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Abstract—A system for Swedish isolated word recognition has
been developed, intended for use in an intelligent news reader
agent for elderly care. The system uses linear time normalization
of feature time series, as well as optimization (with a genetic
algorithm) of both feature selection and feature weighting. The
optimization of feature selection results in a potentiallyimportant
decrease in the time needed to recognize a spoken word, while
maintaining speech recognition performance.
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I. I NTRODUCTION

The increase in the fraction of elderly people, relative to the
working population, is a strong demographical trend at present:
One recent estimate expects the fraction of elderly people (65+
years old) in the European Union to increase from around 17%
in 2010 to 30% in 2060 [1]. Furthermore, the fraction of people
above the age of 80 is expected to increase from around 5%
to 12%, over the same time span.

In the near future, it is therefore likely that a variety of
technological tools, such as assistive or partner robots [2], as
well as intelligent homes [3], will come to play an important
role in elderly care. Indeed, some prototypes already exist,
such as the therapeutic seal robot Paro [4] and the assistive
robot Kompai [5]. An increased role of such tools is probable
for several reasons. For example, the (relative) decrease in the
size of the working population, combined with the increase
in the size of the elderly population, is likely to cause staff
shortages in elderly care. Furthermore, as a quality-of-life
issue, many elderly people prefer to live in their own home
(rather than in, say, a nursing home) for as long as possible [2],
something that can be facilitated using technological tools that,
for example, can monitor medicine intakes, alert relativesor
healthcare workers in case of injuries etc.

In order for such technological tools to be applicable in
meaningful interactions with elderly people, they will need to
be equipped with intuitive user interfaces, as one cannot expect
their users to be familiar with computers, let alone robots.In
addition, robots and agents must, of course, be able to interact
in their users’ language, which might not be one of the major
languages, such as English, Japanese, or Chinese. For these
reasons, the Adaptive systems research group at Chalmers
University of Technology, in Göteborg, Sweden, has recently
started a project (that will be described in detail elsewhere) to

develop both intelligent software agents and a partner robot
intended for use in elderly care in Sweden.

This paper will consider one particular aspect of that project,
namely speech recognition (in Swedish) for an intelligent
news reader agent that can access online news based on
the user’s commands. Speech recognition (henceforth: SR) is
less developed (than in English) in languages spoken either
by rather few people [6] or in emerging countries; see, for
example, [7]. In fact, much of the SR-related robotics research
is focused on English, since it is spoken by almost all
researchers, regardless of nationality, but perhaps not byall
people in the general population, and certainly not all elderly
people. Hence, improvement of SR systems is an important
step towards the development of technological tools for elderly
care in countries where English (or any other major language)
is not the first language.

Of course, the problems and issues encountered when
developing an SR system are similar, regardless of the lan-
guage considered. In general, two main forms of SR can be
distinguished, namely (i) isolated word recognition (IWR), and
(ii) continuous speech recognition (CSR) [8]. Over the years,
SR has been approached using many different techniques,
in particular dynamic time warping (DTW) (see, e.g., [8],
Chapter 4) which involves a classification method based on
comparison of time series of different length, and hidden
Markov models (HMMs) (see, e.g., [8], Chapter 6) that, effec-
tively, constitute a stochastic (probabilistic) extension of DTW.
The HMM approach currently dominates SR research, and
most of the state-of-the-art SR systems employ this method.
However, deterministic approaches (such as DTW) are also
useful, particularly in command-style SR systems focusingon
IWR with a rather limited vocabulary [9]. DTW attempts to
find the optimal alignment between time series (containing,for
example, features extracted from sound data) while, simulta-
neously, computing a distance measure between the two series.
Thus, comparing the feature time series extracted from a given
utterance to feature time series stored for template sounds, one
can, based on the minimum distance found, determine which
word was spoken. Even though DTW is frequently applied in
deterministic SR systems, some recent work, further discussed
in Section IV, has indicated that DTW does not, in fact,
necessarily improve performance when matching time series
of different length.
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Thus, in this paper, a simpler approach (for Swedish SR)
will be evaluated, in which sound features are first com-
puted from partially time-overlapping frames extracted from
a spoken word. The time series thus obtained are normalized
to unit length, and are then resampled at equidistant (rela-
tive) times, making direct comparisons between different time
series (obtained from different utterances) possible, without
DTW. Several time series are generated for each sound,
corresponding to different sound features, and the weighted
Euclidean distance between the features from the reference
sounds (recordeda priori) and the currently spoken word
is then used as a measure of dissimilarity. Furthermore, the
selectionand weighting of the features used for SR have been
optimized using a genetic algorithm (henceforth: GA).

