
Semantic Graph Transitivity for Discovering Bloom Taxonomic Relationships

between Knowledge Units in a Text

Fatema Nafa, Javed I. Khan, Salem Othman, and Amal Babour

Department of Computer Science, Kent State University

Kent, Ohio, USA

Email : fnafa, Javed, sothman, ababour@kent.edu

Abstract— Manual inferring of semantic relationships by

domain experts is an expensive and time consuming task;

thus, automatic techniques are needed. In this paper, we

propose an automatic novel technique for inferring cognitive

relationships among concepts and knowledge units in the

learning resources by using Graph-transitivity. The cognitive

relationships are expressed as Bloom Taxonomy levels.

Learning resources are represented as knowledge units in

texts. The technique determines significant relationships

among knowledge units by utilizing transitivity of knowledge

units in the computer science domain. We share an

experiment that evaluates and validates the technique from

three textbooks. The performance analysis shows that the

technique succeeds in discovering the hidden cognitive

relationships among knowledge units in learning resources.

Keywords— Cognitive Graph; Graph Transitivity;

Knowledge Unit; Graph Mining; Bloom Taxonomy.

I.INTRODUCTION

Extracting semantic relationships from a text has been
widely studied in several research including Natural
Language Processing (NLP), Text Mining, Information
Retrieval (IR), and others. The goal of the relationships'
extraction is different from one task to another and from one
resource to another. Learning resources are the most
significant repositories of knowledge and information.
Discovering hidden interconnections among knowledge
units is interesting. Hidden interconnections are represented
in different forms. In this paper, the interconnections among
knowledge units are represented as a cognitive theory called
Bloom Taxonomy(BT). The concept of cognitive theory
has crossed the line from psychology and educational
theory and has become an important part of computer
technology research. The taxonomy idea was first
introduced by Benjamin Bloom. Bloom identified three
domains of educational activities: the cognitive domain
(mental skills), the affective domain (growth in feelings or
emotional areas), and the psychomotor domain (physical
skills) [1]. The cognitive domain is divided into six levels:
1) knowledge, 2) comprehension, 3) application, 4)
analysis, 5) synthesis, and 6) evaluation. The Bloom model
was modified in 2001 by Anderson and a team of cognitive
psychologists [2]. Significant changes were made to the
Bloom’s Taxonomy model. The original taxonomy of
educational objectives, is referred to as Bloom’s Taxonomy
and Anderson’s work, is known as Revised Bloom’s
Taxonomy [2]. Revised Bloom’s was modified to the
Computer Science based Cognitive Domain (CSCD) [3] to
make it appropriate for the concept domain in computer
science. For this paper, only the cognitive domain is used
and we discussed the first sub-task in our previous work [3].
We are going to discuss the second sub-task in this paper.

We introduced an automatic technique to infer the
relationships based on CSCD levels among knowledge
units using the graph transitivity. The CSCD is used to
identify and progressively measure of learner’s cognitive
level. A learner is not expected to understand the text based
on the given ordered knowledge units. Thus, a shared
language is needed to provide a highlighted learning map
of a text based on cognitive skills.

The rest of the paper is organized as follows. The
related work is presented in Section II. The problem
definition is discussed in Section III. Section IV describes
an overview of the system. Section V describes the
transitivity technique as well as a description of the
algorithm in detail. Section VI presents the classification of
the knowledge units. Section VII shows examples of the
technique. The experiment setup and an evaluation of the
technique are explained in Section VIII. Section IX
presents the conclusion and future work

II.RELATED WORK

The work presented in this paper is situated at the
intersection of several areas of related prior work from the
linguistics perspective, Graph perspective, and Graph
Transitivity Property perspective. We will discuss each of
these in turn.

From the linguistics perspective, theorists developed
three different taxonomies to represent the three domains
of learning: a cognitive taxonomy focused on intellectual
learning, an effective taxonomy concerned with the
learning of values and attitudes, and a psychomotor
taxonomy that addresses the motor skills related to
learning. One of the cognitive taxonomies [1] is known as
Bloom’s Taxonomy. Bloom’s Taxonomy has been applied
in the field of computer science for various purposes such
as managing course design [4], measuring the cognitive
difficulty levels of computer science materials [4], and
structuring assessments [5]. Bloom’s Taxonomy has also
been used in grading as an alternative to grading on a curve
[6]. Additionally, from the mining perspective, there has
been some interesting research about extracting relations
among concepts. Relations could be replaced by the
synonym relationships, or a hypernym, an association, etc.
[7] [8]. These relationships are successfully used in
different domains and applications [9].

