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Abstract—A system for Swedish isolated word recognition has develop both intelligent software agents and a partnertrobo
been developed, intended for use in an intelligent news read intended for use in elderly care in Sweden.
agent for elderly care. The system uses linear time normaléation This paper will consider one particular aspect of that prpje
of feature time series, as well as optimization (with a gengt " b . . .
algorithm) of both feature selection and feature weighting The namely speech recognition (in Swed|sh)- for an intelligent
optimization of feature selection results in a potentialljimportant N€ws reader agent that can access online news based on

decrease in the time needed to recognize a spoken word, whilethe user's commands. Speech recognition (henceforth: SR) i

maintaining speech recognition performance. less developed (than in English) in languages spoken either
Keywords-Speech recognition; optimization; linear time normal- by rather few people [6] or in emerging countries; see, for
ization example, [7]. In fact, much of the SR-related robotics regea
is focused on English, since it is spoken by almost all
l. INTRODUCTION researchers, regardless of nationality, but perhaps natllby

The increase in the fraction of elderly people, relativent® t people in the general population, and certainly not all iyde
working population, is a strong demographical trend atgmes people. Hence, improvement of SR systems is an important
One recent estimate expects the fraction of elderly pe@ie ( step towards the development of technological tools foeryd
years old) in the European Union to increase from around 17€re in countries where English (or any other major language
in 2010 to 30% in 2060 [1]. Furthermore, the fraction of peoplis not the first language.
above the age of 80 is expected to increase from around 5%0f course, the problems and issues encountered when
to 12%, over the same time span. developing an SR system are similar, regardless of the lan-

In the near future, it is therefore likely that a variety ofjuage considered. In general, two main forms of SR can be
technological tools, such as assistive or partner robdtsaf? distinguished, namely (i) isolated word recognition (IWRHd
well as intelligent homes [3], will come to play an importan(ii) continuous speech recognition (CSR) [8]. Over the gear
role in elderly care. Indeed, some prototypes already ,exiSR has been approached using many different techniques,
such as the therapeutic seal robot Paro [4] and the assistiveparticular dynamic time warping (DTW) (see, e.g., [8],
robot Kompai [5]. An increased role of such tools is probablghapter 4) which involves a classification method based on
for several reasons. For example, the (relative) decreadeei comparison of time series of different length, and hidden
size of the working population, combined with the increaddarkov models (HMMs) (see, e.g., [8], Chapter 6) that, effec
in the size of the elderly population, is likely to cause fstafively, constitute a stochastic (probabilistic) extemsid DTW.
shortages in elderly care. Furthermore, as a qualityfef-iThe HMM approach currently dominates SR research, and
issue, many elderly people prefer to live in their own hommost of the state-of-the-art SR systems employ this method.
(rather than in, say, a nursing home) for as long as pos2hle [However, deterministic approaches (such as DTW) are also
something that can be facilitated using technologicalttivht, useful, particularly in command-style SR systems focusing
for example, can monitor medicine intakes, alert relatoes IWR with a rather limited vocabulary [9]. DTW attempts to
healthcare workers in case of injuries etc. find the optimal alignment between time series (contairfimig,

