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Abstract—We present an extent-based allocation scheme for 

hybrid storage solutions, called MatBall (Matrix and extent-

based allocation), whose objective is to increase space 

utilization of SSD (Solid State Device) partition in the hybrid 

file system by reducing fragmentation overhead. In MatBall, to 

consume the remaining spaces as much as possible posterior to 

file allocations, I/O units (extents) of the hybrid file system are 

recursively partitioned into segments in the subsequent level 

and further file allocations are performed in units of the 

partitioned segments. Since MatBall defines easy-to-compute 

segment sizes and block positions in I/O units, allocating more 

files in the remaining spaces can be performed with a little 

overhead. The performance measurement with IOzone shows 

that the hybrid file system using MatBall enables to produce 

higher bandwidth over ext2 installed on HDD (Hard Disk 

Drive) and SSD.  

Keywords-extent partitioning; matrix-based allocation;  file 

mapping;  fragmentation overhead. 

I.  INTRODUCTION 

SSD [1]-[4] technology has dramatically improved over 

decades to become an essential component in storage 

solutions. Due to the fact that SSD does not need the 

mechanical overhead, such as seek time, to locate the desire 

data, it has drawn great attention from IT markets that seek 

for improved I/O performance. The key obstacle to the 

widening SSD adoption to large-scale storage subsystems is 

its high cost per capacity, compared to that of HDD. Even 

though the cost of flash memory becomes decrease, the 

price of SSD is still much higher and such a high 

cost/capacity ratio makes it less desirable to construct large-

scale storage subsystems solely composed of SSD devices.  

There are several ways of utilizing SSD advantages to 

boost I/O performance [5]-[8][12]. The first one is to 

implement SSD-related I/O optimizations in the file system 

level. For example, Josephson et al. [6] uses fusion-io 

ioDrive to provide the virtualization flash storage layer that 

acts as the traditional block device driver with FTL (Flash 

Translation Layer). Also, Lee et al. [7] proposed a new 

filesystem metadata platform that can reduce SSD-specific 

semiconductor overheads.  

Although those file systems have successfully integrated 

SSDs to improve I/O performance, adapting a new file 

system to the existing storage solutions is not easy because 

it should go through the long, pains-taking process to prove 

the durable data consistency and reliability.  

An alternative is to use hybrid storage subsystems, which 

are managed by the hybrid file system or SSD-specific 

cache [9-11]. In such methods, a small portion of SSD 

partition is combined with a much larger HDD storage 

capacity in a cost-effective way, while making use of the 

strengths of both devices. Since only a small-size of file 

system address space is provided by SSD partition, 

increasing space utilization for SSD partition has a critical 

impact in improving I/O performance.  

In this paper, we propose an extent-based file allocation 

approach, called MatBall. The primary objective of MatBall 

is to increase the usage of the costly SSD storage resources 

as much as possible in the hybrid file system, by reusing the 

remaining spaces of I/O units and thus by decreasing 

fragmentation overhead.  In the hybrid file system where the 

entire address spaces are constructed on both SSD and HDD 

partitions, MatBall can contribute to maximize the space 

usage of SSD partition by taking responsibility of allocating 

files in SSD partition. 
The rest of paper is organized as follows: In Section II, 

we present the implementation details of MatBall. The 
performance results of MatBall integrated with the hybrid 
file system are shown in Section III. In Section IV, we 
conclude our paper. 

 

II. IMPLEMENTATION DETAILS 

    We present the segment partitioning and file mapping. 

A. System Model 

In MatBall, I/O unit is an extent. However, an extent is 

composed of a group of segments and the allocation on the 

extent is performed in units of segments to reduce extent 

fragmentation.  

 

Definition 1 (extent structure) An extent of size s in 

blocks is a finite set of segments such that: 1) there are 

log2s+1 number of segments at the top level (level 0), with 

each being indexed from H to (log2s)-1; 2) segment j at level 

L whose size is larger than or equal to a threshold  is 

partitioned into j+1 segments at the subsequent level L+1 

and their indices are ranged from H to j-1. The segment 

partitioning is continued until the size of every segment is 

smaller than .  

