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Abstract—The assurances provided by an assurance protocol for
any information system (IS), extend only as much as the integrity
of the assurance protocol itself. The integrity of the assurance
protocol is negatively influenced by a) the complexity of the
assurance protocol, and b) the complexity of the platform on
which the assurance protocol is executed. This paper outlines a
holistic Mirror Network (MN) framework for assuring informa-
tion systems that seeks to minimize both complexities. The MN
framework is illustrated using a generic cloud file storage system
as an example IS.
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I. INTRODUCTION

Information systems (IS) are composed of a variety of
hardware and software components that create, exchange,
process, and dispose data. From a broad perspective, assuring
the operation of an IS is a process involving verification of
self-consistency of all critical internal states of the IS. From
this perspective, the assurance mechanism (or the assurance
protocol) itself can be seen as software that

1) verifies self-consistency of IS data, and
2) reports consistency/inconsistency to entities that in-

teract with the IS.

For example, some of the simple self-consistency checks
that will need to be performed by an assurance software
for an accounting system include a) that available balance
in an account is incremented by the amount deposited, or
decremented by the amount withdrawn; b) that transfer of an
amount a from an account A to account B results in increase
in account B balance by a, and reduction in account A balance
by a+ x (where x is a service charge), etc.

The assurances offered by the assurance software are, at
best, only as good as the integrity of the assurance soft-
ware itself. In general, the higher the complexity of any
hardware/software component, the higher the possibility of
presence of undesired (malicious or accidental) functionality
[1]. Consequently, it is important to minimize both a) the
complexity of the assurance software, and b) the complexity
of the platform in which the assurance software is executed.

The motivation for the proposed approach to assure ISes
stems from the fact that the assurance software for an IS can
be substantially simpler than the IS software; consequently, the
assurance software can be easily executed on a dedicated high-
integrity-low-complexity platform (Figure 1), that is completely

Complex IS+Assurance Software

Complex Platform

Simple IS Assurance Software
Low Complexity Mirror Network

Figure 1. MN Model (top) vs Conventional Model (bottom)

isolated from the actual IS. In the proposed approach, the
platform for execution of the assurance software is constrained
to be a homogeneous network, composed of a single type
of low complexity building block. The mirror network (MN)
model outlined in this paper involves assembling any number
of such building blocks — hereinafter referred to as MN mod-
ules T, into a network that a) mirrors critical IS states; and b)
executes IS-specific assurance protocols for checking/reporting
self-consistency of IS states.

The main contributions of this paper are a) an overview of
simple generic functional components of MN building blocks,
that permit them to

1) assemble themselves into an MN, and
2) jointly execute the assurance protocol

for any IS, and b) illustration of the process of assurance
software design, using a generic cloud file storage service as
an example.

The rest of this paper is organized as follows. Section II
provides a broad overview of the MN model and its rela-
tionship to the Clark-Wilson (CW) system integrity model.
Specifically, while the CW model is applied directly to the
IS to be secured, the MN model can be seen as a variant
of the CW model, applied to the assurance protocol for the
IS. This feature has has two important advantages. Firstly, the
IS assurance software for an IS can be substantially simpler
than the IS. Secondly, the assurance software for different
ISes tend to be more similar than the ISes themselves —
making it possible to reuse a small number of simple functional
components to realize assurance software for different ISes.

Application of the MN model to an IS results in a sim-
ple MN specification, which is the assurance software for
the IS, intended to be executed on a special platform —
a mirror network. Section II-B outlines the mechanism for
MN deployment. Section II-C reviews some simple built-in
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functional components in MN modules which can be lever-
aged to deploy MNs, and permit them to jointly execute the
assurance software. Section III describes various steps involved
in designing the MN specification (the assurance software) for
an example IS — a cloud file storage system. Conclusions and
a brief comparison between the MN approach and an alternate
approach in the literature [2] (also based on a specification of
low complexity modules) are offered in Section IV.