In order for such technological tools to be applicable iexample, features extracted from sound data) while, sanult
meaningful interactions with elderly people, they will det®® neously, computing a distance measure between the twaserie
be equipped with intuitive user interfaces, as one cann@&x Thus, comparing the feature time series extracted fromengiv
their users to be familiar with computers, let alone robbts. utterance to feature time series stored for template sqoumnds
addition, robots and agents must, of course, be able taaicitercan, based on the minimum distance found, determine which
in their users’ language, which might not be one of the majarord was spoken. Even though DTW is frequently applied in
languages, such as English, Japanese, or Chinese. For tldeserministic SR systems, some recent work, further disulis
reasons, the Adaptive systems research group at ChalmiarsSection 1V, has indicated that DTW does not, in fact,
University of Technology, in Goteborg, Sweden, has rdgentnecessarily improve performance when matching time series
started a project (that will be described in detail elsewhés of different length.
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Thus, in this paper, a simpler approach (for Swedish SR)The next step is to divide the word into short snippets,
will be evaluated, in which sound features are first cona procedure referred to dsame blocking Here, snippets of
puted from partially time-overlapping frames extractednir durationr are extracted, with consecutive snippets shifted by
a spoken word. The time series thus obtained are normalized Note thatdr is typically smaller thanr, so that adjacent
to unit length, and are then resampled at equidistant (refeames partially overlap. Once the frames have been gestkrat
tive) times, making direct comparisons between differenet each frame is subjected tawindowing a procedure aimed
series (obtained from different utterances) possiblehauit at reducing discontinuities at the beginning and end of each
DTW. Several time series are generated for each souf@me. Thus, for each frame, thesamples are modified as
corresponding to different sound features, and the weighte
Euclidean distance between the features from the reference
sounds (recordea@ priori) and the currently spoken wordwhere the (Hamming) windowing function takes the form
is then used as a measure of dissimilarity. Furthermore, the Uk
selectionand weighting of the features used for SR have been v = (1 — ) —acos —, (3
optimized using a genetic algorithm (henceforth: GA). "

The structure of the paper is as follows: The method
described in Section Il. The results are given in Sectioanld B. Feature extraction

are Qiscussed in Section IV. The conclusions are presented i once the word has been preprocessed as described above,
Section V. resulting in a set of frames, sound features are computed
for each frame. Here, the sound features used have been
(i) the autocorrelation coefficients, (ii) the linear pretdie

The SR method used here, which has been implementasting (LPC) coefficients, (iii) the cepstral coefficienasd
in C# .NET, consists of four main parts: First, sounds af@) the relative number of zero crossings. The autocotiala
preprocessed and divided into short sound frames, usingaefficients are defined as

Sk < SkUk, )

therea is yet another parameter.

Il. METHOD

fairly standard procedure. Next, features are extracteth fr n—i (5% — 5)(skri — 5)
the sound frames. Then, in SR, the features obtained are =Y -* ea , (4)
compared to features extracted from template words, inrorde k=1 g

to determine which word was spoken. The final part involv%hereg

o ! e is the average of the samples andis their variance.
optimization of feature selection and feature weighting.

The number of extracted autocorrelation coefficients, (ite
number of values of used, starting from = 1) is referred to
as the autocorrelation order.

The first preprocessing step is to subtract the mean from therhe LPC and cepstral coefficients [10], which both are
sound samples (which, for 16-bit sounds, range freB2768 representations of the spectral envelope of a sound frame,
to 32767), i.e., removing any static (DC) components froen thhave been used frequently in speech recognition [8]. The LPC
sound. The next step is to extract the word, assuming that@efficientsl; provide the best possible linear approximation

single word was spoken. This is done by first moving forwargk the sound, i.e., an approximatiofy.} of samples;,
along the sound samples, starting from {i¢& sample, and

p
forming a moving average involving (the modulus pfsound 5 = Z LiSk—i, (5)
samples. Once this moving average exceeds a threshpld P

the corresponding sample, with indgy is taken as the start f%r which the errorsy, — &, is minimal in the least square

of the word. The pracedure is then repeated, starting Wié nse, wherg is the LPC order, i.e., the number of extracted
sampler — u+ 1, wherev is the number of recorded samplesLPC cyoefficients T

forming the moving average as just described, and then rgovin Provided that the sound frame is quasi-stationary, which is

backward, towards lower indices. When a sample (with md%)ften (almost) the case if the frame duration is set to a lslgita

k) is found for which the moving average exceeglsthe end value, the LPC coefficients provide an accurate compressed

point has _been found. The sound_contammgi&nekﬁl =m regresentation of the sound frame. The LPC coefficients can
samples is then extracted and is henceforth referred to a