The segment with index H is called the head segment. 
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The segment j of level L being partitioned from segment i of 

level L-1 is the child and denoted as seg[i,k]. On the other 

hand, segment t of level 0 is denoted as seg[*,t].  

The starting block position of segment j of level L is 

pos(seg[i,j])=pos(seg[i,H])+2j where j>H. If j=H, then 

pos(seg[i,j]) is the same to the starting block position of 

segment i.  The size of segment j is 2j, except for the head 

segment that is composed of a single block.  

 

 
 

             Figure 1. An example of segment partitioning. 

 

Figure 1 illustrates an example of segment partitioning 

with  =32. An extent with 256 blocks is partitioned into 

nine segments from seg[*,H] to seg[*,7] at the top level. 

Since the threshold is set to 32, the segments whose size is 

larger than or equal to 32 in blocks are partitioned at the 

subsequent level until each segment has the size of less than 

32 blocks. In Figure 1, seg[*,7] is split into eight segments 

at level one and segments seg[7,5] and seg[7,6] are in turn 

partitioned at level two due to their sizes. The maximum 

segment index is decreased by one, in case the segment 

partitioning takes place at the subsequent level.   

B. Allocation Matrix 

The segment partitioning of MatBall takes place using 

the allocation matrix, which is organized at each level. 

 

Definition 2 (Allocation matrix) An allocation matrix 

],1[ NNxL   where N=log2s is an abstraction of the 

segment partitioning at level L>0 such that: 1) each row i 

)log( 2 siH  shows the segment index of the parent at 

level L-1; 2) column j )1)(log(
2

 sjH shows the 

index of segment at level L that is partitioned from parent i.  

 

Figure 2(a) shows the allocation matrix L where 

sN 2log and .log2 i There are two aspects in the 

allocation matrix. First of all, the segments from seg[i+1,i] 

to seg[N-1,N-2] should be partitioned at level L+1 since 

their size is larger than equal to . Second, some of them 

can have the same indices at the subsequent level. For 

example, segments from seg[i+1,i] to seg[N-1,i] contain 

seg[i,H] to seg[i,i-1] at level L+1. In ,L x[i,j] is the 

number of segments with index j at level L that are 

partitioned from the segments with index i at level L-1.  If 

x[i,j]=0 for row i, then no segment partitioning takes place 

at level L.  

 
             Figure 2. An example of allocation matrix. 

 

Figure 2(b) and (c) show the allocation matrix 1 and 
2 for an extent of size 256 blocks. The allocation matrix 

consists of nine rows and eight columns. The rows of 
1 denote the segments of the top level from seg[*,H] to 

seg[*,7]. Among them, seg[*,5] to seg[*,7] are partitioned at 

level one because their sizes are at least . Also, the 

children of seg[6,5] and seg[7,5] contain seg[5,H] to 

seg[5,4] at level two and thus x[5,H] to x[5,4] of 
2 are 

marked as two. On the other hand, x[6,H] to x[6,5] are set to 

one because only seg[7,6] of 
1 is involved in the segment 

partitioning. Since x[6,5]>0 in ,2 one more partitioning 

would take place at .3  

 

Theorem 1. Given an extent of size s in blocks, the 

number of allocation matrices for the segment partitioning is 

)./(log2 s Also, using ,L the maximum number of 

segments available at level L is: 

,]),[],[(
1

0

 






b

ai

i

k

kixHix 2loga and 1)(log2  sb  

 

Proof. In MatBall, the segments with indices between  

2log and (log2s)-1 are partitioned at each level. Therefore, 

the number of levels for the segment partitioning is 

,loglog 22 s resulting in )/(log2 s allocation matrices 

to be created. In ,L the number of segments to be 
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generated from segment i of level L-1 is 




1

0

].,[],[
i

j

jixHix  

Also, the segments that are subject to the segment 

partitioning at level L-1 are from 2log  to (log2s)-1. Thus, 

the number of segments available at level L is 

 








1)2(log

2log

1

0

]),[],[(
s

i

i

j

jixHix


 

 

In Figure 2(b), seg[*,5] of the top level is partitioned to 

{seg[5,H], seg[5,0], seg[5,1], seg[5,2], seg[5,3],seg[5,4]}. 