From the Graph Perspective, the representation of the
extracted relationship is the graph. There has been some
research on graphical text representation such as concept
graphs [10] and ontology [11]. The authors proposed
Concept Graph Learning to present relations among
concepts from prerequisite relations among courses.

From the Graph Transitivity Property perspective, in
the definition of transitivity in graph, two nodes are
connected if they share a direct neighbor, so the inferred

121Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

hidden relationship between those two nodes is based on
the transitivity. There has been research on the transitivity
in the domain of Biology [12]. In addition, transitivity has
been studied in friendship graphs in social networks
research [13].

None of the previous work handles the problem of
inferring the relationships among knowledge units based
on CSCD levels in the domain of computer science. Using
graph transitivity is a promising way to reach this goal and
discover novel cognitive relationships between knowledge
units.

This paper presents a technique for mining CSCD levels
among the knowledge units in a textbook. The technique is
based on using graph transitivity to discover relationships
between knowledge units. Transitivity technique describes
levels of increasing complexity in students understanding
of knowledge units. It has the flexibility of giving the new
sequential ordering of the knowledge units in a textbook.
According to the experimental evaluations, the method can
efficiently identify CSCD levels among knowledge units.
Building an automatic technique to assist in organizing
knowledge units based on the level of cognitive skills will
provide a new learning trajectory for the learners and will
help in circumventing their deficit in understanding any
textbook.

III.PROBLEM DEFINITION

In this section let us introduce some definitions, which
are used in this paper.
Concepts: are terms that have significant meaning(s) in
computer sciences.
Knowledge Unit (KU): is defined as a group of sentences
that discuss specific topics in computer sciences and consist
of concepts, which are related to the topic.
The Overlap between Knowledge Unit: if a KU consist
group of concepts and at least one of these concepts appears
in another KU then, we say the two KU’s are overlapping.

Given a textbook TB that contains a set of knowledge
units (it could be a topic from a textbook or more) KU =
{ku1, ku2… kun} where n is the number of knowledge units
in TB. Each knowledge unit is a group of sentences kui= {s1,
s2…sm} and each sentence is composed of a sequence of
concepts si= {c1,..,co}; in addition, the Computer Science
based Cognitive Domain (CSCD) has the levels of
(Understanding, Analyzing, Applying-Evaluating, and
Creating),which are denoted as {B1, B2, B3, B4} respectively
[3]. Each level has a subset of measurable verbs. The
contribution of this work is to find transitivity function ƒ(x):
KU→βi which maps knowledge units (KU) according to
Computer-Science based Cognitive Domain (CSCD) using
the subset of measurable verbs. To handle this problem, we
create a semantic graph GS from the given textbook TB in
order to find the relationships among concepts in the
knowledge unit and subsequently relationships among
knowledge units themselves. The transitivity will output the
hidden links among knowledge units according to CSCD
levels. For example, consider that from a textbook three
knowledge units (KU #1, KU #2, and KU #3) have been
chosen, and we need to find a relationship between
knowledge units based on CSCD levels using transitivity.
As described in the problem definition we have two main
problems:

 Converting a textbook to a semantic graph GS is a
directed graph GS = (C, V) where C (concept) represents
nodes, and V (verbs) represents the labels of the relationship
among concepts.

 Finding out the relationship (X) among knowledge
unit#1, knowledge unit#2 and knowledge unit#3 based on
(CSCD) βi= {B1, B2, B3, B4}. Fig. 1 represents the sub-part
of GS for three knowledge units where some of the
relationships mainly exist among the KU from the same
textbook, or from a textbook of similar topics.

Figure 1. Three Knowledge Units and the Relationships Between them.

IV. OVERVIEW OF THE SYSTEM

 The system consists of three main components, called,
System Core, CSCD Engine, and Domain Lexicon as in Fig.
2. The input for the system is a textbook and the output is
a cognitive graph GC classified into CSCD levels.

