
Automated Infrastructure Management (AIM) Systems

Network Infrastructure Modeling and Systems Integration

Following the ISO/IEC 18598/DIS Standards Specification

Mihaela Iridon

Cândea LLC for CommScope, Inc.

Dallas, TX, USA

e-mail: iridon.mihaela@gmail.com

Abstract— Automated Infrastructure Management (AIM)

systems are enterprise systems that provision a large number

and variety of network infrastructure resources, including

premises, organizational entities, and most importantly, all the

telecommunication and connectivity assets. In 2016 the

International Standards Organization released the ISO/IEC

18598 specifications that provide standardization and sensible

guidelines for exposing data and features of AIM systems in

order to facilitate integration with these systems. CommScope,

the primary contributor in defining these standards, has

implemented these specifications for their imVision system [1].

This paper elaborates primarily on the ISO-recommended

infrastructure elements and how to design the resource models

that represent them. It also discusses the layered architecture

used to build CommScope’s imVision AIM system, and briefly

describes a possible integration scenario between two AIM

systems. Additionally, this article intends to share design and

technology-specific considerations, challenges, and solutions

adopted by CommScope, so that they may be translated and

implemented by other organizations that intend to build - or

integrate with - an AIM system in general.

Keywords-automated infrastructure management (AIM);

system modeling; network infrastructure provisioning; data

integration.

I. INTRODUCTION

Modeling network infrastructure elements (ports,
modules, patch panels, servers, cables, circuits, etc.) and
building effective network management systems is a rather
challenging task due to the complexity and large variety of
telecommunication assets [1] and vendor implementations.
Such systems are also designed to model and automatically
detect physical connectivity changes and manage
infrastructure and data exchange with other systems.

Until recently, no common representation of such
elements existed, so that network infrastructure management
providers defined their own proprietary models. For this
reason, the task of integrating with these systems posed a
high degree of complexity, forcing integrators to define
highly specialized solutions and models, and potentially
unwieldy model and data transformations to enable
compatibility between the integrating systems.

CommScope has identified the stringent need to create a
unified representation of telecommunication assets to help

build and integrate with Automated Infrastructure
Management (AIM) systems and worked with the
International Standards Organization towards achieving this
goal. The result of this collaboration was the ISO/IEC 18598
standard [2], a set of guidelines for modeling and
provisioning AIM systems. These specifications were
captured and extended in [1] and are also the main focus of
this paper, by including modeling details that bring more
clarity, add context, and provide further guidelines to the
information described in the standards document. Identifying
and organizing AIM system’s assets in a logical and
structured fashion allows for an efficient access and
management of all the resources administered by the system.

This paper is organized around six sections as follows.
Section II presents several resource models from the

perspective of designing RESTful services [3] [4] [5], with
focus on the telecommunication assets, as proposed and used
by CommScope’s imVision API. This section also presents a
solution for handling a large variety of hardware devices
while avoiding the need for an equally large number of URIs
for accessing these resources.

Section III discusses system architecture, patterns and
design-specific details, elaborating on a few practical
challenges, followed by noteworthy technology and
implementation aspects captured in Section IV.

Section V examines options for integrating two or more
AIM systems, specifically two CommScope AIM systems:
imVision and the Quareo Middleware API. A high-level
solution employing a variant of the Normalizer integration
pattern is presented along with a few data integration and
data layer modeling objectives.

Finally, Section VI attempts to join and summarize the
main ideas and analysis points presented in this paper.

II. AIM SYSTEM DOMAIN ANALYSIS AND RESOURCE

MODELING

As with every software system – and more so with
enterprise-level applications – domain modeling is of vital
importance as it helps define, organize, and understand the
business domain, facilitating the translation of requirements
into a suitable design [6]. However, dedicated models can
and should be designed for the various layers of a system’s
architecture [7]. Defining clean boundaries between the
system’s domain and the integration models [8] [9] as well

27

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as ensuring the stability of these models (via versioning) are
imperative requirements for building robust and extensible
systems, while allowing the domain models – both structural
and behavioral – to evolve independently [3] [10].

