the data can be extended by linearly growing
functions, similar to [4]. Such a representation is convenient
for inverting the functions, for which it suffices to swap
(xn, yn) → (yn, xn) and reconstruct the splines [14]. The
accuracy of this procedure is controlled by the smoothness of
the function and the density of subdivision. The computational
complexity is proportional to the number of tabulated values,
O(N).

In the problems we are considering, the functions are
odd: y(−x) = −y(x). This means that it is enough for
them to construct splines in the region x ≥ 0 and use
the symmetry for complete reconstruction. In addition, the
functions have a vanishing derivative at zero, for example,
y = x|x| = x2 sgnx, which leads to a non-smooth root
dependence for inverse functions x =

√
|y| sgn y. This leads

to problems for representing such functions by cubic splines.
In fact, as noted in [4], vanishing of the derivative also leads
to instability of the solver. The case Q = 0 can occur in large
regions of the network in the absence of a flow in them. This
leads to zeroing of the derivative of the function Q|Q| and
entails the degeneration of the Jacobi matrix of the complete
system. To overcome this problem, the laminar term Q|Q|+εQ
must be added to this function; similar regularizing terms must
also be added to the P -functions. After this, the problem with
the zero derivative disappears and does not hinder the spline
inversion.

c) Precise friction laws: better precision can be
achieved by Nikuradze and Hofer formulae [2][3]. These dif-
ferential formulae can be analytically integrated under assump-
tion of slow variation of temperature and compression factor
over the pipe. If needed, the long pipes can be subdivided
into smaller segments to achieve the necessary precision of
the modeling. This piecewise integration approach is similar
to the finite element method in modeling of flexible materials,
flow dynamics, etc. The resulting formulae have the same
quadratic form (1), with the resistance R(Q,P1, P2) weakly
(logarithmically) dependent on the flow and the pressures.
Direct comparison between the quadratic and Hofer pipe laws
on our test networks shows the difference on the level of 7-
10%. The practical use of calculations with the approximate
quadratic formula is a rapidly computable starting point for the
subsequent refinement iterations with the precise formula. The
gravitational term, available in the precise formula and taking
into account the profile of the terrain, can be also embedded
in the quadratic formula:

P1|P1|(1 + γ)− P2|P2|(1− γ) = ... (16)
γ = µg(H1 −H2)/(RgasTz),

where the dots denote the flow-dependent right part, in any
form that we have considered. The dimensionless hydrostatic
factor γ is determined by the gravitational acceleration g, the
height difference H1 − H2 and the usual gas parameters. In
real problems, the parameter γ is small, |γ| � 1, so the factors
(1±γ) do not change the signature of the terms in the equation.

d) Inverse reconstruction: for practical purposes, it is
enough to solve the problem on the reduced graph, the topolog-
ical skeleton. The users are mainly interested in the values of
flows and pressures at the end points of pipe subgraphs, where
they are connected to active elements such as compressors and
regulators or directed to the end consumers. One also needs
to control the feasibility indicator P > 0. As we now show, it
is enough to control this indicator at the endpoints.

Consider GSPG operations in the presence of nodes with
negative pressure. For parallel connection, in the presence of
negative pressure in the end node, it remains there after the
reduction. For series connection, if there is negative pressure
at the intermediate node, it will also be negative at the end
node downstream. Indeed, considering the most general case
with gravity corrections,

P3|P3|(1− γ) = P2|P2|(1 + γ)−R2Q|Q|, (17)

since the factors (1± γ), R2 are positive, for P2 < 0, Q ≥ 0,
we get P3 < 0. Only contraction of a leaf with Qset > 0 can
be a problem, since this procedure can hide a negative pressure
node downstream. As we have already explained, there is an
option to block contracting leafs with nonzero Qset. In this
case, it suffices to check P > 0 at the end nodes of the pipe
graph.

On the other hand, the data recovery in reduced elements
is a straightforward analytical procedure. For this, a complete
reduction history with all intermediate parameters and/or tab-
ulated functions must be recorded. Then, the above-described
inverse operations can be applied. On the graph obtained, it is
possible to monitor the fulfillment of the condition P > 0 or
the enhanced condition P > 1 bar or any other inequality on
pressures and flows.
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e) Level 3, Qset movement algorithm: consider the two
graphs depicted in Figure 5. Assuming that the central element
is described by the general equation F (P1, P2, Q), we require
the equivalence of solutions, connecting these equations with
the shift transformation of the argument:

Fb(P1, P2, Q) := Fa(P1, P2, Q+Qset), (18)
Fa(P1, P2, Q) = 0 ⇒ Fb(P1, P2, Q−Qset) = 0.

Figure 5. Qset movement algorithm.

As a result, it is possible to move the Qset specifier along
a graph to an arbitrary place. For example, all Qset specifiers
can be moved to the Pset node, which should be present
in each connected component of the graph. In this case, the
undefined flow in this node will be shifted by the total Qset in
the subgraph. Alternatively, one can move all Qset specifiers
into one main consumer, who will represent all consumers
in the subgraph. Note that such transformations change the
distribution of flows in the graph, representing only a virtual
distribution, that is visually unsimilar, but mathematically
equivalent to the original one. To represent the result, of course,
all the displaced Qset specifiers must return to their places
using inverse transformations. Note also that the argument
shifts change the position of zero and violate the oddness of the
functions. This requires to modify the tabulation algorithms;
the easiest way is to consider all dependencies as monotonic
functions of general form.

f) Not only pipes, combining 2D characteristic maps:
after all pipe subgraphs are reduced to 2-pins, the functions
can be transformed to a more general representation, in one of
the equivalent forms:

Q = F (P1, P2), P1 = F (P2, Q), P2 = F (P1, Q). (19)

All other elements, such as compressors and regulators, can be
represented in the same way. Such a representation can use the
2D-tabulation (pixmaps) algorithms described in [6], as well as
piecewise linear monotone extensions outside of the working
region. As a result, GSPG reduction can be continued at the
level of 2D functions. Thus, our proposed strategy is to keep
the low-dimensional representations as long as possible, such
as quadratic equations or 1D-splines for pipes, and then, after
the network is strongly reduced, proceed to pixmaps.

V. CONCLUSION

In this paper, the topological reduction method for gas
transport networks has been presented. The method uses a con-
traction of series, parallel and tree-like subgraphs, containing
the pipes, described by quadratic friction law. This way, we
achieve the goal of significant lossless reduction of the graphs
and we accelerate solution procedure correspondingly. Several
realistic network examples of different complexity have been
used for the benchmarking of the method. Comparing with the
original network (level0), the elimination of superconductive
elements and disconnected parts (level1) brings the reduction
factor into the range 1.9-2.9, further GSPG reduction with fixed

Qsets (level2) multiplies it by the factor 2.4-2.9, then GSPG
reduction with moving Qsets (level3) gives a projected multi-
plicative factor 1.6-2.3. We have done performance comparison
between the numerically implemented levels 1, 2. While level1
is absolutely necessary for the convergence, level2 brings the
acceleration factor 2.2-2.6 for the solution procedure, with a
little overhead for GSPG pre-filtering.

The possible extensions of the method include a power law
and generic monotone formula for pipes, iterative schemes for
Nikuradze and Hofer formulae, rapid inverse reconstruction
of data in reduced subgraphs, Qset movement algorithm for
deeper reduction and the extension of the reduction methods
to other elements using 2D tabulation (pixmaps). The imple-
mentation of these extensions is on the way. The question of
the optimality of the proposed reductions will also be studied.
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