
Extent-Based Allocation Scheme for Hybrid Storage Solutions

Jaechun No

College of Electronics and Information Engineering

Sejong University

Seoul, Korea

email:jano@sejong.ac.kr

Sung-soon Park

Dept. of Computer Science and Engineering

Anyang University and Gluesys Co. LTD

Anyang, Korea

email:sspark@gluesys.com

Abstract—We present an extent-based allocation scheme for

hybrid storage solutions, called MatBall (Matrix and extent-

based allocation), whose objective is to increase space

utilization of SSD (Solid State Device) partition in the hybrid

file system by reducing fragmentation overhead. In MatBall, to

consume the remaining spaces as much as possible posterior to

file allocations, I/O units (extents) of the hybrid file system are

recursively partitioned into segments in the subsequent level

and further file allocations are performed in units of the

partitioned segments. Since MatBall defines easy-to-compute

segment sizes and block positions in I/O units, allocating more

files in the remaining spaces can be performed with a little

overhead. The performance measurement with IOzone shows

that the hybrid file system using MatBall enables to produce

higher bandwidth over ext2 installed on HDD (Hard Disk

Drive) and SSD.

Keywords-extent partitioning; matrix-based allocation; file

mapping; fragmentation overhead.

I. INTRODUCTION

SSD [1]-[4] technology has dramatically improved over

decades to become an essential component in storage

solutions. Due to the fact that SSD does not need the

mechanical overhead, such as seek time, to locate the desire

data, it has drawn great attention from IT markets that seek

for improved I/O performance. The key obstacle to the

widening SSD adoption to large-scale storage subsystems is

its high cost per capacity, compared to that of HDD. Even

though the cost of flash memory becomes decrease, the

price of SSD is still much higher and such a high

cost/capacity ratio makes it less desirable to construct large-

scale storage subsystems solely composed of SSD devices.

There are several ways of utilizing SSD advantages to

boost I/O performance [5]-[8][12]. The first one is to

implement SSD-related I/O optimizations in the file system

level. For example, Josephson et al. [6] uses fusion-io

ioDrive to provide the virtualization flash storage layer that

acts as the traditional block device driver with FTL (Flash

Translation Layer). Also, Lee et al. [7] proposed a new

filesystem metadata platform that can reduce SSD-specific

semiconductor overheads.

Although those file systems have successfully integrated

SSDs to improve I/O performance, adapting a new file

system to the existing storage solutions is not easy because

it should go through the long, pains-taking process to prove

the durable data consistency and reliability.

An alternative is to use hybrid storage subsystems, which

are managed by the hybrid file system or SSD-specific

cache [9-11]. In such methods, a small portion of SSD

partition is combined with a much larger HDD storage

capacity in a cost-effective way, while making use of the

strengths of both devices. Since only a small-size of file

system address space is provided by SSD partition,

increasing space utilization for SSD partition has a critical

impact in improving I/O performance.

In this paper, we propose an extent-based file allocation

approach, called MatBall. The primary objective of MatBall

is to increase the usage of the costly SSD storage resources

as much as possible in the hybrid file system, by reusing the

remaining spaces of I/O units and thus by decreasing

fragmentation overhead. In the hybrid file system where the

entire address spaces are constructed on both SSD and HDD

partitions, MatBall can contribute to maximize the space

usage of SSD partition by taking responsibility of allocating

files in SSD partition.
The rest of paper is organized as follows: In Section II,

we present the implementation details of MatBall. The
performance results of MatBall integrated with the hybrid
file system are shown in Section III. In Section IV, we
conclude our paper.

II. IMPLEMENTATION DETAILS

 We present the segment partitioning and file mapping.

A. System Model

In MatBall, I/O unit is an extent. However, an extent is

composed of a group of segments and the allocation on the

extent is performed in units of segments to reduce extent

fragmentation.

Definition 1 (extent structure) An extent of size s in

blocks is a finite set of segments such that: 1) there are

log2s+1 number of segments at the top level (level 0), with

each being indexed from H to (log2s)-1; 2) segment j at level

L whose size is larger than or equal to a threshold  is

partitioned into j+1 segments at the subsequent level L+1

and their indices are ranged from H to j-1. The segment

partitioning is continued until the size of every segment is

smaller than .

The segment with index H is called the head segment.

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

The segment j of level L being partitioned from segment i of

level L-1 is the child and denoted as seg[i,k]. On the other

hand, segment t of level 0 is denoted as seg[*,t].