II. MN MODEL FOR INFORMATION SYSTEMS

The Clark-Wilson (CW) [3] model for system integrity is
characterized by constrained data items (CDI), unconstrained
data items (UDI), transformation procedures (TP), integrity
verification procedures (IVP), and CW-tuples, where

1) CDIs are unambiguously labeled system states whose
integrity needs to be assured;

2) IVPs determine if the current state of all CDIs
represent a valid IS state;

3) Only “well-formed” TPs can modify or create CDIs;
4) UDIs can not be constrained as they are external

inputs to the system; they are the primary triggers
for creation / modification of CDIs.

5) CW tuples of the form (user, TP, CDIs/UDIs) specify
which user process is allowed to execute which TP,
and which CDIs are affected by the TP.

A TP is well-formed if it is guaranteed to always take the
system from one correct state to another correct state. If at
any time, the correctness of the IS state is demonstrated by
an IVP, and thereafter, if only well-formed TPs are used to
modify/create CDIs, it follows from induction, that the system
is guaranteed to always remain in a correct state. In the
CW model, the correctness of IVPs, TPs and CW-tuples are
assumed to be certified by a “security officer.”

A. MN Model

In the (ρ, µ, ν) MN model for an IS S with ρ CDI database
types, µ message types and ν event types

1) One-way functions of crucial IS S states are grouped
together into CDI databases of ρ different types.

2) Events (of ν types) trigger a) modifications to the
CDI databases, and/or b) creation of MN messages
(any of µ types).

3) Events can be external or internal. External events are
UDIs. Internal events are triggered by MN messages,
created by an external or internal event.

4) Each event type is associated with a TP, specifying
a list of pre-conditions (for execution of the TP) and
post-conditions (following execution of the TP).

To summarize, the MN model for an IS S is simply a
specification of ρ types of CDI databases, ν event-types/TPs
and µ types of MN messages. The designer of the MN
has complete freedom in choosing convenient ρ, µ and ν,
depending on the nature of the IS (in the example MN for
a cloud file storage system described in a later section we
choose ρ = 3, µ = 4 and ν = 17). The MN specification
for an IS S is represented as a static MN-rules database,
which is the static assurance “software” for IS S. More
specifically, “execution of the assurance software” is simply

execution of the ν TPs specified in the MN-rules database. A
static cryptographic commitment to the MN-rules database, say
S′, doubles as the identity of the MN (the platform) deployed
to execute the assurance software for the IS S.

B. Execution of Assurance Software

The MN S′ (deployed for assuring IS S) is a dynamic
network, composed of any number of MN modules (which
become members of the MN). For an MN with ρ different
CDI database types, members with ρ different roles will exist.
The total number of members (MN modules) d(t) =

∑ρ
i=1 ni

(or ni members with role i) is dynamic (need not be specified
apriori in the MN rules database). All MN modules possess
identical functionality; the differences between modules are
merely their unique identities and secrets. Within the context of
MN S′, each module is assigned a unique role based member
identity, depending on the CDI database type maintained by
the member.

Apart from the d =
∑ρ
i=1 ni members (that track CDI

databases), every MN includes a special module regarded as
the creator of the MN. The MN creator is responsible for
inducting other modules into the MN as members. Unlike the
d =

∑ρ
i=1 ni modules that track dynamic CDI databases,

the MN creator module tracks a dynamic MN member-
ship database. For example, if MN modules with identities
Π1 · · ·Πd have been inducted into the MN S′, and assigned
role based identities (X1 · · ·Xd) respectively, the membership
database maintained by the MN creator module will have d
records of the form (Xi,Πi). The role-based member identities
like Xi explicitly indicate (using reserved bits) the role of the
member.

From the perspective of a MN member X with role i,
“tracking” a CDI database of type i involves a) unambiguously
identifying the TP to be executed in response to an event, b)
verifying pre-conditions, and c) imposing post-conditions. Pre-
conditions can be i) existence/nonexistence of specific records
in X’s CDI database; and/or ii) receipt of a MN message.
Post-conditions can be i) updates to specific records in its CDI
database; and/or ii) creation of an MN message.

During regular operation of the IS S, external events
(UDIs) are conveyed to the MN. This is the only link between
the IS S and the MN S′. A member X in the MN, triggered
by an event, executes a TP, which can result in modification to
one or more CDI database records of X , and/or creation of a
MN message from member X to another member Y . The MN
message so created, triggers execution of a TP by Y , which
can trigger modification to CDI records of Y and/or creation
of a message addressed to a MN member Z, and so on.