The system Core was presented in detailed in our
previous work [3]. It includes the following four parts:
Text-Preprocessing, Natural Language Processing (NLP),
Domain Specific Extraction, and Semantic Relationship
Extraction. In the Text-Preprocessing part, the system
assumes that the input files are in plain text format. Any
other formats are turned into a plain text before it starts the
other steps. Then, the Natural Language Processing part
incorporates NLP tools, such as splitting each sentence into
a sequence of tokens where tokens are unique concepts.
Stanford Parser, which is used to parse each sentence to get
its part-of-speech (verb, noun, adjective, etc.) will be used
to extract semantic relationships between concepts. The
Domain Specific Extraction part contains concepts related
to the domain of interest, which is computer science. We
build the specific stop words list manually, because there is
no stop list related to the domain under study. It can also be
updated during the process of the system. The Semantic
Relationship Extraction part includes extracting the
relationships in the form of concept-verb-concept, among
concepts in the knowledge unit. The final form of
extraction is represented as a semantic graph. Lyons and
other [15] structural linguists hold that “words cannot be
defined independently from other words. A word’s
relationship with other words is part of the meaning of the
word”.

CSCD Engine: The CSCD Engine consists of a graph
transitivity based algorithm that extracts CSCD
relationships between concepts in the knowledge units. The
overall procedure for CSCD Engine is shown in algorithm
1 in Fig. 4.

Domain Lexicon: The Domain Lexicon contains
concepts that are related to computer sciences and can save
it as base knowledge and update it during the system
process.

122Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

Figure 2. Overview of the System.

V.GRAPH TRANSITIVITY BASED TECHNIQUE

The System Core component plays a very important role
in our system. It is the first step for preprocessing the
textbook. The output from this component is a semantic
graph GS. In CSCD Engine, transitivity based technique
used to infer CSCD levels from GS. According to the
linguistic view, the connection between words in a sentence
is represented by the verb. Verbs, are hypothesized to
indicate semantic relations between concepts. In this work
the relationships between knowledge units indicated by
verbs. We applied the transitivity technique to infer the
CSCD levels between knowledge units as it is known to us
that CSCD levels are divided into four levels based on verb
majority [14].

The cognitive graph Gc consists of nodes and edges,
where nodes are a set of concepts and edges are a set of
verbs. Each edge connects two concepts via a specific verb,
with each edge having a type (e.g., CSCD level). Multiple
links between the same pair of concepts are possible. In our
cognitive graph, the meaning of an edge between any two
nodes is the CSCD level. The concept of transitivity
between three nodes (ci, cj, and ck) is defined as, if a node
ci has a link to node cj and node cj has a link to node ck, then
a measure of transitivity in the graph is the probability that
node ci has a link to node ck. In general, we refer to cj as a
neighbor of ci if ci and cj are directly connected in the graph.
We also refer to the degree of a node as the number of
neighbors it has. Fig. 3 shows the transitivity cases.

Figure 3. Transitivity Cases.

Based on the assumption that our graph GS is transitive,
we define the transitivity as a path with three hubs length
to represent the relationship between two concepts and
infer the hidden one. It is represented as three edges that
connect a concept ci with a concept cj in the graph, where
ci and cj are concepts from a knowledge unit. The edge
between any two concepts in the path is one of the CSCD
levels, which include {Understanding, Analysis, Applying,
and Evaluating, and Creating}.

Algorithm 1 in Fig. 4 represents the graph transitivity
technique as follows: the algorithm for transitivity has been
implemented using Python programming language,
providing a solid foundation to use a variety of
NLP packages such as NLTK and NetworkX for graph
operation. It starts with a source node which represents a
knowledge unit (KU) in Gc; the algorithm then initializes
the transitivity list and set of concepts or KU.

VI.KNOWLEDGE UNITS CLASSIFICATION

We classify the knowledge units based on the CSCD
levels βi= {B1, B2, B3, B4} as well as the relations between
concepts in knowledge units. The transitivity technique
discovers the hidden connections between concepts, and
how those concepts are connected to a given knowledge
unit, it also investigates the association among knowledge
units themselves. The technique presents a strong
connectivity between the concepts and knowledge unit.

