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Abstract— Manual inferring of semantic relationships by 

domain experts is an expensive and time consuming task; 

thus, automatic techniques are needed. In this paper, we 

propose an automatic novel technique for inferring cognitive 

relationships among concepts and knowledge units in the 

learning resources by using Graph-transitivity. The cognitive 

relationships are expressed as Bloom Taxonomy levels. 

Learning resources are represented as knowledge units in 

texts. The technique determines significant relationships 

among knowledge units by utilizing transitivity of knowledge 

units in the computer science domain. We share an 

experiment that evaluates and validates the technique from 

three textbooks. The performance analysis shows that the 

technique succeeds in discovering the hidden cognitive 

relationships among knowledge units in learning resources. 

Keywords— Cognitive Graph; Graph Transitivity; 

Knowledge Unit; Graph Mining; Bloom Taxonomy. 

I.INTRODUCTION 

Extracting semantic relationships from a text has been 
widely studied in several research including Natural 
Language Processing (NLP), Text Mining, Information 
Retrieval (IR), and others. The goal of the relationships' 
extraction is different from one task to another and from one 
resource to another. Learning resources are the most 
significant repositories of knowledge and information. 
Discovering hidden interconnections among knowledge 
units is interesting. Hidden interconnections are represented 
in different forms. In this paper, the interconnections among 
knowledge units are represented as a cognitive theory called 
Bloom Taxonomy(BT). The concept of cognitive theory 
has crossed the line from psychology and educational 
theory and has become an important part of computer 
technology research. The taxonomy idea was first 
introduced by Benjamin Bloom. Bloom identified three 
domains of educational activities: the cognitive domain 
(mental skills), the affective domain (growth in feelings or 
emotional areas), and the psychomotor domain (physical 
skills) [1]. The cognitive domain is divided into six levels: 
1) knowledge, 2) comprehension, 3) application, 4) 
analysis, 5) synthesis, and 6) evaluation. The Bloom model 
was modified in 2001 by Anderson and a team of cognitive 
psychologists [2]. Significant changes were made to the 
Bloom’s Taxonomy model. The original taxonomy of 
educational objectives, is referred to as Bloom’s Taxonomy 
and Anderson’s work, is known as Revised Bloom’s 
Taxonomy [2]. Revised Bloom’s was modified to the 
Computer Science based Cognitive Domain (CSCD) [3] to 
make it appropriate for the concept domain in computer 
science. For this paper, only the cognitive domain is used 
and we discussed the first sub-task in our previous work [3]. 
We are going to discuss the second sub-task in this paper. 

We introduced an automatic technique to infer the 
relationships based on CSCD levels among knowledge 
units using the graph transitivity. The CSCD is used to 
identify and progressively measure of learner’s cognitive 
level. A learner is not expected to understand the text based 
on the given ordered knowledge units. Thus, a shared 
language is needed to provide a highlighted learning map 
of a text based on cognitive skills. 

The rest of the paper is organized as follows. The 
related work is presented in Section II. The problem 
definition is discussed in Section III. Section IV describes 
an overview of the system. Section V describes the 
transitivity technique as well as a description of the 
algorithm in detail. Section VI presents the classification of 
the knowledge units. Section VII shows examples of the 
technique. The experiment setup and an evaluation of the 
technique are explained in Section VIII. Section IX 
presents the conclusion and future work 

II.RELATED WORK 

The work presented in this paper is situated at the 
intersection of several areas of related prior work from the 
linguistics perspective, Graph perspective, and Graph 
Transitivity Property perspective. We will discuss each of 
these in turn. 

From the linguistics perspective, theorists developed 
three different taxonomies to represent the three domains 
of learning: a cognitive taxonomy focused on intellectual 
learning, an effective taxonomy concerned with the 
learning of values and attitudes, and a psychomotor 
taxonomy that addresses the motor skills related to 
learning. One of the cognitive taxonomies [1] is known as 
Bloom’s Taxonomy. Bloom’s Taxonomy has been applied 
in the field of computer science for various purposes such 
as managing course design [4], measuring the cognitive 
difficulty levels of computer science materials [4], and 
structuring assessments [5]. Bloom’s Taxonomy has also 
been used in grading as an alternative to grading on a curve 
[6]. Additionally, from the mining perspective, there has 
been some interesting research about extracting relations 
among concepts. Relations could be replaced by the 
synonym relationships, or a hypernym, an association, etc. 
[7] [8]. These relationships are successfully used in 
different domains and applications [9].  