C. Generic MN Module Functions

To reduce the complexity of the platform (the MN), MN
modules are deliberately constrained to be able to perform
only simple sequences of logical and hash operations that
demand only modest and constant memory size for execution.
Fortunately, the versatility of cryptographic hash functions
renders them more than adequate for

1) realizing simple security protocols for tracking the
integrity of dynamic databases, and
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2) facilitating authentication and privacy of a) MN mes-
sages between MN modules, b) UDIs from external
entities to MN modules; and c) state reports from MN
modules to external entities.

In other words, simple generic (IS-independent) protocols
built-in into MN modules provide the foundation for richer
protocols necessary for deployment of MNs, and execution of
IS-specific TPs.

1) Index Ordered Merkle Tree: From the perspective of
MN modules, any database is seen as a collection of (in-
dex,value) tuples (or records). Protocols for maintaining an
index ordered Merkle tree (IOMT) [4], [5]-[7] permit resource
limited modules that store only a single hash — the root of the
IOMT — to perform reliable database operations for reading/
updating/ inserting/ deleting uniquely indexed records/tuples in
a virtually stored database. In other words, the actual database
of records can be stored in any convenient (and possibly
untrusted) location – for example, by the untrusted IS. For a
virtually stored database with N records, each basic database
operation will only require O(log2N) hash evaluations by the
module (for example, 40 hashes for a database with a trillion
records). IOMTs can also be used to represent nested tuples
— where the value v in tuple (a, v) can itself be the root of
an IOMT.

In databases represented using an IOMT, a record of the
form (idx, val = 0) is a place-holder, indicating “absence
of information” regarding index idx. The main difference be-
tween an IOMT and the better known “plain” Merkle hash tree
[8] is that the IOMT includes protocols for insertion/deletion
of place holders to guarantee uniqueness of indexes. Protocols
for updating/reading records using an IOMT are, however,
identical to that of a “plain” erkle tree.

Simple built-in capability to execute IOMT protocols con-
fer MN modules (which store only a single hash) with the
ability to a) verify pre-conditions like existence of a record
(f, v), non-existence of a record for index f (or equivalently,
existence of place-holder (f, 0)), in the virtually stored CDI
database and b) modify the IOMT root stored inside in
accordance with modifications made to one or more virtually
stored CDI tuples, as demanded by post-conditions of a TP.

Specifically, MN modules use their ability to execute IOMT
protocols to reliably perform

1) read/write/insert/delete operations in dynamic CDI
databases for purposes of verifying pre-conditions
and imposing post-conditions; each MN member
(module) tracks one CDI database;

2) read/write/insert/delete operations in the dynamic
MN-membership databases for inducting/ejecting
modules into/from the MN; there is only one such
database for each MN, maintained by the MN creator
module;

3) read operations on the static MN-rules databases; the
same database is referred to by every member of the
MN. As all members of the MN S′ are initialized
with the same value S′, they will only honor TPs in
this common database.

2) Authentication and Privacy: Several key distribution
schemes [4], [9] – [11] for establishment of pairwise secrets

have been explicitly designed for scenarios involving severely
resource limited participants. For example, the MLS protocol
[11] will require every module to store only a single secret,
and evaluate a single hash to compute a pairwise secret with
any other entity. Two modules X and Y with secrets KX and
KY respectively can compute a common secret h(KX , Y ) or
h(KY , X) depending on which entity has access to a pair-wise
public value

PXY = h(KX , Y )⊕ h(KY , X) (1)

If X has access to the public value the pair-wise secret is
computed by X as h(KX , Y ) ⊕ PXY = h(KY , X), which
can be computed by Y by hashing its secret. The number of
pair-wise public values required is not a serious concern as
they can be stored virtually (outside the module).

Pair-wise secrets facilitated by schemes like MLS can
be used for computing hashed message authentication codes
(HMAC) for a) mutual authentication, and b) protecting pri-
vacy of secret components in messages. In the MN model, the
built-in ability of MN modules to compute pairwise secrets are
leveraged for the following specific purposes:

1) mutual authentication of message exchanges between
MN modules (potential members and the MN creator)
to join an MN;

2) mutual authentication of MN messages between MN-
members,

3) mutual authentication and privacy of communications
between MN members and external entities (who
convey UDIs, and may query a MN member for the
state of the MN)

A MN message can also be a self-message — from a member
to itself. Self messages from a member X are authenticated
using a self-secret SX known only to X (randomly generated
by X). Self secrets can also be used by a MN module
to encrypt other secrets entrusted to the module (and store
encrypted secrets virtually).