Transitivity classifications are the sub-graphs extracted
from GC based on the transitivity relationships in the graph.
What we have done is try to understand the relationships,
which are the prerequisite relationships between concepts,
by analyzing the graph. Our classification is divided into
four classes as follows:

Algorithm 1: Transitivity Based Technique

Input: Semantic Graph GS

Output: Transitivity Relationships between C

Def ExtractTransivityFromGraph(self):

1. Transitivity= []

2. Concepts(C)=set ()

3. For each(C) in Graph(self):

4. C.add(C)
5. C.Nighbour=set()

6. Nighbours=set(self. Graph [n])

7. For Neighbor in Neighbor’s:
8. If Nighbour in Concepts:

9. continue

10. Nodes_Nighbour.add(Nighbour)
11. For Nighbour_of_Nighbour in

Nighbours.intersection(self. Graph [Nighbour]):

12. Nlist[].append(C[0],count)
13. If Nighbour_of_Nighbour in Nodes or Nighbour_of_Nighbour

in Nodes_Nighbour:

14. continue

15. Transitive. Append((n,Nighbour,Nighbour_of_Nighbour))

16. Return Transitivity (GB)

Figure 4. Graph Transitivity Technique.

123Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

 CST (Strong Transitivity): let t denote the target node or
knowledge unit, which is shared multi transitivity with their
direct neighbors. This class classifies concepts into one of
the CSCD levels, which is the Creation level. The
connectivity between concepts is represented by one of the
verbs in Bloom’s measurable verbs list [14]. In addition,
concepts, which are connected to the knowledge unit are
strongly related to it. The concepts must be mastered if the
learner needs to learn this knowledge unit. Fig. 5 represents
the concepts' transitivity with t i.e., CST= {tA, tB, tC}.

 CMT (Multi Transitivity): let t denote the target node or
knowledge unit; this class consists of the neighbors of t,
which shared multi transitivity with t and t’s neighbors. The
concepts in this class represent another CSCD level, which
is the Evaluation level. Transitivity relationships among
knowledge units in this class overlap and require judgment
based on some criteria for some knowledge units. Fig. 5
represents the concepts in this class i.e., CMT= {tE, tD, tW,
tZ}.

 CWT (Weak Transitivity): assume t denotes the target
node or knowledge unit and it does not share any
transitivity relationship with its direct neighbors but their
neighbors do share transitivity relationships with other
neighbors. Fig. 5 represents the concepts in this class i.e.,
CWC= {tI, tH, tG}. The concepts in this class represent one
of the CSCD levels, which is the Applying and Analyzing
level. The transitivity relationship inferred combinations of
concepts that represent framework to each other.
 CDT (Disconnected Transitivity): concepts in this class
are not sharing any transitivity with t or with its neighbors.
Actually, the concepts represent the lowest level of CSCD
levels, which is the Understanding and Remembering level.
Most of the concepts are common and not related to the
domain under study. Fig. 8 represents the concepts in this
class i.e., CWC= {O, P, Q, R, S, V}.

VII. EXAMPLE OF THE PROPOSED TECHNIQUE

The proposed technique goal is to classify the

knowledge units CSCD levels in any given text. For
example, consider a knowledge unit (topic) in an Algorithm
textbook talking about Quick-Sort Algorithm; we need to
classify the knowledge unit into CSCD levels. This section
will start explaining our technique through this knowledge
unit. Fig. 6 explains the knowledge unit from a textbook.

Figure 6. A KU from a Textbook.

First, we start with the preprocessing of the given
knowledge unit. The output is in Fig. 7; the yellow words
which are stop-words were removed from the KU. After
that, the System Core component extracts the relations
among the concepts in a knowledge unit. The output is a
semantic graph GS presented in Fig. 8 where the figure
explains all the possible relationships in the given
knowledge unit levels for the analyzed knowledge unit,
which is a Quick-Sort. It also includes a set of color codes
to be used for our classification categories.

In the semantic graph, Fig. 8, we check the transitivity
between concepts. First, we checked the relationship type
between each two concepts, which is represented by the
verb. Based on that, we classified the concepts in each
knowledge unit into CSCD levels, and then we classified
the knowledge units themselves. Fig. 9 demonstrates all the
concepts classified into CSCD levels for the analyzed
knowledge unit, which is a Quick-Sort.

Figure 7. Text Preprocessing of the KU.

Figure 5. Graph Transitivity Classes.

124Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

Figure 8. Semantic Graph Gs for a Knowledge Unit.