. ) ) 'Be?derived efficiently from the autocorrelation coefficgra
word. The word s Fhen pre-emphasized. In the time OIOma'Brocedure that will not be detailed here (see, for examplg, [
the pre-emphasis filter takes the form Once the LPC coefficients have been obtained, one can also
compute the cepstral coefficients. These coefficients can be
derived from the LPC coefficients using (non-linear) remurs
wheres;, denotes thé'" sample and: is a parameter with a The detailed procedure can be found in [11]. The number
typical value slightly below 1. As is evident from this eqoat  of cepstral coefficients extracted is referred to as thetcaps
low frequencies (for whicy, is not very different froms;,_1) order. Finally, the number of zero crossingg is computed as
are de-emphasized, whereas high frequencies are emphasites number of samples such that either the prodiigt 1 < 0
improving the signal-to-noise ratio. or sisp—2 < 0 (if sy_1 = 0). Then, therelative number of

A. Sound preprocessing

Sk < Sk — CSkp_1, (1)
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re-sampling, all feature time series contain the same numbe
of equidistant points. The average time series (one for each
feature) are then stored in the speech recognizer. The ggoce
is repeated until alln,, words have been processed. The
procedure is illustrated in Figure 1. For clarity, only five
instances have been visualized in the middle panel, but the
bottom panel is based on ten instances.

During speech recognition, the word to be recognized is sub-

o0 V\;\%M _ jected to the three steps of preprocessing, feature eidnact

0.00 020 040 o and resampling described above. &}, denote the:*® point

LPC1 © *  of thej'" feature of stored word (in the speech recognizer),
. ] and lety;;, denote the:*" point of the;'" feature of the word
Yl i )% to be recognized. The distance measdés then computed
1005 : \JN\X __?}{T%/l : as ng n
l'){‘l{‘lE 11 TJ/I—I- 1 =

0.00 S 0.20 o m‘*ﬁ?ﬁﬁ' 0.60 S 0.80 S 1.00 di = Ny Z wj Z [’{jk (Ejk - (pjk)]Q : (6)

t j=1 k=1

Fig. 1.  An illustration of the averaging procedure (for agtinfeature, Wherew; > 0 are feature weights. The inner suir) Covers
namely the first LPC coefficient, denoted LPC1) used when rgéing the the number of time series points, or samples, (denoggdor

template time series for a given word. Panel (a) shows ortarins of the
Swedish wordhasta(meaning next). Panel (b) shows the original LPC1 tim each feature. The outer sum runs over the number of features

series obtained from five instances of the worsta As can be seen, the ?nf) ny is the number of features for which; is different
duration of the words, and therefore the number of featuietpovaries a bit from 0. Thus, ifw; > 0 Vj, n, is equal ton¢. However, as

between instances. In panel (c), the time axes (for 10 instawof the word shown below. faster SR performance can be obtained if some
nastg have been normalized, and the resulting series have bsampéed, ’

generating (in this case) 40 samples for each series, froithvihe average yveights are Se_t to 0. The;, are scale factors (see below) that,
LPCL1 time series, shown in panel (c), can be generated. Bhislmlso shows in the basic distance measure (BDM), all take the value 1.

the standard deviation (over the ten instances) for eaclplsam This distance measure is formed for each of thestored
words, and the index. of the word suggested by the speech

recognizer is taken as
zero crossingds formed by dividingn,. by the number of g

samples %) in the frame. With the procedure just described, iy = argmin,d;, (7

several feature time series (with one set of features foh eac ]
frame) are obtained for each word. if d;, is smaller than a threshold. If not, the speech

recognizer does not suggest any word. In order to simpliéy th
C. Speech recognition comparison of results obtained in different runs, the thoés
T was set to 1 for all runs. Note that, since the weighfsare

Here, the SR (or, rather, word recognition) is based 0niﬁowed to vary freely, in a wide range, it implies no redtdn

direct comparison between (a) feature time series stored
template words and (b) feature time series obtained from t
spoken word. Thus, when generating the speech recogni
a set of recorded template words is used. For each of
ny words that the recognizer is supposed to cope withn-
stances are recorded. The word instances are then prepedce
and feature time series are extracted, as described above