For example, external entities can employ the MN for
distributing secrets. Specifically, let an external entity u share
a secret Kxu with a MN member X . Entity u can utilize the
following simple protocol to share a secret K with any number
of entities, specified indirectly through a context f . The entity
u sends values c, su, f related as

c = h(K, f) and su = h(Kxu, c)⊕K (2)

The value c is a commitment to both the secret K and the
context f , and serves as a public identifier for the secret K;
su is the link-encrypted version of the secret K. The module
(which can readily compute Kxu) computes K = h(Kxu, c)⊕
su, verifies that c = h(K, f), and uses its self-secret Kx, to
re-encrypt the secret K for storage as s = h(Kx, c)⊕K (more
specifically, a tuple (c, s) is added to the CDI database tracked
by the module).

An entity w with whom the module shares a secret Kxw

may receive the secret K under some conditions. Firstly, the
module X should be a) convinced of the existence of the record
(c, s), and b) provided a value f satisfying

c = h(h(Kx, c)⊕ s, f). (3)
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In addition, if a MN-specific rule relates w and the context f
(for example, a rule can be “existence of a record for index w
in an IOMT with root f .”) the module may output values c and
sw = h(Kxw, c) ⊕K to entity w. Entity w (who has access
to secret Kxw) can decrypt the secret and check its integrity
by verifying that c = h(K, f).

Given that simple protocols to support such generic func-
tions can be easily implemented even in severely resource
limited modules, in the rest of this paper, we focus on the
process for designing the MN rules database (the “assurance
software” for the IS) with an illustrative example.

III. MIRROR NETWORK DESIGN EXAMPLE

The creation of the MN rules database for an IS S can
be seen as a process consisting of the several steps like 1)
identification of desired assurances; 2) identification of the
subset of data items (or one-way functions of data items)
that need to be constrained in order to realize the desired
assurances; 3) choice of ρ types of CDI databases, each
possibly with a different interpretation of the index and value
fields. 4) enumeration of ν event types and µ message types;
and 5) specification of TP for each event in the form of
pre/post-conditions. All components of the MN specification
become leaves of a static IOMT with root S′.

A. Desired Assurances for a Cloud Storage Service

Cloud storage services offer a convenient way for users to
share files between multiple platforms – even platforms owned
by different users. From a security perspective, users of such a
service desire assurances regarding the integrity, privacy, and
availability of files.

In such a system, software running on end-user platform
may periodically upload new files, or newer versions of
existing files to the service. Users may also be able to specify
access control lists (ACL) for every file they own, indicating
read/write access restrictions for other users. For ensuring
privacy of files, the files may be encrypted by users. As
users who share an encrypted file will need to share the file-
encryption secret, and as users may not have an out-of-network
strategy for exchanging such secrets, the file storage service
itself should cater for secure mechanisms for conveying file
encryption secrets to authorized users.

The desired assurances for a remote file storage service [6]
can be summarized as follows:

A1 The service will not alter files; only users explicitly
granted the permission (by the owner) to modify the
file can do so.

A2 File encryption secrets will not be abused by the
service.

A3 The service will not modify ACLs, and strictly abide
by ACL permissions.

A4 Only the latest version of the file will be provided by
the service to authorized users (except when explicitly
queried for an earlier version).

A5 After an ACL has been modified by an authorized
user, the older ACL should not be used to determine
the access privileges.

A6 A user with legitimate access rights will not be
improperly denied access to the file.

(f, v) (f, α) (c, s)

(1, λ1)· · ·(n, λn) (u1, a1)· · ·(ur, ar)

Figure 2. Structure of records in CDI databases. File database (left), ACL
database (middle) and encryption-secret database (right).