Figure 9. Cognitive Graph Gs for a Knowledge Unit.

125Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

VIII. EXPERIMENT SETUP AND EVALUATION

In this section, we first discuss the data set used for
testing our system, and then the evaluation metrics will
be presented. We used the same data set used in our
previous work [3] to see the result from graph
transitivity view.

A. Experiment Setup

We test the technique in two ways: locally and
globally. Locally means the behavior of the technique
using a knowledge unit from the same textbook.
Globally means using three high quality textbooks that
are used in computer sciences classes as course
materials. We apply our technique to see how it
performs on textbooks. We obtain three collections of
documents from three textbooks on “Introduction to
Algorithms” and “Data Structures and Algorithms”
and “Algorithms”, respectively. The textbooks are
used as textbook for computer sciences courses at
many universities. Table I shows the statistical
information about the three textbooks.

TABLE I. PHYSICAL CHARACTERISTICS OF THE

TEXTBOOKS

We start with the preprocessing of the text which is

the most important step as it includes the stop word
filtration, to save only the domain specific concept.
Then the semantic relationships extractor is used to
extract the semantic graph and we classify all concepts
within knowledge units. These knowledge units
themselves are classified into CSCD levels which help
reorganize the textbook based on the cognitive skills
to know at which cognitive level each knowledge unit
must be given for learners.

In this experiment, we used Introduction to
Algorithm book that includes different knowledge
units (topics). Fig. 10 presents the transitivity
distribution of concepts in knowledge unit #1 which
represented a Heap Sort topic from the textbook. It can
be clearly seen that the number of transitivity is high
for the concepts which are strongly related to the
knowledge unit; the rest of the concepts, which have
no transitivity, are common concepts and help
knowledge units connect to each other.

Fig. 11 shows the graph connectivity measures
which are: Degree Centrality ω and Betweennes

Centrality γ for concepts in KU#1. Both measures
prove how strong the concepts related to the
knowledge unit are. It means the concepts that appear
at the beginning of the chart are concepts related to the
domain under study while the common concepts come
at the end of the chart.

Additionally, Fig. 11 shows the graph connectivity
measures which are: Clustering Coefficient (φ) and
Eigenvector Centrality (μ) for concepts in KU#1. Both
measures prove how strongly related the concepts are
to the knowledge unit. It means the concepts that
appear at the beginning of the chart are concepts
related to the domain under study while the common
concepts come at the end of the chart.

B. Graph Connectivity Measures

At this step, to measure the concept and knowledge
unit connectivity which could be correlated with the
graph metrics, we collected and calculated the
following success measures:

Clustering Coefficient (φ): it is the measurement
that shows the connectivity among knowledge units
and the concepts related to them. According to [16] the
mathematical formula of 𝛗 is as follows:

 φ𝑖 =
2e

𝑘(𝑘−1)
 (1)

Where i is a knowledge unit with degree deg (i) = k in

GT φ𝑖 Takes values as 0 ≤ φ𝑖≤ 1

Degree Centrality (ω): as in [17], it shows that the
interactions of a target concept are represented in the
knowledge unit with other concepts in GT. Our result
shows the high centrality of the target concept in GT.
ω is defined as in question 2.

 ω𝑖 = deg (i) (2)

Betweenness Centrality (γ) illustrates the
connectivity between the target concepts and their
neighbors by making a path between concepts; that is
calculated as follows [24]:

 𝛾(𝑤) = ∑
𝜎𝑖𝑗(𝑤)

𝜎𝑖𝑗
(𝑖,𝑗)∈𝑉(𝑤) (3)

Eigenvector Centrality (μ) as in [17] presents the
importance of the target concept’s neighbors which
measure how well-connected a knowledge unit is to
other highly connected concepts in GT.

C. Evaluation

In order to evaluate the quality of the GC for each
knowledge unit, we are interested in two different
measures. The first one expresses the completeness of
the set of CSCD relationships, that is, how many valid
CSCD relationships are found with respect to the total
number of extracted relationships.

The second measure indicates the reliability of the
set of CSCD relationships found in the knowledge
unit, that is, how many valid Bloom relationships are

 Book1 Book2 Book3

TOC depth 4 3 2

Number of Knowledge unit 120 60 30

Number of extracted

Relationships

8500 8200 3000

Number of concepts 1060 1020 950

Number of verbs 610 480 300

Overlaps of Knowledge units 400 300 220

126Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

found with respect to the total number of CSCD in the
knowledge units.