The starting block position of segment j of level L is

pos(seg[i,j])=pos(seg[i,H])+2j where j>H. If j=H, then

pos(seg[i,j]) is the same to the starting block position of

segment i. The size of segment j is 2j, except for the head

segment that is composed of a single block.

 Figure 1. An example of segment partitioning.

Figure 1 illustrates an example of segment partitioning

with  =32. An extent with 256 blocks is partitioned into

nine segments from seg[*,H] to seg[*,7] at the top level.

Since the threshold is set to 32, the segments whose size is

larger than or equal to 32 in blocks are partitioned at the

subsequent level until each segment has the size of less than

32 blocks. In Figure 1, seg[*,7] is split into eight segments

at level one and segments seg[7,5] and seg[7,6] are in turn

partitioned at level two due to their sizes. The maximum

segment index is decreased by one, in case the segment

partitioning takes place at the subsequent level.

B. Allocation Matrix

The segment partitioning of MatBall takes place using

the allocation matrix, which is organized at each level.

Definition 2 (Allocation matrix) An allocation matrix

],1[NNxL  where N=log2s is an abstraction of the

segment partitioning at level L>0 such that: 1) each row i

)log(2 siH  shows the segment index of the parent at

level L-1; 2) column j)1)(log(
2

 sjH shows the

index of segment at level L that is partitioned from parent i.

Figure 2(a) shows the allocation matrix L where

sN 2log and .log2 i There are two aspects in the

allocation matrix. First of all, the segments from seg[i+1,i]

to seg[N-1,N-2] should be partitioned at level L+1 since

their size is larger than equal to . Second, some of them

can have the same indices at the subsequent level. For

example, segments from seg[i+1,i] to seg[N-1,i] contain

seg[i,H] to seg[i,i-1] at level L+1. In ,L x[i,j] is the

number of segments with index j at level L that are

partitioned from the segments with index i at level L-1. If

x[i,j]=0 for row i, then no segment partitioning takes place

at level L.

 Figure 2. An example of allocation matrix.

Figure 2(b) and (c) show the allocation matrix 1 and
2 for an extent of size 256 blocks. The allocation matrix

consists of nine rows and eight columns. The rows of
1 denote the segments of the top level from seg[*,H] to

seg[*,7]. Among them, seg[*,5] to seg[*,7] are partitioned at

level one because their sizes are at least . Also, the

children of seg[6,5] and seg[7,5] contain seg[5,H] to

seg[5,4] at level two and thus x[5,H] to x[5,4] of
2 are

marked as two. On the other hand, x[6,H] to x[6,5] are set to

one because only seg[7,6] of
1 is involved in the segment

partitioning. Since x[6,5]>0 in ,2 one more partitioning

would take place at .3

Theorem 1. Given an extent of size s in blocks, the

number of allocation matrices for the segment partitioning is

)./(log2 s Also, using ,L the maximum number of

segments available at level L is:

,]),[],[(
1

0

 






b

ai

i

k

kixHix 2loga and 1)(log2  sb

Proof. In MatBall, the segments with indices between

2log and (log2s)-1 are partitioned at each level. Therefore,

the number of levels for the segment partitioning is

,loglog 22 s resulting in)/(log2 s allocation matrices

to be created. In ,L the number of segments to be

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

generated from segment i of level L-1 is 




1

0

].,[],[
i

j

jixHix

Also, the segments that are subject to the segment

partitioning at level L-1 are from 2log to (log2s)-1. Thus,

the number of segments available at level L is

 








1)2(log

2log

1

0

]),[],[(
s

i

i

j

jixHix


In Figure 2(b), seg[*,5] of the top level is partitioned to

{seg[5,H], seg[5,0], seg[5,1], seg[5,2], seg[5,3],seg[5,4]}.

Since only a single child with such an index is available at

level one, the associated elements in 1 is set to one. The

same procedure is applied to seg[*,6] and seg[*,7]. As a

result, the total number of segments available at level one is

  






7

5

1

0

.21]),[],[(
i

i

j

jixHix

C. Segment Mapping

In this Section, we describe a hierarchical, fine-grained

way of mapping data to segments consisting of extents. The

segment mapping of MatBall was designed to collect data in

an extent as many as possible, to improve the space

utilization of extents. Also, the starting position of the

segment mapping can be easily calculated by referencing

the hierarchical structure of extents.