Since only a single child with such an index is available at 

level one, the associated elements in 1 is set to one. The 

same procedure is applied to seg[*,6] and seg[*,7]. As a 

result, the total number of segments available at level one is 

  






7

5

1

0

.21]),[],[(
i

i

j

jixHix  

C. Segment Mapping 

In this Section, we describe a hierarchical, fine-grained 

way of mapping data to segments consisting of extents. The 

segment mapping of MatBall was designed to collect data in 

an extent as many as possible, to improve the space 

utilization of extents. Also, the starting position of the 

segment mapping can be easily calculated by referencing 

the hierarchical structure of extents.  

 

Definition 3 (Segment mapping) Given 
L = x[N+1,N], 

assume that a sequence of the segment partitioning for row i 

(i>H) is given by 

],[],[],[][*,
1

jisegiosegbasegaseg
LL




Then the starting block position of segment j at L is 

.2222]),[( jibajisegpos    
 

Since the block position of the head segment is ze

ro, pos(seg[*,a]) is 2a. Furthermore, child b>H of level one 

has the size of 2b in blocks, thus pos(seg[a,b])=2a+2b. As a 

result, segment j generated from i has the starting block 

position of .2222 jiba    Likewise, for the 

children of segment j, pos(seg[j,H]) = pos(seg[i,j]) and 

pos(seg[j,k])=pos(seg[i,j])+2k where k>H. 

For example, in Figure 1, suppose that a file has been 

allocated to an extent from block position zero to 165. First 

of all, the ending block position 165 falls into segment 

seven. Due to its size larger than , the partitioning at the 

level one takes place: 

 

Ⅰ) ,21652 870
 

level  

  77 2])7[*,(,2])7[*,(  segpossegsize   

 

The child segment five being partitioned from segment 

seven of the top level contains the block position 165 and 

the starting position of child five is calculated by adding its 

size to its parent starting position:  

 

Ⅱ) ,2]7[*,(1652 651
  segpos

levle  

 55 2])7[*,(])5,7[(,2])5,7[(  segpossegpossegsize   

 
Since the size of child five is still the same to , one 

more partitioning at level two takes place, resulting in 

mapping block potion 165 to segment two at level two. The 

starting position of segment two is obtained by applying the 

same way we did in the upper level: 

 

Ⅲ) ,2]5,7[(1652 322
  segpos

levle  

 22 2])5,7[(])2,5[(,2])2,5[(  segpossegpossegsize   

 

As a result, the next file allocation in the same extent 

takes place from segment three of level two that begins at 

block position 168: 

 

pos(seg[5,3]) = pos(seg[*,7])+pos(seg[7,5])+23=168.  

 

 

Algorithm: MAP (input:w, output:level, index, next) 

 

1. compute j such that ;22 1 jj w level=0; 

2. if 
2

logj  

3.      index=k+1; next=pos(seg[*,j+1]);   

4.      return  

5. end if 
6. pos = pos(seg[*,j]); 

7. while 
2

logj do 

8.      level ++; 

9.      find k such that ;22 1 kk posw  

10.      if 
2

logk  

11.          index=k+1; next=pos(seg[j,k+1]);  

12.          return   

13.      end if 
14.      pos = pos(seg[j,k]); 

15.      j= k;  

16.  end while 
     Figure 3. File allocation algorithm on extents. 

 

Figure 3 shows the steps involved in finding the segment 

where the next file allocation begins on the extent. Let w be 

the ending block position of the last file allocation. The 

output of the algorithm is level, index and block position 

next where the next file allocation starts. In the algorithm, 

step 2 to 5 executes file allocation without the segment 

partitioning and takes O(1). Step 7 to 16 shows the segment 

partitioning taking place when the size of segment mapped 

to w is larger than or equal to .  Since the maximum 

number of the segment partitioning is ),/(log2 s the time 
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complexity of the algorithm is O(log2s). In MatBall, only 

the extents containing at least  free blocks are reused for 

space utilization. 