To compute the metrics, we compare our system
with ground truth by asking Ph.D. students using their
own background knowledge and additional resources
to classify some knowledge units from a textbook and
determine the level of the cognitive skills for each
knowledge unit. The students created a semantic graph
for each knowledge unit, so for each graph, we
perform the ground truth in three knowledge units
from the textbook. The purpose is to create a final
classification GC for each knowledge unit as similar as
possible to the automatic system.

TABLE iI. PHYSICAL CHARACTERISTICS OF THE

TEXTBOOKS

Book Name
Knowledge

Unit

Bloom

Trajectory for

KU

Introduction to

Algorithm

35 90

Algorithms 10 40

Data structure and

Algorithms

30 25

IX. CONCLUSION AND FUTURE WORK

In this paper, an automatic technique that finds the
relationships between knowledge units according to
CSCD levels has been presented. The technique is an
improved version of our previous work [3].
Discovering relationships based on CSCD levels is a
novel and challenging problem. The results show that
the relationships between knowledge units are
different from one textbook to another. Based on our
analytical result, it is possible to conclude that by
using CSCD levels we can decide which parts of a
textbook to use at which level of learning to match the
learner’s skills. For future research, we will investigate
the use of the method to evaluate online learning
resources.

ACKNOWLEDGMENTS

We take this opportunity to thank all the reviewers
for this paper for the suggestions that provide helpful
tips to improve the paper.

REFRENCES

[1] B. Benjamin Samuel. “Taxonomy of educational

objectives”. Vol. 2. New York: Longmans, Green,

1964.

[2] A. Lorin W., David R. Krathwohl, and Benjamin

Samuel Bloom. “A taxonomy for learning, teaching,

and assessing: A revision of Bloom's taxonomy of

educational objectives”. Allyn & Bacon, 2001.

[3] N. Fatema and Khan J.”Conceptualize the Domain

Knowledge Space in the Light of Cognitive Skills”. In

Proceedings of the 7th International Conference on

Computer Supported Education. 2015.

[4] P. Machanick,”Experience of applying Bloom’s

Taxonomy in three courses”. In Proc. Southern African

Computer Lecturers’ Association Conference, 2000.

[5] R .Lister and J .Leaney, “Introductory programming,

criterion-referencing, and bloom”. In ACM SIGCSE

Bulletin.2003

[6] D.Oliver, et al. "This course has a Bloom Rating of

3.9." Proceedings of the Sixth Australasian Conference

on Computing Education-Volume 30. Australian

Computer Society, Inc., 2004.

[7] H. Marti, "Automatic acquisition of hyponyms from

large text corpora." Proceedings of the 14th conference

on Computational linguistics-Volume 2. Association

for Computational Linguistics, 1992.

[8] R. Alan, S. Soderland, and O. Etzioni. "What Is This,

Anyway: Automatic Hypernym Discovery." AAAI

Spring Symposium: Learning by Reading and Learning

to Read. 2009.

[9] F. Frédéric, and Francky Trichet. "Axiom-based

ontology matching." Proceedings of the 3rd

international conference on Knowledge capture. ACM,

2005.

[10] R. Kanagasabai, and A. Tan. "Mining semantic

networks for knowledge discovery." Data Mining,

2003. ICDM 2003. Third IEEE International

Conference on. IEEE, 2003.

[11] N. Roberto, P. Velardi, and A. Gangemi. "Ontology

learning and its application to automated terminology

translation." IEEE Intelligent systems,2003.

[12] P. Mathew, Snehasis Mukhopadhyay, and Matthew

Stephens. "Identification of biological relationships

from text documents." Medical Informatics. Springer

US, 2005.

[13] A. Mohammad, I. Barjasteh, and H. Radha.

"Transitivity matrix of social network graphs." 2012

IEEE Statistical Signal Processing Workshop (SSP).

IEEE, 2012.

[14] Bloom’s Taxonomy Action

Verbs.http://www.clemson.edu/assessment/assessment

practices/referencematerials/documents/Blooms%20T

axonomy% 20Action%20Verbs.pdf,2011.