The structure of the paper is as follows: The method is
described in Section II. The results are given in Section IIIand
are discussed in Section IV. The conclusions are presented in
Section V.

II. M ETHOD

The SR method used here, which has been implemented
in C# .NET, consists of four main parts: First, sounds are
preprocessed and divided into short sound frames, using a
fairly standard procedure. Next, features are extracted from
the sound frames. Then, in SR, the features obtained are
compared to features extracted from template words, in order
to determine which word was spoken. The final part involves
optimization of feature selection and feature weighting.

A. Sound preprocessing

The first preprocessing step is to subtract the mean from the
sound samples (which, for 16-bit sounds, range from−32768
to 32767), i.e., removing any static (DC) components from the
sound. The next step is to extract the word, assuming that a
single word was spoken. This is done by first moving forward
along the sound samples, starting from theµth sample, and
forming a moving average involving (the modulus of)µ sound
samples. Once this moving average exceeds a thresholdtp,
the corresponding sample, with indexks, is taken as the start
of the word. The procedure is then repeated, starting with
sampleν−µ+1, whereν is the number of recorded samples,
forming the moving average as just described, and then moving
backward, towards lower indices. When a sample (with index
ke) is found for which the moving average exceedstp, the end
point has been found. The sound containing theke−ks+1 ≡ m
samples is then extracted and is henceforth referred to as a
word. The word is then pre-emphasized. In the time domain,
the pre-emphasis filter takes the form

sk ← sk − csk−1, (1)

wheresk denotes thekth sample andc is a parameter with a
typical value slightly below 1. As is evident from this equation,
low frequencies (for whichsk is not very different fromsk−1)
are de-emphasized, whereas high frequencies are emphasized,
improving the signal-to-noise ratio.

The next step is to divide the word into short snippets,
a procedure referred to asframe blocking. Here, snippets of
durationτ are extracted, with consecutive snippets shifted by
δτ . Note thatδτ is typically smaller thanτ , so that adjacent
frames partially overlap. Once the frames have been generated,
each frame is subjected towindowing, a procedure aimed
at reducing discontinuities at the beginning and end of each
frame. Thus, for each frame, then samples are modified as

sk ← skvk, (2)

where the (Hamming) windowing function takes the form

vk = (1− α) − α cos
2πk

n
, (3)

whereα is yet another parameter.

B. Feature extraction

Once the word has been preprocessed as described above,
resulting in a set of frames, sound features are computed
for each frame. Here, the sound features used have been
(i) the autocorrelation coefficients, (ii) the linear predictive
coding (LPC) coefficients, (iii) the cepstral coefficients,and
(iv) the relative number of zero crossings. The autocorrelation
coefficients are defined as

ai =

n−i
∑

k=1

(sk − s)(sk+i − s)

σ2
, (4)

wheres is the average of the samples andσ2 is their variance.
The number of extracted autocorrelation coefficients (i.e., the
number of values ofi used, starting fromi = 1) is referred to
as the autocorrelation order.