B. Constrained Data Items and MN Roles

The problem of assuring the integrity of a file can be
reduced to that of assuring the integrity of the cryptographic
hash of the file. Likewise, assuring the privacy of contents of a
file can be reduced to assuring the privacy of a file-encryption
secret, and that it is made available only to authorized users
included in the ACL for the file. Thus, from the perspective
of realizing the desired assurances, the CDIs for the MN are
1) file hashes corresponding to every version of every file; 3)
the ACL for every file; and 3) all file encryption secrets. The
CDIs can be seen as three types of databases, with possibly
different interpretations of the index field and value field in
the database records.

1) File databases, indexed by unique file indexes;
2) ACL databases, also indexed by file indexes;
3) File-encryption-secret database where the index is a

“key” identifier c.

In a record (f, v) in the file database (Figure 2, left), f
is a unique file index, and v is the root of a nested IOMT.
A record (n, λn) in the nested IOMT provides information
λn regarding the nthversion of the file index f . The ACL
database (Figure 2, middle) has records of the form (f, α)
where α is the root of an IOMT capturing the ACL for file
f . A record (ui, ai) in the nested IOMT with root α indicates
that user u has access permission a (for file index f ). For
example, ai = 1 for read access, ai = 2 for read-write
access and ai = 3 for write-access to the ACL (users with
access level 3 can even change the ACL α for f ). In a record
(c, s) (Figure 2, right) in the file-encryption-secret database
the value s is an encrypted version of a file encryption secret
Kf . Specifically, the secret is encrypted using the self secret
of the module tracking the CDI database. The index computed
as c = h(Kf , f) is simultaneously a commitment to both the
secret Kf and the context f . The implication of the context
f is that secret Kf should be made privy only to users with
access level 1 or higher in the ACL for file f .

Corresponding to the three different CDI database types,
the MN employs members with ρ = 3 different member roles,
say role F (for file version databases), role S (file encryption
secrets) and role A (ACL). Any number of members may exist
for each role, each maintaining data pertaining to different non
overlapping ranges of file indexes.

C. UDIs

Modifications to the CDI databases are triggered by UDIs
emanating from users of the service. Specifically, correspond-
ing to creation of new files, new file indexes are added to the
CDI databases. Corresponding to updates to a file with index
f a new version record is added. File owners may also submit
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ACLs for files (CDI α, the ACL root), delete files (remove
record for file f ), submit file encryption secrets, etc.

External entities (software running on end-user platforms)
interact with S-role MN members to i) convey hashes and/or
secrets corresponding to new file versions, changes to ACLs,
and ii) query the MN for file hashes and secrets. The results
of the query can then be compared with files provided by the
service.

As in the CW model, requests from users, which are UDIs
(as any user can send any request — even unauthorized ones),
should be logged. As users have to share a secret with mem-
bers with role S (as such members convey/accept encrypted
file-encryption secrets to/from users), it is convenient to let
members with role S to also maintain a log database. In this
paper, in the interest of keeping the discussions simple, we
shall ignore the log database.

D. MN Messages

Four types of MN messages can be defined: types ACL (to
report ACL privilege), AU (to update ACL), VU (to add a new
version), and FP (to report file parameters).

A message ACLX,Y (f, a, u) (from X to Y ) of type ACL,
can be created by a member X (with role A) and delivered
to a member Y (with role F or S), indicating that user u has
access permission a for file f . To generate such a message, X
merely needs to confirm the existence of a record (f, α) in its
CDI database, and the existence of record (u, a) in an IOMT
with root α. An ACL message for a file f with u = a = 0
can be created only if the ACL IOMT root α for f is 0 (as
we shall see later, such a message is used to trigger removal
of (all versions of) file f ).

A message AUX,Y (f, u, α), can be created by S members
and sent to A members, indicating a request from a user u to
update the ACL for file f . While any user u can request an
S member to create such a message, the AU message will be
honored by the A-role member only if user u has access right
a = 3 for file f . Such a user can also set the value α to zero
(to request deletion of the file f ).

A message V UX,Y (f, u, λ), represents a request to create
a new version of file f . This can be created by S members
and sent to A members to check if user u has the necessary
access permission. After ensuring sufficient access rights, A
members can then create another V U() message addressed
to an F member. Once again, while any user can trigger the
S member to create a V U message the V U message will be
honored by the A-member only if u has access right 2 or higher
for file f . V U messages created by A members (in response
to a VU message from a S member) trigger F members to
appropriately modify their CDI database record for file f .