Definition 3 (Segment mapping) Given
L = x[N+1,N],

assume that a sequence of the segment partitioning for row i

(i>H) is given by

],[],[],[][*,
1

jisegiosegbasegaseg
LL




Then the starting block position of segment j at L is

.2222]),[(jibajisegpos  

Since the block position of the head segment is ze

ro, pos(seg[*,a]) is 2a. Furthermore, child b>H of level one

has the size of 2b in blocks, thus pos(seg[a,b])=2a+2b. As a

result, segment j generated from i has the starting block

position of .2222 jiba   Likewise, for the

children of segment j, pos(seg[j,H]) = pos(seg[i,j]) and

pos(seg[j,k])=pos(seg[i,j])+2k where k>H.

For example, in Figure 1, suppose that a file has been

allocated to an extent from block position zero to 165. First

of all, the ending block position 165 falls into segment

seven. Due to its size larger than , the partitioning at the

level one takes place:

Ⅰ) ,21652 870
 

level

 77 2])7[*,(,2])7[*,( segpossegsize 

The child segment five being partitioned from segment

seven of the top level contains the block position 165 and

the starting position of child five is calculated by adding its

size to its parent starting position:

Ⅱ) ,2]7[*,(1652 651
  segpos

levle

 55 2])7[*,(])5,7[(,2])5,7[( segpossegpossegsize 

Since the size of child five is still the same to , one

more partitioning at level two takes place, resulting in

mapping block potion 165 to segment two at level two. The

starting position of segment two is obtained by applying the

same way we did in the upper level:

Ⅲ) ,2]5,7[(1652 322
  segpos

levle

 22 2])5,7[(])2,5[(,2])2,5[( segpossegpossegsize 

As a result, the next file allocation in the same extent

takes place from segment three of level two that begins at

block position 168:

pos(seg[5,3]) = pos(seg[*,7])+pos(seg[7,5])+23=168.

Algorithm: MAP (input:w, output:level, index, next)

1. compute j such that ;22 1 jj w level=0;

2. if 
2

logj

3. index=k+1; next=pos(seg[*,j+1]);

4. return

5. end if
6. pos = pos(seg[*,j]);

7. while 
2

logj do

8. level ++;

9. find k such that ;22 1 kk posw

10. if 
2

logk

11. index=k+1; next=pos(seg[j,k+1]);

12. return

13. end if
14. pos = pos(seg[j,k]);

15. j= k;

16. end while
 Figure 3. File allocation algorithm on extents.

Figure 3 shows the steps involved in finding the segment

where the next file allocation begins on the extent. Let w be

the ending block position of the last file allocation. The

output of the algorithm is level, index and block position

next where the next file allocation starts. In the algorithm,

step 2 to 5 executes file allocation without the segment

partitioning and takes O(1). Step 7 to 16 shows the segment

partitioning taking place when the size of segment mapped

to w is larger than or equal to . Since the maximum

number of the segment partitioning is),/(log2 s the time

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

complexity of the algorithm is O(log2s). In MatBall, only

the extents containing at least  free blocks are reused for

space utilization.

Theorem 2. Given an extent E of size s in blocks, let

)1(2  nn and L be the number of levels of the segment

partitioning. Then, with)1(2  mm such that ,  the

levels needed for partitioning is)./(log2 L Also, let w

()1 ws be the ending block position of the last file

allocation of E and p and q be the hole sizes with  and

, respectively. Then .qp 

Proof. With  and , since the number of levels for the

segment partitioning is)/(log2 s and),/(log2 s the level

difference between two thresholds is)./(log2  Therefore,

for),(  it needs)/(log2 L partitioning levels at

maximum. Assume that w is mapped to segment i at level X

on E. Let o be the parent of i at level X-1.

 case :)log(2 i no segment partitioning takes place on i

with two thresholds. In this case, the next allocation

occurs at pos(seg[o,i+1]). As a result, p=q=

pos(seg[o,i+1])-(w+1).

case :)log(log 22   i i is not partitioned with  and

thus p = pos(seg[o,i+1])-(w+1). On the other hand,

with , segment i is partitioned into the lower level X+1.

Let k be the segment of X+1 where w is mapped. Then,

the next file allocation on E begins at segment k+1.

Since pos(seg[i,k+1]) < pos(seg[o,i+1]), q =

pos(seg[i,k+1])-(w+1) < p.

case :)log(2 i segment i with  is more partitioned than

with  due to .  Also, the more a segment is

partitioned, the smaller the hole size is between two

consecutive file allocations on E. Therefore, q<p.

Theorem 2 implies that there is a tradeoff between

partitioning overhead and space utilization, regarding to the

threshold value. With the small threshold value, the hole

size between two consecutive file allocations on an extent

becomes small. However, it might need more partitioning

steps than with a larger value. Our objective in using the

allocation matrix is to choose the appropriate partitioning

threshold to reduce extent fragmentation while minimizing

the partitioning overhead.