The LPC and cepstral coefficients [10], which both are
representations of the spectral envelope of a sound frame,
have been used frequently in speech recognition [8]. The LPC
coefficientsli provide the best possible linear approximation
of the sound, i.e., an approximation (ŝk) of samplesk

ŝk =

p
∑

i=1

lisk−i, (5)

for which the errorsk − ŝk is minimal in the least square
sense, wherep is the LPC order, i.e., the number of extracted
LPC coefficients.

Provided that the sound frame is quasi-stationary, which is
often (almost) the case if the frame duration is set to a suitable
value, the LPC coefficients provide an accurate compressed
representation of the sound frame. The LPC coefficients can
be derived efficiently from the autocorrelation coefficients, a
procedure that will not be detailed here (see, for example, [8]).
Once the LPC coefficients have been obtained, one can also
compute the cepstral coefficients. These coefficients can be
derived from the LPC coefficients using (non-linear) recursion.
The detailed procedure can be found in [11]. The number
of cepstral coefficients extracted is referred to as the cepstral
order. Finally, the number of zero crossingsnzc is computed as
the number of samples such that either the productsksk−1 < 0
or sksk−2 < 0 (if sk−1 = 0). Then, therelative number of
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Fig. 1. An illustration of the averaging procedure (for a single feature,
namely the first LPC coefficient, denoted LPC1) used when generating the
template time series for a given word. Panel (a) shows one instance of the
Swedish wordnästa(meaning next). Panel (b) shows the original LPC1 time
series obtained from five instances of the wordnästa. As can be seen, the
duration of the words, and therefore the number of feature points, varies a bit
between instances. In panel (c), the time axes (for 10 instances of the word
nästa) have been normalized, and the resulting series have been resampled,
generating (in this case) 40 samples for each series, from which the average
LPC1 time series, shown in panel (c), can be generated. This panel also shows
the standard deviation (over the ten instances) for each sample.

zero crossingsis formed by dividingnzc by the number of
samples (n) in the frame. With the procedure just described,
several feature time series (with one set of features for each
frame) are obtained for each word.

C. Speech recognition

Here, the SR (or, rather, word recognition) is based on a
direct comparison between (a) feature time series stored for
template words and (b) feature time series obtained from the
spoken word. Thus, when generating the speech recognizer,
a set of recorded template words is used. For each of the
nw words that the recognizer is supposed to cope with,ni in-
stances are recorded. The word instances are then preprocessed
and feature time series are extracted, as described above.

Now, in order to generate a template time series for a
given word, an average should be formed over the time series
obtained for theni instances of the word in question. However,
with a constant frame duration (τ ) and a constant frame shift
(∆τ ), the number of frames and, therefore, the number of
elements in the time series, will depend on the duration of
the spoken word instance. Thus, before forming the average,
rather than using DTW to align the series, the time axes of
all feature time series (for each instance) are simply linearly
normalized to the range[0, 1] and the resulting series are then
re-sampled at equidistant (relative) times, resulting in an equal
number of feature values for each feature time series and for
each instance. Next, averages are formed over theni instances,
which is straightforward since, after time normalization and

re-sampling, all feature time series contain the same number
of equidistant points. The average time series (one for each
feature) are then stored in the speech recognizer. The process
is repeated until allnw words have been processed. The
procedure is illustrated in Figure 1. For clarity, only five
instances have been visualized in the middle panel, but the
bottom panel is based on ten instances.

During speech recognition, the word to be recognized is sub-
jected to the three steps of preprocessing, feature extraction,
and resampling described above. LetFijk denote thekth point
of the jth feature of stored wordi (in the speech recognizer),
and letϕjk denote thekth point of thejth feature of the word
to be recognized. The distance measuredi is then computed
as

di =
1

nuns

nf
∑

j=1

wj

ns
∑

k=1

[κjk (Fijk − ϕjk)]
2
. (6)

wherewj ≥ 0 are feature weights. The inner sum (k) covers
the number of time series points, or samples, (denotedns) for
each feature. The outer sum runs over the number of features
(nf ). nu is the number of features for whichwj is different
from 0. Thus, ifwj > 0 ∀j, nu is equal tonf . However, as
shown below, faster SR performance can be obtained if some
weights are set to 0. Theκjk are scale factors (see below) that,
in the basic distance measure (BDM), all take the value 1.