The specification of the AIM resource model described
here employed various design and implementation
paradigms. However, all concrete resource types exposed by
the system are simple POCOs (Plain Old CLR Objects for
the .NET platform) or POJOs (Plain Old Java Objects for the
Java EE platform). These models represent merely data
containers that do not encapsulate any behavior whatsoever.
Functional attributes are specific to the physical entities
being modeled and are exposed only from the perspective of
the system’s connectivity they describe. The purpose of the
AIM model described here and in [1] is to define a common
understanding of the data that can be exchanged with an
AIM system while any specific behavior around these data
elements is left to the implementation details of the particular
system itself.

As opposed to the design principles of stateful services
(such as SOAP and XML-RPC-based web services) – where
functional features and processes take center stage while data
contracts are just means to help model those processes [9]
[7], in RESTful services the spotlight is distinctly set on the
transport protocol and entities that characterize the business
domain. These two elements follow the specifications of
Level 0 and 1, respectively, of the RESTful maturity model
[11] [5]. The resources modeled by a given system also
define the service endpoints (or URIs), while the operations
exposed by these services are simple, few, and standardized
(i.e., the HTTP verbs required by Level 2: GET, POST,
PUT, DELETE, etc.) [4] [5]. Nonetheless, in both cases, a
sound design approach (as with any software design activity
in general) is to remain technology-agnostic [6] [8] [7].

A. Resource Categories Overview and Classification

The entities proposed in the Standards document [1] are
categorized by the sub-domain that they describe as well as
their composability features. This classification helps define
a model that aligns well with the concept of separation of
concerns (SoC), allowing common features among similar
entities to be shared effectively, with increased testability
and reliability.

The ISO/IEC Standards document proposes the
classification of resources shown in Table I. While some
elements listed here may not be germane to all AIM systems,
the Standards document intends to capture and categorize all
elements that could be modeled by such a system.

TABLE I. RESOURCE CATEGORIES AND CONCRETE TYPES

PREMISES Geographic Area, Zone, Campus, Building,
Floor, Room

CONTAINERS Cabinets, Racks, Frames

TELECOM ASSETS Closures, Network Devices, Patch Panels,
Modules, Ports, Cables, Cords

CONNECTIVITY ASSETS Circuits, Connections

ORGANIZATIONAL Organization, Cost Center, Department, Team,
Person

NOTIFICATIONS Event, Alarm

ACTIVITIES Work Order, Work Order Task

It also proposes a common terminology for these categories
so that from an integration perspective there is no ambiguity
in terms of what these assets or entities represent, where they
fit within an AIM system, and what their purpose is. It
defines, at a high-level, the ubiquitous integration language
by providing a clear description and classification of the
main elements of an AIM system.

This paper analyzes these recommendations, materializes
them into actual design artifacts – following the exact
nomenclature used in the Standards document, and proposes
a general-purpose layered architecture for the RESTful AIM
API system while addressing a few concerns regarding AIM
systems integration in general.

B. Common Model Abstractions

Since all resources share some basic properties, such as
name, identifier, description, category, actual type (that
identifies the physical hardware components associated with
this resource instance), and parent ID, it is a natural choice to
model these common details via basic inheritance, as shown
in Figure 1. In order to support a variety of resource
identifier types, e.g., Globally Unique Identifier (GUID),
integer, string, etc., the ResourceBase class is modeled as a
generic type with the resource and parent identifier
parameterized by the generic type TId .

Of particular interest are telecommunication assets – the
core entities in all AIM systems – a class of resource types
which all must realize the IAsset marker interface – as
proposed in [1] and in this paper.

C. Designing the AIM Resource Models

AIM systems are comprised of elements that fall into
seven main categories. The modeling of these elements will
be described following this standard classification which also
aligns with the way these entities are organized into a
compositional hierarchy; this grouping also defines the
granularity and association relationship among them.

1) Premise Elements
A given organization’s network infrastructure can be

geographically distributed across multiple cities, campuses,
and/or buildings, while being grouped under one or more
sites – logical containers for everything that could host any
type of infrastructure element. At the top of the
infrastructure-modeling hierarchy, there are premises, which
model location at various degrees of detail: from geographic
areas and campuses to floors and rooms. Composition rules
or restrictions for these elements may be modeled via generic
type constraints, unless these rules are not enforced by a
given system. Figure 2 shows the standards-defined premise
entities, their primary properties, and the relationships
between them.