From the Graph Perspective, the representation of the 
extracted relationship is the graph. There has been some 
research on graphical text representation such as concept 
graphs [10] and ontology [11]. The authors proposed 
Concept Graph Learning to present relations among 
concepts from prerequisite relations among courses. 

From the Graph Transitivity Property perspective, in 
the definition of transitivity in graph, two nodes are 
connected if they share a direct neighbor, so the inferred 
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hidden relationship between those two nodes is based on 
the transitivity. There has been research on the transitivity 
in the domain of Biology [12]. In addition, transitivity has 
been studied in friendship graphs in social networks 
research [13].  

None of the previous work handles the problem of 
inferring the relationships among knowledge units based 
on CSCD levels in the domain of computer science. Using 
graph transitivity is a promising way to reach this goal and 
discover novel cognitive relationships between knowledge 
units.  

This paper presents a technique for mining CSCD levels 
among the knowledge units in a textbook. The technique is 
based on using graph transitivity to discover relationships 
between knowledge units. Transitivity technique describes 
levels of increasing complexity in students understanding 
of knowledge units. It has the flexibility of giving the new 
sequential ordering of the knowledge units in a textbook. 
According to the experimental evaluations, the method can 
efficiently identify CSCD levels among knowledge units. 
Building an automatic technique to assist in organizing 
knowledge units based on the level of cognitive skills will 
provide a new learning trajectory for the learners and will 
help in circumventing their deficit in understanding any 
textbook.  

III.PROBLEM DEFINITION 

In this section let us introduce some definitions, which 
are used in this paper. 
Concepts: are terms that have significant meaning(s) in 
computer sciences. 
Knowledge Unit (KU): is defined as a group of sentences 
that discuss specific topics in computer sciences and consist 
of concepts, which are related to the topic. 
The Overlap between Knowledge Unit:  if a KU consist 
group of concepts and at least one of these concepts appears 
in another KU then, we say the two KU’s are overlapping.    

Given a textbook TB that contains a set of knowledge 
units (it could be a topic from a textbook or more) KU = 
{ku1, ku2… kun} where n is the number of knowledge units 
in TB. Each knowledge unit is a group of sentences kui= {s1, 
s2…sm} and each sentence is composed of a sequence of 
concepts si= {c1,..,co}; in addition, the Computer Science 
based Cognitive Domain (CSCD) has the levels of 
(Understanding, Analyzing, Applying-Evaluating, and 
Creating),which are denoted as {B1, B2, B3, B4} respectively 
[3]. Each level has a subset of measurable verbs. The 
contribution of this work is to find transitivity function ƒ(x): 
KU→βi which maps knowledge units (KU) according to 
Computer-Science based Cognitive Domain (CSCD) using 
the subset of measurable verbs. To handle this problem, we 
create a semantic graph GS from the given textbook TB in 
order to find the relationships among concepts in the 
knowledge unit and subsequently relationships among 
knowledge units themselves. The transitivity will output the 
hidden links among knowledge units according to CSCD 
levels. For example, consider that from a textbook three 
knowledge units (KU #1, KU #2, and KU #3) have been 
chosen, and we need to find a relationship between 
knowledge units based on CSCD levels using transitivity. 
As described in the problem definition we have two main 
problems: 

  Converting a textbook to a semantic graph GS is a 
directed graph GS = (C, V) where C (concept) represents 
nodes, and V (verbs) represents the labels of the relationship 
among concepts. 