This distance measure is formed for each of thenw stored
words, and the indexir of the word suggested by the speech
recognizer is taken as

ir = argminidi, (7)

if dir is smaller than a thresholdT . If not, the speech
recognizer does not suggest any word. In order to simplify the
comparison of results obtained in different runs, the threshold
T was set to 1 for all runs. Note that, since the weightswj are
allowed to vary freely, in a wide range, it implies no restriction
to set the threshold to a fixed value.

If the κjk are all equal to 1, all points alonga given feature
are weighted equally. However, as is evident from the bottom
panel in Figure 1, the standard deviation (over the 10 different
instances used when forming the average feature values) varies
along the feature time series. For example, in that figure,
one can see that feature points near the (normalized) time
coordinate of around 0.20 have rather large standard deviation,
whereas features points at time 0.60 have small standard
deviation. One may thus argue that the latter points would
perhaps be more useful in detecting the uttered word than
feature points with larger standard deviation. Thus, a modified
distance measure can be defined, henceforth referred to as the
standard deviation scaling(SDS) distance measure1, in which
the κjk depend on the standard deviation for each feature

1Note that the approach introduced here is different from themean-variance
normalization (MVN) method [12] used in some SR systems. In MVN,
the feature values are normalized using their estimated mean and variance
over a sliding window. By contrast, in the approach considered here, the
variance values over several stored instances are used for determining the
κjk parameters.
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point, from the stored words. For the SDS distance measure,
the factorsκjk are computed by first determining the values
cjk as

cjk =
1

1 +
σjk

|Φj |

(8)

whereσjk is the standard deviation of feature pointk along
the time series for featurej, and|Φj | is a normalization factor
computed as the average modulus of the feature values along
the series in question. The normalization factor is needed since
different features have very different ranges. The modulusis
introduced since many features have an average value near
zero. Once thecjk have been found, theκjk are computed as

κjk = ns

cjk
∑ns

k=1 cjk

. (9)

This slightly cumbersome procedure guarantees that the sum
(over k) of κjk equals ns, making comparisons possible
between runs that use the BDM (allκjk equal to 1) and runs
that use the SDS distance measure.

D. optimization

Clearly, the distance measure depends on the weightswj

assigned for the different features. The simple choice of setting
all weights to 1 is by no means optimal, since some features
are more discriminative than others. Thus, an optimization
procedure has been applied, during which the feature weights
were optimized (for maximum SR performance). Note that the
optimization did not involve the preprocessing, feature extrac-
tion, and resampling steps that, for a given word database,
could thus be carried out once and for all.

For the purpose of optimization, a fairly standard GA [13]
has been used, in which the feature weights are encoded in
chromosomes (strings of floating-point numbers), and where
the formation of new chromosomes takes place using stan-
dard tournament selection, single-point crossover, and creep
mutations.

Three data sets were used in the GA runs: A training set,
a validation set, and a test set. The results obtained over the
training set were used as feedback to the GA, whereas the
results obtained for the validation set, which were not provided
to the GA, were used for determining when to stop the run
in order to avoid overfitting. Once a run had been completed,
the results obtained over the previously unused test set were
taken as the true performance of the speech recognizer.

During the GA runs, the fitnessΓ of an individual, i.e.,
a speech recognizer (with weights decoded from a chromo-
some), was computed as

Γ =

ntr
∑

j=1

γj , (10)

where the sum runs over allntr words in the training data set
andγj is defined as

γj =







1 + a(T − d) for correct identification,
−b− a(T − d) for incorrect identification,

a(T − d) if no word was recognized,
(11)

TABLE I
THE PARAMETERS USED IN THE SPEECH RECOGNIZER.