2) Telecom Connectivity Elements
The main assets of a network infrastructure are its

telecommunication resources, from container elements, such
as racks and cabinets, to switches and servers, network-
devices (e.g., computers, phones, printers, cameras, etc.),
patch panels, modules, ports, and circuits that connect ports
via cables and cords.

28

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Resource Base Models

The diagram included in Figure 3 shows these asset
categories modeled via inheritance, with all assets realizing
the IAsset marker interface. As is the case for
CommScope’s imVision system, the type of the unique
identifier for all resources is an integer; hence, all resource
data types will be closing the generic type TId of the base
class to int : ResourceBase< int> . This way, the RESTful
API will expose these AIM Standards-compliant data types
in a technology- and implementation-agnostic way that
reflects the actual structure of the elements, while generics
and inheritance remain transparent to integrators, regardless
of the serialization format used (JSON, XML, SOAP). This
fact is illustrated in Figure 5, which shows a sample Rack
instance serialized using JSON. In addition to the elements
shown in Figure 3 that support a persistent representation of
the data center’s telecom assets, there are those that describe
the physical connectivity (i.e., circuits): cables, connectors,
and cords. They play a chief role in defining the connectivity
dynamics of the system. Figure 4 shows the primary
resources for modeling this aspect of an AIM system.

3) Organizational Elements
Large AIM systems typically provision entities that

describe the organization responsible for maintaining and
administering the networking infrastructure. For example,
tasks around the management of connectivity between panels
and modules is usually represented by work orders and tasks
which, in turn, are assigned to technicians.

4) System Notifications and Human Activity Elements
Hardware components of AIM systems, e.g., controllers,

discoverable/intelligent patch panels and in some instances
intelligent cords (e.g., CommScope’s Quareo system) allow
continuous/automatic synchronization of the hardware state
with the logical representation of the hardware components.

class Premises

GeographicArea

Building

Campus

Floor

Location

«property»

+ PostalCode(): string

+ LineAddress1(): string

+ LineAddress2(): string

+ City(): string

+ State(): string

+ County(): string

+ Country(): string

NamedResourceBase

TParentPremise > PremiseBase

PremiseBase

«property»

+ Parent(): TParentPremise

NamedResourceBase

PremiseBase

«property»

+ Location(): Location

Room

Zone

«bind»

< TParentPremise->GeographicArea >

< TParentPremise->Building >

< TParentPremise->Floor >

«bind»

< TParentPremise->Campus >

«bind»

«bind»

«bind»

< TParentPremise->PremiseBase >

Figure 2. Premise Resource Models

29

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

class Telecom Assets

Asset

TResourceId

ConnectivityAsset

«property»

+ Template(): string

+ UHeight(): int

+ Elements(): List<IAsset>

+ Container(): IAsset

Closure

NetworkDev ice

«property»

+ MacAddress(): string

+ NetworkAddress(): string

PatchPanel

«property»

+ PortType(): PortType

+ TotalPorts(): int

Asset

TResourceId

ContainerAsset

«property»

+ UCapacity(): int

+ Zone(): int

Cabinet

«property»

+ RackUnitNumbering(): NumberingScheme

Rack

«property»

+ RackUnitNumbering(): NumberingScheme

Frame

IAsset

«interface»

IEquipmentAsset

Module

«property»

+ PortType(): PortType

Asset

Port

«property»

+ PortType(): PortType

+ PerformanceLevel(): int

+ PortStatus(): PortStatus

+ IsPending(): bool

+ Service(): string

+ ParentEquipmentId(): int

TResourceId

TwoSidedConnectivityAsset

«property»