 Finding out the relationship (X) among knowledge 
unit#1, knowledge unit#2 and knowledge unit#3 based on 
(CSCD) βi= {B1, B2, B3, B4}. Fig. 1 represents the sub-part 
of GS for three knowledge units where some of the 
relationships mainly exist among the KU from the same 
textbook, or from a textbook of similar topics.  

 
Figure 1. Three Knowledge Units and the Relationships Between them. 

IV. OVERVIEW OF THE SYSTEM 

 The system consists of three main components, called, 
System Core, CSCD Engine, and Domain Lexicon as in Fig.    
2. The input for the system is a textbook and the output is 
a cognitive graph GC classified into CSCD levels. 

The system Core was presented in detailed in our 
previous work [3]. It includes the following four parts: 
Text-Preprocessing, Natural Language Processing (NLP), 
Domain Specific Extraction, and Semantic Relationship 
Extraction.  In the Text-Preprocessing part, the system 
assumes that the input files are in plain text format. Any 
other formats are turned into a plain text before it starts the 
other steps. Then, the Natural Language Processing part 
incorporates NLP tools, such as splitting each sentence into 
a sequence of tokens where tokens are unique concepts. 
Stanford Parser, which is used to parse each sentence to get 
its part-of-speech (verb, noun, adjective, etc.) will be used 
to extract semantic relationships between concepts. The 
Domain Specific Extraction part contains concepts related 
to the domain of interest, which is computer science. We 
build the specific stop words list manually, because there is 
no stop list related to the domain under study. It can also be 
updated during the process of the system. The Semantic 
Relationship Extraction part includes extracting the 
relationships in the form of concept-verb-concept, among 
concepts in the knowledge unit. The final form of 
extraction is represented as a semantic graph. Lyons and 
other [15] structural linguists hold that “words cannot be 
defined independently from other words. A word’s 
relationship with other words is part of the meaning of the 
word”.  

CSCD Engine: The CSCD Engine consists of a graph 
transitivity based algorithm that extracts CSCD 
relationships between concepts in the knowledge units. The 
overall procedure for CSCD Engine is shown in algorithm 
1 in Fig.  4. 

Domain Lexicon: The Domain Lexicon contains 
concepts that are related to computer sciences and can save 
it as base knowledge and update it during the system 
process. 
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Figure 2. Overview of the System.

V.GRAPH TRANSITIVITY BASED TECHNIQUE 

The System Core component plays a very important role 
in our system. It is the first step for preprocessing the 
textbook. The output from this component is a semantic 
graph GS. In CSCD Engine, transitivity based technique 
used to infer CSCD levels from GS. According to the 
linguistic view, the connection between words in a sentence 
is represented by the verb. Verbs, are hypothesized to 
indicate semantic relations between concepts. In this work 
the relationships between knowledge units indicated by 
verbs. We applied the transitivity technique to infer the 
CSCD levels between knowledge units as it is known to us 
that CSCD levels are divided into four levels based on verb 
majority [14]. 

The cognitive graph Gc consists of nodes and edges, 
where nodes are a set of concepts and edges are a set of 
verbs. Each edge connects two concepts via a specific verb, 
with each edge having a type (e.g., CSCD level). Multiple 
links between the same pair of concepts are possible. In our 
cognitive graph, the meaning of an edge between any two 
nodes is the CSCD level. The concept of transitivity 
between three nodes (ci, cj, and ck) is defined as, if a node 
ci has a link to node cj and node cj has a link to node ck, then 
a measure of transitivity in the graph is the probability that 
node ci has a link to node ck. In general, we refer to cj as a 
neighbor of ci if ci and cj are directly connected in the graph. 
We also refer to the degree of a node as the number of 
neighbors it has. Fig. 3 shows the transitivity cases. 

 
Figure 3. Transitivity Cases. 

Based on the assumption that our graph GS is transitive, 
we define the transitivity as a path with three hubs length 
to represent the relationship between two concepts and 
infer the hidden one. It is represented as three edges that 
connect a concept ci with a concept cj in the graph, where 
ci and cj are concepts from a knowledge unit. The edge 
between any two concepts in the path is one of the CSCD 
levels, which include {Understanding, Analysis, Applying, 
and Evaluating, and Creating}.  