Theorem 2.   Given an extent E of size s in blocks, let 

)1(2  nn and L be the number of levels of the segment 

partitioning. Then, with )1(2  mm such that ,  the 

levels needed for partitioning is )./(log2 L Also, let w 

( )1 ws  be the ending block position of the last file 

allocation of E and p and q be the hole sizes with  and 

, respectively. Then .qp   

 

Proof. With  and , since the number of levels for the 

segment partitioning is )/(log2 s and ),/(log2 s the level 

difference between two thresholds is )./(log2  Therefore, 

for ),(   it needs )/(log2 L partitioning levels at 

maximum. Assume that w is mapped to segment i at level X 

on E. Let o be the parent of i at level X-1.  

   case :)log( 2 i no segment partitioning takes place on i 

with two thresholds. In this case, the next allocation 

occurs at pos(seg[o,i+1]). As a result, p=q= 

pos(seg[o,i+1])-(w+1).  

case :)log(log 22   i i is not partitioned with  and 

thus p = pos(seg[o,i+1])-(w+1). On the other hand, 

with , segment i is partitioned into the lower level X+1. 

Let k be the segment of X+1 where w is mapped. Then, 

the next file allocation on E begins at segment k+1. 

Since pos(seg[i,k+1]) < pos(seg[o,i+1]), q = 

pos(seg[i,k+1])-(w+1)  < p.  

case :)log( 2 i segment i with  is more partitioned than 

with  due to .  Also, the more a segment is 

partitioned, the smaller the hole size is between two 

consecutive file allocations on E. Therefore, q<p. 

 

Theorem 2 implies that there is a tradeoff between 

partitioning overhead and space utilization, regarding to the 

threshold value. With the small threshold value, the hole 

size between two consecutive file allocations on an extent 

becomes small. However, it might need more partitioning 

steps than with a larger value. Our objective in using the 

allocation matrix is to choose the appropriate partitioning 

threshold to reduce extent fragmentation while minimizing 

the partitioning overhead.  

III. PERFORMANCE EVALUATION 

We present the performance measurement of MatBall. 

A. Experimental Platform 

We integrated MatBall with the hybrid file system. In the 

hybrid file system, the entire address space is constructed by 

combining a small portion of SSD partition with HDD 

partition.  The file allocation of SSD partition is executed by 

performing MatBall, therefore the files are allocated per 

extent composed of a group of segments.  

When the hybrid file system is mounted, the clean extents 

that are not used for file allocations yet and the allocation 

matrices are organized in memory. Also, I/O request is 

simultaneously performed on both partitions. When either of 

partitions completes I/O, control returns user.  

Table 1 illustrates the number of allocation matrices and 

partitioning description for each extent size and threshold 

value . We evaluated MatBall with IOzone while 

comparing it with ext2 installed on HDD and SSD.   

 

TABLE Ⅰ  SEGMENT PARTITIONING BASED ON EXTENT SIZE   

extent 

size  
  # of 

allocation 

matrices 

partitioning description 

64 16 2 
]}5[*,,],0[*,],[*,{

0
segsegHseg

level
 

seg[*,4] and seg[*,5] are involved in the 

subsequent segment partitioning. 

 

32 1 
]}5[*,,],0[*,],[*,{

0
segsegHseg

level
 

only seg[*,5] is involved in the 
subsequent segment partitioning. 

 

256 16 4 ]}7[*,,],0[*,],[*,{
0

segsegHseg
level

   

seg[*,4] to seg[*,7] are involved in the 
subsequent segment partitioning. 

 

32 3 ]}7[*,,],0[*,],[*,{
0

segsegHseg
level

   

seg[*,5] to seg[*,7] are involved in the 
subsequent segment partitioning. 

 

 

The performance measurements are executed on a PC 

with AMD Athlon dual-core processor and 1GB of memory. 

The HDD partition is equipped with a 320GB of Seagate 

7200 RPM disk and SSD partition uses fusion-io SSD 

ioDrive. We used CentOS release 6.2 with a 2.6.18 kernel. 

The hybrid file system integrated with MatBall uses 

database built on SSD partition. 