[15] L. John, “Linguistic semantics: An introduction.”

Cambridge University Press, 1995.

[16] M. Newman,"A measure of betweenness centrality

based on random walks." Social networks,2005.

[17] A . Réka, H. Jeong, and A. Barabási. "Error and attack

tolerance of complex networks." 2000.

[18] H. Thomas, E. Charles, L .Ronald, and C.

Stein.”Introduction to Algorithms, Third Edition (3rd

ed.)”. The MIT Press. 2009.

127Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

Figure 10. Tringluarity Distribution for KU #1(Heap Sort).

Figure 11. Graph Connectivity Measures for KU #1.

Figure 12. Graph Connectivity Measures for KU #1, KU#2, and KU#3

0
2
4
6
8

10
12
14
16

m
ax

_
h
ea

p

m
ax

_
h
ea

p
if

y

v
al

u
e

ro
o

t

si
ze

b
o
tt

o
m

_
u

p
_

…

im
p

le
m

en
ta

t…

p
ro

g
ra

m

h
ea

p
_
si

ze

so
lu

ti
o
n

si
m

u
la

to
r

im
p

o
rt

an
t_

s…

se
ct

io
n

p
ri

o
ri

ty
_
q

u
eu

e

co
rr

ec
tn

es
s

co
n
st

an
t_

fa
c…

ra
n

d
o

m
iz

ed
…

h
ea

p

m
ax

_
h
ea

p
_

p
…

b
eh

av
io

r

b
in

ar
y

_
tr

ee

in
fo

rm
at

io
n

ap
p
li

ca
ti

o
n

ex
tr

ac
t_

m
in

su
b
ar

ra
y

av
er

ag
e

S
h
ar

ed
 T

ra
n
si

ti
v
it

y

The concepts in KU

Transitivity Distribution

0

0.1

0.2

0.3

m
ax

_
h
ea

p
n

o
d

e
p

ro
ce

d
u

re
p

ro
p
er

ty
al

g
o
ri

th
m

w
o

rs
t_

ca
se

h
ea

p
in

d
ex

tu
rn

b
o
u

n
d

in
p

u
t_

ar
ra

y
lo

ca
ti

o
n

s
si

ze
st

o
ra

g
e

ca
ll

in
st

ru
ct

io
n

co
rr

ec
tn

es
s

p
la

ce
so

rt
in

g
al

g
o
ri

th
m

at
tr

ib
u

te
s

p
ro

ce
ss

se
ct

io
n

so
lu

ti
o
n

p
ra

ct
ic

e
m

ax
_

h
ea

p
_

in
s…

in
se

rt
io

n
_

so
rt

ap
p
li

ca
ti

o
n

ad
v
an

ta
g

e
p

ri
o

ri
ty

_
q

u
eu

es
fo

rm
s

im
p

o
rt

an
t_

su
b
…

p
ro

g
ra

m
b

eh
av

io
r

ex
tr

ac
t_

m
in

p
o
si

ti
o
n

Graph Measures
ω

γ

0
0.05

0.1
0.15

0.2
0.25

0.3

m
ax

_
h
ea

p
n

o
d

e
p

ro
ce

d
u

re
p

ro
p
er

ty
al

g
o
ri

th
m

w
o

rs
t_

ca
se

h
ea

p
in

d
ex

tu
rn

b
o
u

n
d

in
p

u
t_

ar
ra

y
lo

ca
ti

o
n

s
si

ze
st

o
ra

g
e

ca
ll

in
st

ru
ct

io
n

co
rr

ec
tn

es
s

p
la

ce
so

rt
in

g
al

g
o
ri

th
m

at
tr

ib
u

te
s

p
ro

ce
ss

se
ct

io
n

so
lu

ti
o
n

p
ra

ct
ic

e
m

ax
_

h
ea

p
_

in
se

ar
t

in
se

rt
io

n
_

so
rt

ap
p
li

ca
ti

o
n

ad
v
an

ta
g

e
p

ri
o

ri
ty

_
q

u
eu

es
fo

rm
s

im
p

o
rt

an
t_

su
b
r…

p
ro

g
ra

m
b

eh
av

io
r

ex
tr

ac
t_

m
in

p
o
si

ti
o
n

Graph Measures

φ

μ

128Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