Algorithm 1 in Fig. 4 represents the graph transitivity 
technique as follows: the algorithm for transitivity has been 
implemented using Python programming language, 
providing a solid foundation to use a variety of 
NLP packages such as NLTK and NetworkX for graph 
operation. It starts with a source node which represents a 
knowledge unit (KU) in Gc; the algorithm then initializes 
the transitivity list and set of concepts or KU.  
 

 

VI.KNOWLEDGE UNITS CLASSIFICATION 

We classify the knowledge units based on the CSCD 
levels βi= {B1, B2, B3, B4} as well as the relations between 
concepts in knowledge units. The transitivity technique 
discovers the hidden connections between concepts, and 
how those concepts are connected to a given knowledge 
unit, it also investigates the association among knowledge 
units themselves. The technique presents a strong 
connectivity between the concepts and knowledge unit.  

Transitivity classifications are the sub-graphs extracted 
from GC based on the transitivity relationships in the graph. 
What we have done is try to understand the relationships, 
which are the prerequisite relationships between concepts, 
by analyzing the graph. Our classification is divided into 
four classes as follows: 

Algorithm 1: Transitivity Based Technique  

Input: Semantic Graph GS 

Output:  Transitivity Relationships between C 

Def ExtractTransivityFromGraph(self): 

1.  Transitivity= [ ] 

2.  Concepts(C)=set ( ) 

3.  For each(C)  in  Graph(self): 

4.  C.add(C) 
5.  C.Nighbour=set() 

6.  Nighbours=set(self. Graph [n]) 

7.  For Neighbor  in  Neighbor’s: 
8.  If Nighbour in  Concepts: 

9.  continue 

10.  Nodes_Nighbour.add(Nighbour) 
11.  For Nighbour_of_Nighbour  in                             

Nighbours.intersection( self. Graph [Nighbour]): 

12.  Nlist[].append(C[0],count) 
13.  If Nighbour_of_Nighbour  in Nodes or Nighbour_of_Nighbour 

in Nodes_Nighbour: 

14.  continue 

15.  Transitive. Append((n,Nighbour,Nighbour_of_Nighbour) ) 

16.  Return    Transitivity (GB) 

Figure 4. Graph Transitivity Technique. 
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 CST (Strong Transitivity): let t denote the target node or 
knowledge unit, which is shared multi transitivity with their 
direct neighbors. This class classifies concepts into one of 
the CSCD levels, which is the Creation level. The 
connectivity between concepts is represented by one of the 
verbs in Bloom’s measurable verbs list [14]. In addition, 
concepts, which are connected to the knowledge unit are 
strongly related to it. The concepts must be mastered if the 
learner needs to learn this knowledge unit. Fig. 5 represents 
the concepts' transitivity with t i.e., CST= {tA, tB, tC}. 

 CMT (Multi Transitivity): let t denote the target node or 
knowledge unit; this class consists of the neighbors of t, 
which shared multi transitivity with t and t’s neighbors. The 
concepts in this class represent another CSCD level, which 
is the Evaluation level. Transitivity relationships among 
knowledge units in this class overlap and require judgment 
based on some criteria for some knowledge units. Fig. 5 
represents the concepts in this class i.e., CMT= {tE, tD, tW, 
tZ}. 

 CWT (Weak Transitivity): assume t denotes the target 
node or knowledge unit and it does not share any 
transitivity relationship with its direct neighbors but their 
neighbors do share transitivity relationships with other 
neighbors. Fig. 5 represents the concepts in this class i.e., 
CWC= {tI, tH, tG}. The concepts in this class represent one 
of the CSCD levels, which is the Applying and Analyzing 
level. The transitivity relationship inferred combinations of 
concepts that represent framework to each other. 
 CDT (Disconnected Transitivity): concepts in this class 
are not sharing any transitivity with t or with its neighbors. 
Actually, the concepts represent the lowest level of CSCD 
levels, which is the Understanding and Remembering level. 
Most of the concepts are common and not related to the 
domain under study. Fig. 8 represents the concepts in this 
class i.e., CWC= {O, P, Q, R, S, V}.  