8 set the threshold to a fixed value.
S the kjk are all equal to 1, all points aloraygiven feature
& weighted equally. However, as is evident from the bottom
&nel in Figure 1, the standard deviation (over the 10 differ
instances used when forming the average feature valudsyvar
§Iong the feature time series. For example, in that figure,
) i ) ‘one can see that feature points near the (normalized) time
Now, in order to generate a template time series for @, qinate of around 0.20 have rather large standard devjat

given word, an average should be formed over the time serigga a5 features points at time 0.60 have small standard
obtained for the; instances of the word in question. Howeveryayiation. One may thus argue that the latter points would

with a constant frame duratiorr)(and a constant frame Sh'ftperhaps be more useful in detecting the uttered word than

(A7), the number of frames and, therefore, the number ature points with larger standard deviation. Thus, a fiextli

elements in the time series, will depend on the duration gfsi-nce measure can be defined, henceforth referred te as th

the spoken word instance. Thus, before forming the average, - 4- 4 deviation scalingsDS) distance measdren which

rather than using DTW to align the series, the time axes gfy . gepend on the standard deviation for each feature
all feature time series (for each instance) are simply tigea '

normalized to the l_ra_ngb), 1] and_ the _resultmg Se_r'es_ are then 1note that the approach introduced here is different fronmilean-variance
re-sampled at equidistant (relative) times, resultingrirequal normalization (MVN) method [12] used in some SR systems. In MVN,
number of feature values for each feature time series and Vet feature values are normalized using their estimatedhnaed variance

. . over a sliding window. By contrast, in the approach congidehere, the
each instance. Next, averages are formed oveniestances, variance values over several stored instances are usedefermdning the

which is straightforward since, after time normalizatiamda &) parameters.
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. . TABLE |
point, from the stored words. For the SDS distance measure, THE PARAMETERS USED IN THE SPEECH RECOGNIZER
the factorsk;, are computed by first determining the values
c:1. as Parameter Value
jk -
1 Sound extraction threshold,) 300
Cik = T (8) Sound extraction moving average lengg) ( 10
1+ |‘Iz='| Pre-emphasis parameter) ( 0.9373
] Y Frame duration ) 0.030 (s)
whereo;;; is the standard deviation of feature pointalong Frame shift (\7) 0.010 (s)
the time series for featurg and|®,| is a normalization factor Hamming window parameter 0.46
Autocorrelation order 8
computed as the average modulus of the feature values along | pc order 8
the series in question. The normalization factor is needads Cepstral order 12
different features have very different ranges. The modigus Number of samples per features( 40

introduced since many features have an average value near
zero. Once the;;, have been found, the;, are computed as
o Cik ) whered is the distance obtained for the word suggested by the
ik Y ik speech recognizer, i.e., the distarmkecorresponding to index
This slightly cumbersome procedure guarantees that the stmf! Equation (7)a andb are parameters, here set to 0.85 (
(over k) of ;. equalsns, making comparisons possibleand 0.50&). Thus, ifd < T', a contribution ;) slightly larger

between runs that use the BDM (al};, equal to 1) and runs than 1 is given if the word was correctly identified, whereas a
that use the SDS distance measure. negative contribution is given if the wrong word was ideatifi

o Finally, if no word was recognizedi(> T'), a small negative
D. optimization contribution is given. With this fitness measure, the GA will
Clearly, the distance measure depends on the weights attempt to find weights (see Equation (6)) that maximize the
assigned for the different features. The simple choicetihge fraction of correctly identified words, as the prime objeeti
all weights to 1 is by no means optimal, since some featurasd also maximize the quantity — d for those words, as
are more discriminative than others. Thus, an optimizatisghe second objective. Ideally, of coursE,— d should be as
procedure has been applied, during which the feature weigldrge as possible (for correctly identified words) sinceribie
were optimized (for maximum SR performance). Note that the misidentification is then reduced for other instanceshef t
optimization did not involve the preprocessing, featuraex word in question.
tion, and resampling steps that, for a given word databaseln some runs, described in Section Il below, an effort was
could thus be carried out once and for all. made to minimize the number of features used, by setting some
For the purpose of optimization, a fairly standard GA [13}veights to zero. In that case, the fitndSsvas multiplied by
has been used, in which the feature weights are encodechipenalty factop defined as

chromosomes (strings of floating-point numbers), and where Ny,

the formation of new chromosomes takes place using stan- p=1- En_f’ (12)
dard tournament selection, single-point crossover, aeeépcr _ . _ . e
mutations. wheree < 1 is a positive constant. With this modification, the