III. PERFORMANCE EVALUATION

We present the performance measurement of MatBall.

A. Experimental Platform

We integrated MatBall with the hybrid file system. In the

hybrid file system, the entire address space is constructed by

combining a small portion of SSD partition with HDD

partition. The file allocation of SSD partition is executed by

performing MatBall, therefore the files are allocated per

extent composed of a group of segments.

When the hybrid file system is mounted, the clean extents

that are not used for file allocations yet and the allocation

matrices are organized in memory. Also, I/O request is

simultaneously performed on both partitions. When either of

partitions completes I/O, control returns user.

Table 1 illustrates the number of allocation matrices and

partitioning description for each extent size and threshold

value . We evaluated MatBall with IOzone while

comparing it with ext2 installed on HDD and SSD.

TABLE Ⅰ SEGMENT PARTITIONING BASED ON EXTENT SIZE

extent

size
 # of

allocation

matrices

partitioning description

64 16 2
]}5[*,,],0[*,],[*,{

0
segsegHseg

level
 

seg[*,4] and seg[*,5] are involved in the

subsequent segment partitioning.

32 1
]}5[*,,],0[*,],[*,{

0
segsegHseg

level
 

only seg[*,5] is involved in the
subsequent segment partitioning.

256 16 4]}7[*,,],0[*,],[*,{
0

segsegHseg
level

 

seg[*,4] to seg[*,7] are involved in the
subsequent segment partitioning.

32 3]}7[*,,],0[*,],[*,{
0

segsegHseg
level

 

seg[*,5] to seg[*,7] are involved in the
subsequent segment partitioning.

The performance measurements are executed on a PC

with AMD Athlon dual-core processor and 1GB of memory.

The HDD partition is equipped with a 320GB of Seagate

7200 RPM disk and SSD partition uses fusion-io SSD

ioDrive. We used CentOS release 6.2 with a 2.6.18 kernel.

The hybrid file system integrated with MatBall uses

database built on SSD partition.

B. IOzone Experiment

We evaluated MatBall using IOzone, while varying file

sizes from 64KB to 256MB. We executed ./iozone –azi –e –

g 256M –q 8K to use 8KB of I/O record size. We used

fsync() in every I/O operations to reduce the effect of

memory cache. Also, for each I/O operation, we changed

the threshold value for the segment partitioning from 16 to

32, to observe the partitioning overhead.

Figure 4 and 5 show the write performance of MatBall,

while comparing it to that of ext2 installed on HDD and

SSD. The extent sizes of MatBall are 64KB and 256KB and

.16 As can be seen in the figure, the write performance of

ext2 on HDD is much lower than that of MatBall because of

the hybrid structure of MatBall.

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

 Figure 4. Write 16 Figure 5. Write 32

When the write throughput of MatBall composed of

64KB of extents is compared to that of ext2 installed on

SSD, with 256MB of file size, there is about 19% of

performance improvement. This is because MatBall uses the

large I/O units for write operations.

The advantage of using the large I/O granularity is also

observed in the write performance of MatBall composed of

256KB of extent sizes. The figure shows that MatBall using

256KB of extent sizes produces about 6% performance

improvement compared to MatBall with 64KB of extents.

 However, in write operations on small files such as

64KB of files, using the larger extent size does not produce

the performance speedup. According to Figure 4, on top of

64KB files, using 256KB of extent size rather decreases the

write performance, when compared to using 64KB of extent

size. This is because of the overhead for coalescing data on

extents. In other words, with small files, the larger the extent

size is the more the overhead for collecting data on extents

takes place. However, on top of large files, writing with the

large I/O granularity increases the write throughput due to

the reduction in I/O accesses.

 Figure 5 shows the write performance with .32 Since

the file sizes of IOzone are aligned with extent sizes, no

remaining blocks on extents are left posterior to file

allocations. As a result, only the segment partitioning on the

top level takes place for both extent sizes.

For example, with 64KB of extent sizes, only seven

segments on the top level are configured and used for file

allocations. Every file size uses the entire 64KB of extents

although multiple extents are used for files larger than 64KB.

Therefore, no segment partitioning is needed to reuse

extents. The same I/O behavior can be observed with 16

in Figure 4. As a result, there is no noticeable difference

between the write performances with 32 and that of
.16

Figure 6 and 7 show the read performance with 16 and

with ,32 respectively. In this case, we can see that the

memory cache significantly affects in the read performance.