Message of type FPX,Y (· · · ) conveying parameters for
version q of file f are created by F members and conveyed to
S members who may then relay the contents of the message
to users of the service.

E. Events and TPs

The MN rules database specifying pre-conditions and post-
conditions for all TPs (corresponding to each of the 17 event

types 01 to 17) is depicted in Table I. Each event type is
associated with role type(s) of member(s) who may respond
to the event (role type indicated in parentheses alongside the
event number in column 1). Column 2 lists UDIs (as {· · · }),
and other inputs (OI) necessary to execute the TP. Only TPs
corresponding external events accept UDIs. TPs for internal
events are triggered by MN messages.

Columns 3 and 4 depict the pre-conditions and post-
conditions, respectively. A MN message in pre-conditions
(column 3) indicates receipt of the message. A message in
post-conditions (column 4) implies the need to create such a
message. As the events are listed from the perspective of a
member X , all messages in pre-conditions indicate only the
sender of the message (the receiver is always X); all messages
in post-conditions indicate only the receiver (the sender is
always X). As can be seen from the table, events 01, 02,
06, 11, and 12 are external events as they are not triggered by
MN messages.

A tuple (x, y) in pre-conditions indicates the presence of
record (x, y). (x, 0) represents absence of record for x (or
presence of place-holder for x). (x, y) → (x, y′) in post-
conditions implies the need to update the IOMT root to account
for the update to the value of record index x (from y to y′).
(x, (y, a)) in pre-conditions indicates the presence of a nested
record (y, a) for a record with index x. (x, (y, a)→ (y, a′)) in
post-conditions indicates the need to update the nested record
(and accordingly, update the IOMT root). s s′ indicates that
s′ and s are related through symmetric encryption.

A user reserves a file index f by creating event 01, which
generates a AU message, which becomes input to event 08,
which outputs a AU message, that becomes input to event 04,
which results in a confirmation message to the user. A user
u can also trigger event 01 to modify the ACL for file f . In
this case, the AU message from event 01 triggers event 09.
Only if the user has access level 3, the ACL is updated, and
a AU response is created, which triggers event 04, to send a
message to the user, confirming successful ACL modification.
If user u does not have sufficient access right, event 11 is
triggered to create a ACL message, which triggers event 03,
which creates a message informing the user of his/her access
right. If the file does not exist, event 12 is invoked instead to
create the ACL message. If the user does not have access, or if
the file does not exist, the user receives a message conveying
values {f, u, 0}. Thus, if the user does not have access to a
file f , the user does not even get to know if file f exists. A
user can request deletion of a file by updating the ACL to 0.
Following this, event 12 can be invoked with u = 0 to create
a ACL message, that triggers event 13, to delete all versions
of file f .

A user u can convey a new file version, by invoking event
02. The V U message invokes event 10. Only if the user has
write access, is the output V U message created. If the update
is the first version of the file, the V U message triggers event
14. Else, it triggers event 15. Both output a FP message
which triggers event 05, resulting in a acknowledgement to
the user, that the update was successful. If the user did not
have access, or has read-only access, as earlier, event 11 or 12
can be triggered to convey this fact to the user.

Any user can provide a secret to the MN by triggering
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TABLE I. MN Rules for Cloud Storage Service MN with ρ = 3 types of member roles, ν = 17 types of events (and TPs), and µ = 4 types of MN messages.
Pre/post-conditions for 17 events are listed for a member with identity X .