Parameter Value
Sound extraction threshold (tp) 300
Sound extraction moving average length (µ) 10
Pre-emphasis parameter (c) 0.9373
Frame duration (τ ) 0.030 (s)
Frame shift (∆τ ) 0.010 (s)
Hamming window parameter (α) 0.46
Autocorrelation order 8
LPC order 8
Cepstral order 12
Number of samples per feature (ns) 40

whered is the distance obtained for the word suggested by the
speech recognizer, i.e., the distancedi corresponding to index
ir in Equation (7).a andb are parameters, here set to 0.05 (a)
and 0.50 (b). Thus, ifd ≤ T , a contribution (γj) slightly larger
than 1 is given if the word was correctly identified, whereas a
negative contribution is given if the wrong word was identified.
Finally, if no word was recognized (d > T ), a small negative
contribution is given. With this fitness measure, the GA will
attempt to find weights (see Equation (6)) that maximize the
fraction of correctly identified words, as the prime objective,
and also maximize the quantityT − d for those words, as
the second objective. Ideally, of course,T − d should be as
large as possible (for correctly identified words) since therisk
of misidentification is then reduced for other instances of the
word in question.

In some runs, described in Section III below, an effort was
made to minimize the number of features used, by setting some
weights to zero. In that case, the fitnessΓ was multiplied by
a penalty factorp defined as

p = 1− ε
nu

nf

, (12)

whereε� 1 is a positive constant. With this modification, the
optimization procedure will favor speech recognizers using as
few weights (and, therefore, features) as possible.

III. R ESULTS

The three data sets (training, validation, and test) each
contained 10 instances of 10 different words, i.e., a total of 100
sounds in each set. As the intended application is an interactive
system for accessing online news (which will then be read by
the agent or robot, typically as an aid to a visually impaired
elderly person), the (minimal) vocabulary consisted of theten
Swedish wordsja (yes)nej (no), läs(read),åter (return),nästa
(next), avsluta (cancel or finish),inrikes (domestic (news)),
utrikes (international),ekonomi(economy), andsport (sport,
same as in English, but with different pronunciation). All
sounds were sampled at 16 kHz.

After extensive testing, involving (short) GA runs for each
parameter setting, the parameters used for preprocessing,fea-
ture extraction, and resampling were chosen as in Table I. As
can be seen from the table, the total number of feature time
series (for each word) was equal tonf = 8+8+12+1 = 29,
including also the relative number of zero crossings.
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TABLE II
OPTIMIZATION RESULTS: COLUMN 1 INDICATES THE RECOGNIZER TYPE,
WHICH IS DETERMINED BY THE PARAMETERS SHOWN INCOLUMNS 2 AND

3. DM = DISTANCE MEASURE, BDM = BASIC DISTANCE MEASURE, SDS
= STANDARD DEVIATION SCALING . COLUMNS 4 TO 6 SHOW THE

FRACTION OF CORRECTLY RECOGNIZED WORDS FOR THE TRAINING,
VALIDATION , AND TEST SETS, RESPECTIVELY. COLUMN 7 SHOWS THE
AVERAGE DISTANCE VALUE (SEEEQUATION (6)) FOR THE CORRECTLY

CLASSIFIED WORDS IN THE TEST SET.

Type nu DM Training Validation Test dmin

1 29 (all) BDM 1.00 0.99 0.99 0.3209
2 5 BDM 1.00 1.00 0.98 0.1466
3 29 (all) SDS 0.98 0.91 0.91 —
4 8 SDS 0.98 0.93 0.93 —

Next, several long GA runs were carried out. The population
size was set to 30, the tournament selection parameter to 0.75,
the crossover probability to 0.80, and the mutation probability
to 1/np, wherenp is the number of optimizable parameters
(i.e., the weightswj ). In runs using the fitness measure from
Equation (10), the weightswj took values in the range[0, 5]. In
runs using the fitness measure from Equation (12), the weight
range was the same but, in addition, weights could be set to
zero (exactly) with a probability of around 0.50.