+ FrontPorts(): List<Port>

+ BackPorts(): List<Port>

+ PortMapping(): List<OrderedPair<Port, Port>>

Container

0..*

FrontPorts / BackPorts

< TResourceId->int >
< TResourceId->int >

< TResourceId->int >

< TResourceId->int >

< TResourceId->TResourceId >

< TResourceId->int >

< TResourceId->int >

< TResourceId->int >

Figure 3. Telecommunication Assets Resource Models
class Connectiv ity

ResourceBase

Circuit

«property»

+ Segments(): List<CircuitSegment>

NamedResourceBase

CircuitSegment

«property»

+ Connection(): Connection

+ CommonElement(): IAsset

ResourceBase

Connection

«property»

+ ElementA(): IAsset

+ ElementB(): IAsset

«interface»

Common::IAsset

e.g., cable or module
e.g., port or connector

Connection

1..*

Segments

ElementA/BCommonElement

Figure 4. Connectivity Models Figure 5. A JSON Representation of a Rack Resource

30

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This synchronization is facilitated by the concept of

events and alarms that are first generated by controllers
(Alarm) and then sent for processing by the management
software (Event). These notification resource types are
supported by the AIM Standards and are modeled as shown
in Figure 6. This also includes activities that technicians
must carry out, such as establishing connections between
assets, activities that in turn trigger alarms and events, or are
created as a reaction to system-generated events.

D. Modeling Large Varieties of Hardware Devices

The telecom asset model presented in Figure 3 depict the
categories that define all or most physical devices seen in
network infrastructure. However, actual hardware
components have specialized features that are vendor-
specific or that describe some essential functionality that the

components provide. Such specialized attributes – like the
ones shown in Figure 7 for a specific type of Closure – must
be incorporated in the model for supporting the Add (POST)
and Update (PUT) functionality of the RESTful services that
expose these objects to the integrators. The main challenge
then is: how to support such a large variety of hardware
devices without having to expose too many different service
endpoints, one for each of these specialized types?

According to the Richardson Maturity Model for REST
APIs [11] – which breaks down the principal ingredients of a
REST approach into three steps – Level 1 requires that the
API be able to distinguish between different resources via
URIs; i.e., for a given resource type there exists a distinct
service endpoint to where HTTP requests are directed. For
querying data using HTTP GET, we can easily envision a
service endpoint for a given resource category – as per the

Metadata used for filtering concrete asset types

that can be modeled using the specialized data

type which this attribute decorates.

ObjectType is an enumeration specifying over

120 concrete entities.

The main resource type

category used to model

closure devices. The model is

used as a data container for

the common features across

all closure-type resources.

A specialized/derived resource type that encapsulates

additional features that only some closure devices share.

These closure devices are identified via the metadata

that decorates the specialized type.

A Marker interface for

derived asset types.

ConnectivityAsset

TelecomEquipment::

Closure

«interface»

Common::

ISpecializedAsset

SpecializedResources::

ClosureInstaPATCHPlusFiberShelf

«property»

+ LocationInRack(): LocationInRack

+ Orientation(): AssetOrientation

+ PortType(): PortType

+ MaximumPorts(): int

Attribute

Ext::AllowedObjectTypeAttribute

+ AllowedObjectTypeAttribute()

+ AllowedObjectTypeAttribute(ObjectType)

«property»

+ ObjectType(): ObjectType

decorates

Figure 7. A Sample of a Specialized Closure with Additional Properties

NamedResourceBase

Alarm

«property»

+ EventId(): int

+ AlarmType(): AlarmType

+ NotificationDetails(): List<string>

NamedResourceBase

Ev ent

«property»

+ EventType(): EventType

+ RelatedElements(): List<IAsset>

+ Timestamp(): DateTime

NamedResourceBase

WorkOrder

«property»

+ WorkOrderState(): WorkOrderState

+ WorkOrderType(): WorkOrderType

+ StartDate(): DateTime

+ EndDate(): DateTime

+ Technician(): Person

+ Tasks(): List<WorkOrderTask>

NamedResourceBase

WorkOrderTask

«property»

+ WorkOrderTaskStatus(): WorkOrderTaskStatus

+ WorkOrderTaskType(): WorkOrderTaskType

+ ModifiedAssets(): List<IAsset>

«interface»

Common::IAsset
EventId

1..*

Tasks

ModifiedAssets

RelatedElements

Figure 6. Notification and Activity Models

31

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

models described above. For example, there will be one URI
for modules, one for closures, one for patch panels, etc.
However, when creating new assets, one must specify which
concrete entity or device type should be created, and for this,
the device-specific data must be provided. Since these
supplementary features are not intrinsic to all objects that
belong to that category, specialized models must be created –
e.g., as derived types inheriting from the category models
that encapsulate all relevant device-specific features.