 

B. IOzone  Experiment 

We evaluated MatBall using IOzone, while varying file 

sizes from 64KB to 256MB. We executed ./iozone –azi –e –

g 256M –q 8K to use 8KB of I/O record size. We used 

fsync() in every I/O operations to reduce the effect of 

memory cache. Also, for each I/O operation, we changed 

the threshold value for the segment partitioning from 16 to 

32, to observe the partitioning overhead. 

Figure 4 and 5 show the write performance of MatBall, 

while comparing it to that of ext2 installed on HDD and 

SSD. The extent sizes of MatBall are 64KB and 256KB and  

.16 As can be seen in the figure, the write performance of 

ext2 on HDD is much lower than that of MatBall because of 

the hybrid structure of MatBall.  

22Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies



  
 Figure 4.  Write 16                       Figure 5.  Write 32  

 

When the write throughput of MatBall composed of 

64KB of extents is compared to that of ext2 installed on 

SSD, with 256MB of file size, there is about 19% of 

performance improvement. This is because MatBall uses the 

large I/O units for write operations.  

The advantage of using the large I/O granularity is also 

observed in the write performance of MatBall composed of 

256KB of extent sizes. The figure shows that MatBall using 

256KB of extent sizes produces about 6% performance 

improvement compared to MatBall with 64KB of extents. 

  However, in write operations on small files such as 

64KB of files, using the larger extent size does not produce 

the performance speedup. According to Figure 4, on top of 

64KB files, using 256KB of extent size rather decreases the 

write performance, when compared to using 64KB of extent 

size. This is because of the overhead for coalescing data on 

extents. In other words, with small files, the larger the extent 

size is the more the overhead for collecting data on extents 

takes place. However, on top of large files, writing with the 

large I/O granularity increases the write throughput due to 

the reduction in I/O accesses.  

 Figure 5 shows the write performance with .32 Since 

the file sizes of IOzone are aligned with extent sizes, no 

remaining blocks on extents are left posterior to file 

allocations. As a result, only the segment partitioning on the 

top level takes place for both extent sizes.  

For example, with 64KB of extent sizes, only seven 

segments on the top level are configured and used for file 

allocations. Every file size uses the entire 64KB of extents 

although multiple extents are used for files larger than 64KB. 

Therefore, no segment partitioning is needed to reuse 

extents. The same I/O behavior can be observed with 16  

in Figure 4. As a result, there is no noticeable difference 

between the write performances with 32 and that of 
.16  

Figure 6 and 7 show the read performance with 16 and 

with ,32 respectively. In this case, we can see that the 

memory cache significantly affects in the read performance. 

Figure 6 shows that the prefetching scheme implemented in 

ext2 offsets the performance difference caused by device  

  
  Figure 6.   Read 16                       Figure 7.   Read 32  

 

characteristics a little. Because the difference of the read 

performance between ext2 on HDD and ext2 on SSD is 

lower than that of the write difference of ext2 between two 

devices. 

 Likewise, we cannot find the noticeable difference 

between MatBall with 64KB of extent sizes and that with 

256KB of extent sizes. However, because of the less read 

accesses, on top of 256MB of file sizes, using 256KB of 

extent sizes produces 5% of performance speedup over 

64KB of extent sizes. Also, in Figure 6 and 7, we can see 

that changing the threshold value for the segment 

partitioning does not effect on the read performance because 

read operations are not involved in the segment partitioning. 

 

IV. CONCLUSION 

The main goal of MatBall is to increase the space utilization 

of SSD partition in the hybrid file system where the entire 

address space is provided by integrating a small portion of 

SSD partition with a much larger HDD storage capacity. 

MatBall tries to consume the remaining spaces as much as 

possible posterior to file allocation processes, by recursively 

partitioning segments in the subsequent level and by 

allowing the further file allocations on the partitioned 

segments. We evaluated MatBall using IOzone. When file 

sizes are either a multiple of extent sizes or larger than the 

extent size, the segment partitioning to the lower level does 

rarely take place. In this case, the threshold value for the 

segment partitioning in MatBall does little affect I/O 

performance. On the other hand, with a large number of 

small-size files, MatBall can improve I/O bandwidth by 

converting data into the larger I/O granularity. As a future 

work, we will verify the effectiveness and suitability of file 

allocation method of MatBall by using various applications. 
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