Events UDI / OI Preconditions Post-conditions
01(S) {f, α}, Y, u AUY (f, u, α)
02(S) {f, λ}, Y, u Y type Λ V UY (f, u, λ)
03(S) ACLY (f, u, a) {f, u, a}X
04(S) AUY (f, u, α) {f, u, α}X
05(S) FPY (f, q, λ, q′) {f, q, λ, q′}X
06(S) {f, c, s′} s′  K, c = h(K, f) 6= 0 K  s, (c, 0)→ (c, s)
07(S) ACLY (f, u, a > 0), (c, s), s K, c = h(K, f) K  s′, {f, c, s′}
08(A) AUY (f, u, α), (f, 0) (f, 0)→ (f, α), AUY (f, u, α)
09(A) α′ AUX(f, u, α), (f, (u, a)), a > 2 (f, α′)→ (f, α), AUX,Y (f, u, α)
10(A) Z V UX(f, u, λ), (f, (u, a)), a > 1 V UZ(f, u, λ)
11(A) {f, u}, Z, a (f, (u, a)) ACLZ(f, u, a)
12(A) {f, u} (f, 0) ACLZ(f, u, 0)
13(A) θ ACLZ(f, 0, 0), (f, θ) (f, θ)→ (f, 0)
14(F ) Z V UY (f, u, λ), (f, 0) (f, 0)→ (f, (1, λ)), FPZ(f, 1, u, λ, 1)
15(F ) Z, q, λ′ V UX(f, u, λ), (f, (q − 1, λ′)), (f, (q, 0)) (f, (q, 0))→ (f, (q, λ)), FPZ(f, q, u, λ, q)
16(F ) Z, q, λ ACLY (f, u, a > 0), (f, (q, λ)), (f, (q + 1, 0)) FPZ(f, q, u, λ, q)
17(F ) Z, q, λ ACLX(f, u, a > 0), (f, (q, λ)) FPZ(f, q, u, λ, 0)

event 06. To send a secret to a user, event 11 can be invoked
to create a ACL message confirming that the user has the
requisite access right, to trigger event 07. If the user does not
have any access to f , event 11 or 12 can be triggered to convey
this fact to the user.

A user u merely requesting file parameters for the latest
version of a file can be satisfied by invoking event 11 to
create a ACL message that triggers event 16. The preconditions
for event 16 ensure that q is the latest version through non-
existence of version q+1 (pre-condition (f, (q+1, 0))). If the
user requests a specific (older) version, event 17 is triggered
instead. Note that the FP message created this time sets the
field corresponding to the highest version number to 0 to
indicate that it did not “bother to check” the highest version
number. The FP message created by event 16 or 17 triggers
event 05. Once again, if the user does not have any access
privilege, or the file does not exist, event 11 or 12 can be
triggered to convey this fact to the user.

At first sight, it may appear that replay attacks (for ex-
ample, an old request for ACL update may be replayed), are
ignored. This omission is deliberate, as strategies to prevent
replays can be addressed by generic protocols for creation and
verification of MN messages.

IV. DISCUSSIONS AND CONCLUSIONS

A novel mirror network model for securing ISes was
outlined, driven by the need to reduce complexity of both the
assurance software for any IS, and the platform on which the
assurance software is executed. The complexity of the platform
was kept low by deliberately constraining MN modules to
perform only logical and hash operations. The complexity of
the assurance software was minimized by constraining it to be
a list of simple pre-conditions and post-conditions.

The only assumptions behind the MN approach are i) the
correctness of the MN specification for the IS to be secured,
and ii) the integrity of MN modules. No hardware/software of
the IS itself need to be trusted to realize the desired assurances.
As the MN specification is open, anyone with IS domain
knowledge can verify its correctness. As the MN modules

are deliberately constrained to possess simple and identical
functionality, an infrastructure for mass production (possibly
as chips), verification, and certification of MN modules can be
realized at a reasonably low cost.

A. Comparison With Trinc

Another approach in the literature which leverages a simple
trustworthy module specification to bootstrap system assur-
ances is Trinc [2]. Specifically, a trinket is a module following
the Trinc specification, whose sole purpose is the attestation
of monotonic counters stored inside the trinket.

Similar to MN modules, every trinket has a unique identity.
Every trinket also has an asymmetric key pair certified against
its identity. A primary counter in the trinket is leveraged to
create a plurality of secondary counters as follows. Whenever
a new secondary counter is created, it is identified by the
current value of the primary counter — which is incremented
on creation of the new counter. Built-in functions of a trinket
can be used to a) request a trinket to create a new counter with
identity n, or b) bind (by computing a digital signature) some
arbitrary value x and an incremented counter value c′n ≥ cn
(where cn is the current value of counter with identity n).