VII. EXAMPLE OF THE PROPOSED TECHNIQUE 

The proposed technique goal is to classify the 

knowledge units CSCD levels in any given text. For 
example, consider a knowledge unit (topic) in an Algorithm 
textbook talking about Quick-Sort Algorithm; we need to 
classify the knowledge unit into CSCD levels. This section 
will start explaining our technique through this knowledge 
unit. Fig. 6 explains the knowledge unit from a textbook. 

 

 
Figure 6. A KU from a Textbook. 

First, we start with the preprocessing of the given 
knowledge unit. The output is in Fig. 7; the yellow words 
which are stop-words were removed from the KU. After 
that, the System Core component extracts the relations 
among the concepts in a knowledge unit. The output is a 
semantic graph GS presented in Fig. 8 where the figure 
explains all the possible relationships in the given 
knowledge unit levels for the analyzed knowledge unit, 
which is a Quick-Sort. It also includes a set of color codes 
to be used for our classification categories. 

In the semantic graph, Fig. 8, we check the transitivity 
between concepts. First, we checked the relationship type 
between each two concepts, which is represented by the 
verb. Based on that, we classified the concepts in each 
knowledge unit into CSCD levels, and then we classified 
the knowledge units themselves. Fig. 9 demonstrates all the 
concepts classified into CSCD levels for the analyzed 
knowledge unit, which is a Quick-Sort. 

 

 
Figure 7. Text Preprocessing of the KU. 

 
 
 
 
 
 
 

 
Figure 5. Graph Transitivity Classes. 
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Figure 8. Semantic Graph Gs for a Knowledge Unit.

 

Figure 9. Cognitive Graph Gs for a Knowledge Unit. 
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VIII. EXPERIMENT SETUP AND EVALUATION 

In this section, we first discuss the data set used for 
testing our system, and then the evaluation metrics will 
be presented. We used the same data set used in our 
previous work [3] to see the result from graph 
transitivity view. 

A. Experiment Setup 

We test the technique in two ways: locally and 
globally. Locally means the behavior of the technique 
using a knowledge unit from the same textbook. 
Globally means using three high quality textbooks that 
are used in computer sciences classes as course 
materials. We apply our technique to see how it 
performs on textbooks. We obtain three collections of 
documents from three textbooks on “Introduction to 
Algorithms” and “Data Structures and Algorithms” 
and “Algorithms”, respectively. The textbooks are 
used as textbook for computer sciences courses at 
many universities. Table I shows the statistical 
information about the three textbooks.  

 
 

TABLE I. PHYSICAL CHARACTERISTICS OF THE 

TEXTBOOKS 

 
We start with the preprocessing of the text which is 

the most important step as it includes the stop word 
filtration, to save only the domain specific concept. 
Then the semantic relationships extractor is used to 
extract the semantic graph and we classify all concepts 
within knowledge units. These knowledge units 
themselves are classified into CSCD levels which help 
reorganize the textbook based on the cognitive skills 
to know at which cognitive level each knowledge unit 
must be given for learners. 

In this experiment, we used Introduction to 
Algorithm book that includes different knowledge 
units (topics). Fig. 10 presents the transitivity 
distribution of concepts in knowledge unit #1 which 
represented a Heap Sort topic from the textbook. It can 
be clearly seen that the number of transitivity is high 
for the concepts which are strongly related to the 
knowledge unit; the rest of the concepts, which have 
no transitivity, are common concepts and help 
knowledge units connect to each other. 

Fig. 11 shows the graph connectivity measures 
which are: Degree Centrality ω and Betweennes 

Centrality γ for concepts in KU#1. Both measures 
prove how strong the concepts related to the 
knowledge unit are. It means the concepts that appear 
at the beginning of the chart are concepts related to the 
domain under study while the common concepts come 
at the end of the chart.  