The results of the best run (i.e., the run with highest
validation fitness) for each of four different speech recognizer
types are given in Table II. In runs with types 1 and 3, the
standard fitness measure (without weight penalty) was used
whereas for runs with types 2 and 4, the weight penalty was
included in the fitness measure; see Equation (12). In types
1 and 2 the BDM was used, whereas types 3 and 4 used the
SDS distance measure. Rather than the fitness values, the table
shows the (more relevant) fraction of correctly recognized
words for the training, validation, and test sets, respectively,
for the best recognizer found of each type. In the rightmost
column, the average values ofdmin ≡ dir

(i.e., the distance
measure for the recognized word) are shown for the correctly
classified words for types 1 and 2, but not for types 3 and 4,
since their test performance was too low for the averagedmin

values to be meaningful.
In the speech recognizer with highest validation fitness (type

2 in Table II), which reached a perfect result on the training
and validation sets, and nearly perfect performance on the
test set, the five features used were only cepstral coefficients,
namely coefficients number 3,7,8,11, and 12. Even though the
type 1 recognizer reached a slightly better result on the test
set, one can argue that the type 2 recognizer is better, sinceit
has a smaller averagedmin value.

IV. D ISCUSSION

The results in Table II show that the proposed method, with
the basic distance measure (allκjk equal to 1), works well,
and that some weights can be set to zero, without significant
loss in performance. This is important, since the time needed
to recognize a word may be crucial if larger vocabularies are
used. The time needed for recognition consists of a part (the
feature extraction) that, for a given set of features, depends
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Fig. 2. An illustration of the fact that linear time normalization generates
similar (average) feature time series, shown in Panel (g), regardless of the
speaking speed. Panels (a)-(f) show the sound samples and the first LPC
coefficient for three utterances of the wordekonomi, using slow, standard,
and fast speaking, respectively. See the main text for a fulldescription of the
figure.

only on the number of samples in the recognized word and
a part (the computation ofdi) that is linear in the number of
stored (recognizable) words (nw). The first part is dominated
by the time needed to compute autocorrelations, but can be
somewhat reduced if only some LPC and cepstral coefficients
are needed. In the setup used here (running on a 2.67 GHz
core i7 processor) using a typical word size of around 10,000
samples, the constant part of the recognition time is around
0.0672 s, and the linear part is equal to1.11×10−4nw s, if all
weights are non-zero (type 1 in Table II) and0.224×10−4nw s
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for the best recognizer found, i.e., type 2 in Table II. Thus,
if a maximum recognition time of, say, 0.20 s is allowed for
real-time performance, the number of words that can be stored
increases from around 1,200 (for type 1) to around 5,900 (for
type 2).

The results also show that SDS had a detrimental effect on
SR performance. A likely reason for the reduced performance
is the fact that the standard deviation estimates are not very
accurate since they are based on only 10 instances. Of course,
the number of instances could be increased, but that would
make the process of generating the speech recognizer quite
time-consuming, at least for larger vocabularies than in this
example. On the other hand, using SDS is not really needed,
since the BDM reaches near-perfect performance.

As mentioned in Section I, direct comparison of time series
in SR is usually carried out using DTW rather than (linear)
time normalization followed by resampling as used here.
However, the motivation for using the DTW approach is not
very strong. First of all, Ratanamahatana and Keogh [14]
have noted that time series of different length can simply
be renormalized to equal length without loss in recognition
performance. Furthermore, Boulgouriset al. [15] concluded
that linear time normalization in factoutperformedDTW in
the context of gait identification.