As an example, consider a scenario where a dynamic
constrained data item (for example, a file hash) F , is bound
to a counter with identity n, and value cn, in a trinket with
identity G. More specifically, let a value x bound to the counter
(n, cn, G) (through a signature of trinket G) represent a one
way function of the signature of the provider/owner of file
F . Whenever F is updated, the owner ensures that a fresh
signature x′ is bound to (F, n, c′n > cn, G) — by requesting
the trinket G to update the counter n to c′n, and issue a
certificate binding x′ to the updated counter. Anyone receiving
the file F (even from an untrusted repository) can verify its
freshness by obtaining the attestation by G (binding x′ to its
current counter (n, c′n, G)). Specifically, as the counter n is no
longer cn, the old value of F (along with signature x) can not
be replayed by the repository.

To reduce the overhead associated with digital signatures,
the Trinc specification also includes an alternate mechanism to
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attest/verify certificates, using shared symmetric secrets. In this
case, however, a system-specific trusted third party is required
to set-up secrets bound to specific counters of different trinkets
— which are then shared between all entities that are required
to verify the attestation.

Compared to MN modules, the main disadvantages of Trinc
are as follows. Firstly, the Trinc specification limits the number
of counters that can be “remembered” (and hence, the number
of CDIs that can be reliably tracked by a trinket) to a small
queue length (10 to 15). One way to overcome this limitation
is by addition of built-in Merkle-tree functionality in Trinc
for tracking any number of counters using a single monotonic
counter [13].

Even with this addition, strategies to secure any practical
system using Trinc will, unfortunately, require components
other than the Trinc modules to be trusted. The reason for this
is that Trinc by itself does not offer an explicit mechanism for
binding a Trinc identity G to a specific subsystem/database
that includes data F , or binding a specific piece of data F
associated with the subsystem to a specific counter n in a
specific trinket G. In the specific example above, the owner
of F is trusted to do so. Unlike the MN model, where such
system-specific bindings (to enforce system-specific rules) can
be taken into account by the rich MN specification, the Trinc
model does not have the ability to enforce IS specific rules.
The shortcomings of Trinc are addressed by addition of simple
(in terms of resource requirements), yet rich functionality to
MNs modules — IOMT and mutual authentication capabilities
— which require demand simple sequences of hash operations.

B. Conclusions

Current approaches to secure ISes predominantly rely on

1) ever changing reactionary measures (software up-
dates, IDSes, firewalls) to improve the integrity of
different subsystems and

2) cryptographic strategies for securing interactions be-
tween subsystems.

The former strategies are plagued by the possibility of new
bugs in updates, and/or bugs in the very design of complex
IDSes. Breaches in the latter (cryptographic) strategies [12]
often result from the lack of integrity in the environment
in which cryptographic protocols are executed (after all, a
cryptographic algorithm is at most only as reliable as the
platform in which cryptographic keys are stored and the
cryptographic algorithm is executed). The novel and holistic
MN approach to assure information systems is motivated by
the often repeated (and unfortunately just as often ignored)
maxim that “complexity is the enemy of security” [1]. The
main novelty of the proposed approach stems from applying
system integrity models to the assurance protocol of an IS
(instead of the IS itself, as in the Clark-Wilson model).

Not withstanding complexity of ISes, rules that govern how
data should be manipulated by ISes tend to be simple. Security
breaches in systems rarely result from incorrect rules. Rather,
they result from issues in the process of implementing the
rules into a working system. This process includes numerous
tasks performed during design, deployment and maintenance
of the system, possibly by numerous personnel. It is far from

practical to be able to assure the integrity of every component
and personnel of such a complex process. The crux of the
MN model is that it permits us to short-circuit this process to
observe “if an IS is indeed abiding by design rules.”

It is important to note that the MN approach does not
obviate the need for measures necessary to root out malicious
functionality in IS components, for if such functionality results
in illegal modifications to the IS databases, the IS can no longer
demonstrate its integrity to its users. In other words, all that
the MN approach guarantees is that ISes will not be able to
hide security violations from users (and other stake-holders)
of the IS.

Our ongoing work involves developing MN rules for a
wide range of information systems, with the longer term
goal of developing a succinct language for expressing pre-
conditions and post-conditions as instructions that can be easily
interpreted by resource limited MN modules.
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