For example, one of CommScope’s connectivity products
that falls under the category of Closures is the SYSTIMAX
360™ Ultra High Density Port Replication Fiber Shelf, 1U,
with three InstaPATCH® 360 Ultra High Density Port
Replication Modules [12] – a connectivity solution for high-
density data centers that provides greater capacity in a
smaller, more compact footprint. These closures come in a
variety of configurations and aside from the common closure
attributes (position, elements, capacity, etc.) other properties
are relevant from a provisioning, connectivity, and circuit
tracing perspective. Such properties include Orientation of
the sub-modules, Location in Rack, Maximum Ports, and
Port Type, as shown in the class diagram in Figure 7.

An alternative to using an inheritance model would be to
create distinct types for each individual physical component
that could be provisioned by the AIM system, but given the
significant overlap of common features they can be
consolidated and encapsulated in such a way that derived
specialized models can be employed in order to increase
code reusability, testability, and maintainability. The
distinction between the various hardware components that
map to the same specialized type can be managed, for
example, via custom metadata associated with that data type
(e.g., the Al lowedObjectTypeAttr ibute in Figure 7).

E. Benefits of the Proposed Model

The models proposed in this paper are closely following
the categories and elements outlined in the ISO/IEC
standards. However, given the structural models presented
here and taking advantage of certain technology-specific
constructs and frameworks, there are some notable
advantages resulting from the design of these models, related
to their usage, and the integration capabilities for the services
that expose them, with direct impact on performance,
maintainability, testability, and extensibility.
✓ Simplified URI scheme based on resource
categories rather than specialized resource types. This
allows clients to access classes or categories of resources

rather than having to be aware of - and invoke - a large
number of URIs dictated by the large variety of hardware
devices modeled. This also confers the API a high degree of
stability, consistency, and extensibility even when the
system is enhanced to provision new hardware devices.
✓ Reduced chattiness between client application and
services when querying resources (GET). This benefit is
directly related to the URI scheme mentioned above, since a
single HTTP request can retrieve all resources of that type
(applying the Liskov substitution principle [13]), even when
multiple sub-types exist.
✓ Reduced chattiness between client application and
services when creating complex entities (POST) by
supporting composite resources. In some cases, the
hardware device construction itself requires the API to
support creating a resource along with its children in a
single step (see Section IV.B for details). Child elements
can be specified as part of the main resource or they can be
omitted altogether while custom composition and validation
frameworks resolve the missing sub-resources based on
predefined rules.

Table II captures metrics regarding the request counts
and sizes for creating a PatchPanel object.
✓ Ample opportunity for automation when creating
and validating composite resources. Aside from
considerably reducing the size of the request body given the
option to omit child elements when adding new entities - as
is the case for the imVision API – by employing
frameworks that support metadata-driven automation, the
API will ensure that the generated resource object reflects a
valid hardware entity, with all the required sub-elements.

For the API consumers, this reduces the burden of
knowing all the fine details about how these entities are
composed and constructed. In some cases, the number of
child elements to be created in the process depends on
properties that the main resource may expose (e.g.,
Tota lPorts) – which client applications will have to specify
if the corresponding property is marked as [Required].
✓ Extensible model as new hardware devices are
introduced. New models can easily be added to the existing
specialized resources or as a new subtype. The interface for
querying the data (GET) will not change. Adding/updating
resources follows the Open/Closed principle [13] such that
new types, properties, and rules can be added/extended
without changing the already defined ones, thus ensuring
contract stability.