Our results confirm these findings, and a clear illustration of
this fact is given in Figure 2. Here, the wordekonomi(econ-
omy) was uttered ten times slowly (average duration: 0.907
s), ten times with normal speed (average duration: 0.634 s),
and ten times quickly (average duration: 0.433 s). The top six
panels of the figure show one instance of the slow, normal,
and fast utterances, along with the corresponding originaltime
series for the first LPC coefficient (LPC1). The bottom panel
shows theaveragefeature time series over the ten instances
of slow, normal, and fast readings, respectively, after linear
time normalization and resampling. Despite the very different
reading speeds, the feature values are very similar. In fact, the
differences between the three curves are of the same order of
magnitude as the standard deviations (not shown) over the ten
instances for each curve separately. In all three cases (slow,
normal, and fast), the best speech recognizers, namely types
1 and 2 in Table II, correctly identified all ten instances.

The work presented here represents the initial development
stage of an intelligent agent with Swedish speech recognition,
and there are some obvious limitations, namely that (i) a rather
limited vocabulary was used, (ii) the sounds were recorded by
a single speaker, and (iii) the system was trained using onlythe
words in the vocabulary, i.e., no false positives were included.
However, it should be noted that even with the present training
setup, the speech recognizer can avoid incorrect detectionof
unknown words, namely in cases where the uttered word is
sufficiently different from the stored words so that the resulting
minimum distance exceeds the thresholdT . As for speaker
independence, even though the speech recognizer was trained
using a single voice, some initial tests with other speakers
showed promising results, which, however, will be followed
up as described below.

V. CONCLUSION AND FURTHER WORK

To conclude, it has been shown that linear time normal-
ization followed by feature matching provides robust speech
recognition, and that, with optimization, the recognitionspeed
can be strongly improved (especially important for large
vocabularies), by using only a subset of the available features.

Even though the size of the vocabulary used here is suffi-
cient for the application at hand (i.e., an intelligent newsreader
agent; see Section I), and the intended use is as a companion
to a single elderly person, the next step will be to increase the
size of the vocabulary and, in doing so, use words spoken by
different people. In addition, the issue of training with false
positives present will be investigated. Another obvious topic
for further work would be to extend the method in order to
handle not only IWR but CSR as well.
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[6] A. Lipeika and J. Lipeikienė, “On the use of the formant features in the
dynamic time warping based recognition of isolated words,”Informatica,
vol. 19, no. 2, pp. 213–226, 2008.

[7] F. Rosdi and R. Ainon, “Isolated malay speech recognition using hidden
markov models,” inProceedings of the International Conference on
Computer and Communication Engineering, 2008, pp. 721–725.

[8] L. Rabiner and B.-H. Juang,Fundamentals of speech recognition.
Prentice Hall, 1993.

[9] P. Wong, O. Au, J. Wong, and W. Lau, “Reducing computational
complexity of dynamic time warping based isolated word recognition
with time scale modification,” inProceedings of the Fourth International
Conference on Signal Processing, 1998, pp. 722–725.

[10] J. Markel and A. Gray Jr.,Linear prediction of speech. Springer Verlag,
1976.

[11] G. Antoniol, V. Rollo, and G. Venturi, “Linear predictive coding
and cepstrum coefficients for mining time invariant information from
software repositories,” inACM SIGSOFT Software Engineering Notes,
vol. 30, no. 4, 2005, pp. 1–5.

[12] O. Viikki and K. Laurila, “Cepstral domain segmental feature vector nor-
malization for noise robust speech recognition,”Speech Communication,
vol. 25, pp. 133–147, 1998.

[13] J. H. Holland,Adaptation in natural and artificial systems. University
of Michigan Press, 1975.

[14] C. Ratanamahatana and E. Keogh, “Three myths about dynamics time
warping data mining,” inProceedings of SIAM International Conference
on Data Mining, 2005, pp. 506–510.

[15] N. Boulgouris, K. Plataniotis, and D. Hatzinakos, “Gait recognition
using linear time normalization,”Pattern Recognition, vol. 39, pp. 969–
979, 2006.

6Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-224-0

INTELLI 2012 : The First International Conference on Intelligent Systems and Applications