Three data sets were used in the GA runs: A training S&c’)timization procedure will favor speech recognizers gisia
w weights (and, therefore, features) as possible.

a validation set, and a test set. The results obtained oeer fﬂ
training set were used as feedback to the GA, whereas the 1. RESULTS

results obtained for the validation set, which were not jzfed The three data sets (training, validation, and test) each

to the GA, were used for determining when to stop the rg%ntained 10 instances of 10 different words, i.e., a tdtabDo

in order to avoid_ overfitting. Once arun had been complet unds in each set. As the intended application is an irtteeac
the results obtained over the previously unused test. set Wg{/stem for accessing online news (which will then be read by
taken as the true performance of the speech recognizer.

. ) ) th t bot, typicall id t isually i ired
During the GA runs, the fithesE of an individual, i.e., © agent or robot, fypicaly as an aid 1o a visualy impaire

h . ith weiahts decoded f h elderly person), the (minimal) vocabulary consisted oftdre
a speech recognizer (with weights decoded from a ¢ rOMQvedish wordga (yes)nej(no),las (read),ater (return),nasta
some), was computed as

(next), avsluta (cancel or finish),inrikes (domestic (news)),
utrikes (international),ekonomi(economy), andsport (sport,
= ZW’ (10) same as in English, but with different pronunciation). All
=t ) o sounds were sampled at 16 kHz.
where the sum runs over aik, words in the training data set  after extensive testing, involving (short) GA runs for each

Ntr

and-; is defined as parameter setting, the parameters used for preprocessing,
1+a(T —d) for correct identification, ture extraction, and resampling were chosen as in Table I. As
v = —b—a(T —d) for incorrect identification, can be seen from the table, the total number of feature time
a(T —d) if no word was recognized, series (for each word) was equalip=8+8+12+1 = 29,

(11) including also the relative number of zero crossings.
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TABLE 1l
OPTIMIZATION RESULTS: COLUMN 1 INDICATES THE RECOGNIZER TYPE
WHICH IS DETERMINED BY THE PARAMETERS SHOWN INCOLUMNS 2 AND
3. DM = DISTANCE MEASURE, BDM = BASIC DISTANCE MEASURE SDS
= STANDARD DEVIATION SCALING . COLUMNS 4 TO 6 SHOW THE
FRACTION OF CORRECTLY RECOGNIZED WORDS FOR THE TRAINING
VALIDATION , AND TEST SETS RESPECTIVELY COLUMN 7 SHOWS THE LPC1 ®)
AVERAGE DISTANCE VALUE (SEEEQUATION (6)) FOR THE CORRECTLY 40
CLASSIFIED WORDS IN THE TEST SET E

Type ny DM Training  Validation  Test dumin 1] N

1 29 (al) BDM | 1.00 0.99 0.99 0.3209 00d

2 5 BDM | 1.00 1.00 0.98 0.1466 oo 02 o o o8 1o
3 29 (al) SDSs | 0.98 0.91 091 — } ! } } ) y
4 8 SDS | 0.98 0.93 093 —

Next, several long GA runs were carried out. The population
size was set to 30, the tournament selection parameterp 0.7
the crossover probability to 0.80, and the mutation prdiigbi
to 1/n,, wheren, is the number of optimizable parameters
(i.e., the weightsv;). In runs using the fitness measure from
Equation (10), the weights, took values in the rangé, 5]. In E
runs using the fitness measure from Equation (12), the weight oo 02 os  o0s  os 10
range was the same but, in addition, weights could be set to t
zero (exactly) with a probability of around 0.50. ©