Additionally, Fig. 11 shows the graph connectivity 
measures which are: Clustering Coefficient (φ) and 
Eigenvector Centrality (μ) for concepts in KU#1. Both 
measures prove how strongly related the concepts are 
to the knowledge unit. It means the concepts that 
appear at the beginning of the chart are concepts 
related to the domain under study while the common 
concepts come at the end of the chart.  

B. Graph Connectivity Measures 

At this step, to measure the concept and knowledge 
unit connectivity which could be correlated with the 
graph metrics, we collected and calculated the 
following success measures: 

Clustering Coefficient (φ): it is the measurement 
that shows the connectivity among knowledge units 
and the concepts related to them. According to [16] the 
mathematical formula of 𝛗 is as follows: 

               φ𝑖 =
2e

𝑘(𝑘−1)
                            (1) 

Where i is a knowledge unit with degree deg (i) = k in 

GT φ𝑖  Takes values as 0 ≤ φ𝑖≤ 1  

Degree Centrality (ω): as in [17], it shows that the 
interactions of a target concept are represented in the 
knowledge unit with   other concepts in GT. Our result 
shows the high centrality of the target concept in GT. 
ω is defined as in question 2. 

 

                         ω𝑖 = deg (i)                                 (2) 

Betweenness Centrality (γ) illustrates the 
connectivity between the target concepts and their 
neighbors by making a path between concepts; that is 
calculated as follows [24]: 

           𝛾(𝑤) = ∑
𝜎𝑖𝑗(𝑤)

𝜎𝑖𝑗
(𝑖,𝑗)∈𝑉(𝑤)                             (3) 

Eigenvector Centrality (μ) as in [17] presents the 
importance of the target concept’s neighbors which   
measure how well-connected a knowledge unit is to 
other highly connected concepts in GT. 

C. Evaluation 

In order to evaluate the quality of the GC for each 
knowledge unit, we are interested in two different 
measures. The first one expresses the completeness of 
the set of CSCD relationships, that is, how many valid 
CSCD relationships are found with respect to the total 
number of extracted relationships.   

The second measure indicates the reliability of the 
set of CSCD relationships found in the knowledge 
unit, that is, how many valid Bloom relationships are 

 Book1 Book2 Book3 

TOC depth 4 3 2 

Number of Knowledge unit 120 60 30 

Number of extracted 

Relationships 

8500 8200 3000 

Number of concepts 1060 1020 950 

Number of verbs 610 480 300 

Overlaps of Knowledge units 400 300 220 
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found with respect to the total number of CSCD in the 
knowledge units.  

To compute the metrics, we compare our system 
with ground truth by asking Ph.D. students using their 
own background knowledge and additional resources 
to classify some knowledge units from a textbook and 
determine the level of the cognitive skills for each 
knowledge unit. The students created a semantic graph 
for each knowledge unit, so for each graph, we 
perform the ground truth in three knowledge units 
from the textbook. The purpose is to create a final 
classification GC for each knowledge unit as similar as 
possible to the automatic system. 

 

 
TABLE iI. PHYSICAL CHARACTERISTICS OF THE 

TEXTBOOKS 

Book Name 
# Knowledge 

Unit 

Bloom 

Trajectory for 

KU 

Introduction to 

Algorithm 

35 90 

Algorithms 10 40 

Data structure and 

Algorithms 

30 25 

IX. CONCLUSION AND FUTURE WORK 

In this paper, an automatic technique that finds the 
relationships between knowledge units according to 
CSCD levels has been presented. The technique is an 
improved version of our previous work [3]. 
Discovering relationships based on CSCD levels is a 
novel and challenging problem. The results show that 
the relationships between knowledge units are 
different from one textbook to another. Based on our 
analytical result, it is possible to conclude that by 
using CSCD levels we can decide which parts of a 
textbook to use at which level of learning to match the 
learner’s skills. For future research, we will investigate 
the use of the method to evaluate online learning 
resources. 
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Figure 10. Tringluarity Distribution for KU #1(Heap Sort). 

 
Figure 11. Graph Connectivity Measures for KU #1. 

 
Figure 12. Graph Connectivity Measures for KU #1, KU#2, and KU#3 
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