Figure 6 shows that the prefetching scheme implemented in

ext2 offsets the performance difference caused by device

 Figure 6. Read 16 Figure 7. Read 32

characteristics a little. Because the difference of the read

performance between ext2 on HDD and ext2 on SSD is

lower than that of the write difference of ext2 between two

devices.

 Likewise, we cannot find the noticeable difference

between MatBall with 64KB of extent sizes and that with

256KB of extent sizes. However, because of the less read

accesses, on top of 256MB of file sizes, using 256KB of

extent sizes produces 5% of performance speedup over

64KB of extent sizes. Also, in Figure 6 and 7, we can see

that changing the threshold value for the segment

partitioning does not effect on the read performance because

read operations are not involved in the segment partitioning.

IV. CONCLUSION

The main goal of MatBall is to increase the space utilization

of SSD partition in the hybrid file system where the entire

address space is provided by integrating a small portion of

SSD partition with a much larger HDD storage capacity.

MatBall tries to consume the remaining spaces as much as

possible posterior to file allocation processes, by recursively

partitioning segments in the subsequent level and by

allowing the further file allocations on the partitioned

segments. We evaluated MatBall using IOzone. When file

sizes are either a multiple of extent sizes or larger than the

extent size, the segment partitioning to the lower level does

rarely take place. In this case, the threshold value for the

segment partitioning in MatBall does little affect I/O

performance. On the other hand, with a large number of

small-size files, MatBall can improve I/O bandwidth by

converting data into the larger I/O granularity. As a future

work, we will verify the effectiveness and suitability of file

allocation method of MatBall by using various applications.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea

Government (MSIP)(NRF-2014R1A2A2A01002614).

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

Also, this work was supported by the Institute for
Information & communications Technology Promotion
(IITP) grant funded by the Korea government(MSIP)
(No.B0101-15-0548(2016), Development of Ultra Power-
Saving and High Integrated Micro Server Technology for
Cloud Infra).

 REFERENCES

[1] N. Agrawal, et al., “Design Tradeoffs for SSD Performance,”

In Proceedings of USENIX Annual Technical Conference, pp.

57-90, June 2008.

[2] M. Saxena, M. Swift, and Y. Zhang, “FlashTier: a Lightweight,

Consistent and Durable Storage Cache,” In Proceedings of

EuroSys’12, pp. 267-280, 2012.

[3] C. Wu, H. Lin, and T. Kuo, “An Adaptive Flash Translation

Layer for High-Performance Storage Systems,” IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 29, pp. 953-965, 2010.

[4] A. Rajimwale, V. Prabhakaran, and J.D. Davis, “Block

Management in Solid-State Devices,” 2009 USENIX Annual

Technical Conference, pp. 21-26, June 2009.

[5] H. Kim, S. Seshadri, C. Dickey, and L. Chiu, “Evaluating

Phase Change Memory for Enterprise storage Systems: A

Study of Caching and Tiering Approaches,” In Proceedings of

the 12th USENIX conference on File and Storage

Technologies, Santa Clara, USA, pp. 33-45, 2014.

[6] W. Josephson, L. Bongo, K. Li, and D. Flynn, “DFS: A File

System for Virtualized Flash Storage,” ACM Transactions on

Storage, Vol. 6, No. 14, pp.1-15, Sept. 2010.

[7] C, Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A New File

System for Flash Storage,” In Proceedings of the 13th

USENIX conference on File and Storage Technologies, Santa

Clara, USA, pp. 273-286, 2015.

[8] J. Kang, et al.,“SpanFS: A Scalable File System on Fast

Storage Devices,” In Proceedings of USENIX Annual

Technical Conference, Santo Clara, USA, pp. 249-261, 2015.

[9] C. Li, et al., “Nitro: A Capacity-Optimized SSD Cache for

Primary Storage,” In Proceedings of USENIX ATC’14,

Philadelphia, USA, pp. 501-512, 2014.

[10] P. Huang, P. Subedi, X. He, S. He, and K. Zhou, “FlexECC:

Partially Relaxing ECC of MLC SSD for better cache

performance,” In Proceedings of USENIX Annual Technical

Conference, Philadelphia, USA, pp. 489-500, 2014.

[11] Z. Zhang and K. Ghose, “hFS: A Hybrid File System

Prototype for Improving Small File and Metadata

Performance,” EuroSys’07 , pp. 175-187, 2007.

[12] E.Gal and S. Toledo, “A Transactional Flash File System for

Microcontrollers”, In Proceedings of the USENIX Annual

Technical Conference, pp. 89-104, April 2005.

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