The results of the best run (i.e., the run with highest
validation fitness) for each of four different speech redngn
types are given in Table Il. In runs with types 1 and 3, the
standard fithess measure (without weight penalty) was used pc: 0
whereas for runs with types 2 and 4, the weight penalty was *°5
included in the fitness measure; see Equation (12). In types)Z% AN
1 and 2 the BDM was used, whereas types 3 and 4 used the 1\ J
SDS distance measure. Rather than the fitness values, the tab o3

shows the (more relevant) fraction of correctly recognized oo 02 04 06 08 10
words for the training, validation, and test sets, respebti LPC1 ©) ‘
for the best recognizer found of each type. In the rightmost M

column, the average values df,;, = d;. (i.e., the distance N p&\

measure for the recognized word) are shown for the correctly 1.}
classified words for types 1 and 2, but not for types 3 and 4, ooi — — — —
since their test performance was too low for the averdge 0o 02 o4 06 08 1-‘;
values to be meaningful.
In the speech recognizer with highest validation fitnegsgty Fig. 2.  An illustration of the fact that linear time normaition generates
2 in Table ||)’ which reached a perfect result on the trainind iIar_ (average) feature time series, shown in Panel @andless of the
d lidati t d | fect £ eaking speed. Panels (a)-(f) show the sound samples anfirdh LPC
and valida '0'_1 Sets, and nearly periect periormance On fficient for three utterances of the woetonomi using slow, standard,
test set, the five features used were only cepstral coeffierand fast speaking, respectively. See the main text for adfstription of the
namely coefficients number 3,7,8,11, and 12. Even though figre-
type 1 recognizer reached a slightly better result on the tes

set, one can argue that the type 2 recognizer is better, gince

has a smaller averagg., value. only on the number of samples in the recognized word and
a part (the computation af;) that is linear in the number of
stored (recognizable) words.(). The first part is dominated
The results in Table 1l show that the proposed method, willy the time needed to compute autocorrelations, but can be
the basic distance measure (alf;, equal to 1), works well, somewhat reduced if only some LPC and cepstral coefficients
and that some weights can be set to zero, without significaare needed. In the setup used here (running on a 2.67 GHz
loss in performance. This is important, since the time ndedeore i7 processor) using a typical word size of around 10,000
to recognize a word may be crucial if larger vocabularies asamples, the constant part of the recognition time is around
used. The time needed for recognition consists of a part (€672 s, and the linear part is equalltdl x 10~ *n,, s, if all
feature extraction) that, for a given set of features, ddpenweights are non-zero (type 1 in Table Il) af@24 x 10~*n,, s

IV. DISCUSSION
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for the best recognizer found, i.e., type 2 in Table Il. Thus, V. CONCLUSION AND FURTHER WORK
if a maximum recognition time of, say, 0.20 s is allowed for 14 conclude, it has been shown that linear time normal-
real-time performance, the number of words that can be&tofgation followed by feature matching provides robust speec
increases from around 1,200 (for type 1) to around 5,900 (fRicognition, and that, with optimization, the recognitspeed
type 2). can be strongly improved (especially important for large
The results also show that SDS had a detrimental effect @8cabularies), by using only a subset of the available featu
SR performance. A likely reason for the reduced performanceg, e though the size of the vocabulary used here is suffi-
is the fact that the standard deviation estimates are not Ve{ent for the application at hand (i.e., an intelligent neeader
accurate since they are based on only 10 instances. Of GOUERfent; see Section 1), and the intended use is as a companion
the number of instances could be increased, but that woylly single elderly person, the next step will be to increhse t
make the process of generating the speech recognizer qyji# of the vocabulary and, in doing so, use words spoken by
time-consuming, at least for larger vocabularies than ia thyifierent people. In addition, the issue of training withsta
example. On the other hand, using SDS is not really needgdsitives present will be investigated. Another obviousido

since the BDM reaches near-perfect performance. for further work would be to extend the method in order to
As mentioned in Section |, direct comparison of time serig@s;ndle not only IWR but CSR as well.
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