TABLE II. POST REQUEST METRICS FOR QUATTRO PANEL (A PATCHPANEL RESOURCE)

Metric Scenario Value

Number of

POST

Requests

Without Support for Composite Resources 31: 1 for the Panel, 6 for the child Modules, and 6x4 for the
ports

With Support for Composite Resources 1: a single request for the Panel with its Modules (under

Eleme nt s), with each Module being itself a composite
resource containing 4 ports each, specified under the

Fro ntPo r ts property of each Module

POST Request

Body Size

With Explicit Children Included 21,449 bytes

With No Children Specified (i.e., relying on the
Framework to populate default elements)

572 bytes

32

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. A PROPOSED LAYERED ARCHITECTURE FOR AIM API

INTEGRATION SERVICES

A. Adding Integration Capabilities to an AIM System

As per the Standards document guidelines [2], the AIM
Systems should follow either an HTTP SOAP or a RESTful
service design. Regardless of the service interface choice,
there are several options for designing the overall AIM
system. A common yet robust architectural style for software
systems is the layered architecture [7] [8], which advocates a
logical grouping of components into layers and ensuring that
the communication between components is allowed only
between adjacent or neighboring layers. Moreover, following
SOLID design principles [13], this interaction takes place via
interfaces, allowing for a loosely coupled system [14], easy
to maintain, test, and extend. This will also enable the use of
dependency injection (DI) or Inversion of Control (IoC)
technologies such as Microsoft’s Unity and MEF, or any
other DI/IoC containers, to create a modular, testable, and
coherent design [15].

CommScope’s imVision system was built as a standalone
web-based application, to be deployed at the customer’s site,
along with its own database and various middleware services
that enable the communication between the hardware and the
application. Relying on the current system’s database, the
RESTful Services were added as an integration point onto
the existing system. The layered design of this new sub-
system is shown in Figure 8 with the core component – the
resource model discussed earlier – shown as part of the
domain layer. The system also utilizes (to a limited extent) a
few components from the legacy imVision system that
encapsulate reusable logic. The diagram shows the actual
design used for CommScope’s imVision system.

Several framework components were used, most notably
the Validation component, which contains the domain rules
that specify the logic for creating and composing the various
entities exposed by the API. These rules constitute the core
module upon which the POST functionality relies. Along
with the resource composition and validation engines, they
constitute in fact a highly-specialized rule-based system that
makes extensive use of several design and enterprise
integration patterns that will be cataloged next.

B. Patterns and Design Principles

The various patterns and principles [8] [13] [14]
employed throughout the design and implementation of the
imVision API system are summarized in Table III. The
automation capabilities built into imVision API mentioned
earlier, that support creating composite object hierarchies,
are a direct realization of the Content Enricher integration
pattern used together with the Builder, Composite, and
Specification software design patterns. From a messaging
perspective, all requests are synchronous and only authorized
users (Claim Check pattern) are allowed to access the API.

Design principles such as IoC/DI have been heavily used
to deploy concrete implementation components (e.g., repo-
sitories, data access, etc.) to various layers of the application.

TABLE III. DESIGN PATTERNS AND PRINCIPLES EMPLOYED

Des ig n Pa t ter ns

Type Category Pattern Name

Design

Patterns

Creational Abstract Factory,

Builder, Singleton,
Lazy Initialization

Structural Front Controller,

Composite, Adapter

Behavioral Template Method,
Specification

Enterprise

Application
Patterns

Domain Logic Domain Model, Service

Layer

Data Source

Architectural

Data Mapper

Object-Relational

Behavioral

Unit of Work

Object-Relational

Metadata Mapping

Repository

cmp Architecture (Paper)

Data

Frameworks
Data Access

Business Logic

Domain

Web Services

«Model»

AIM Resource

Model

Repositories

«service»

RESTful API

«abstraction»

IRepositories

Validation

«service»

Identity/

Authorization

«translation»

Model Adapters

«framework»

Data Access

Adapter

System

Manager

«Model»

Data Model

«abstraction»

IDataAccess

imVision

Business Logic

AIM

Database

Objects

«use»

«abstraction»

«use»

«abstraction»

«deploy»

Figure 8. The Layered Architecture of the imVision AIM API

33

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Web Presentation Front Controller

Distribution Patterns Data Transfer Object
(DTO)

Base Patterns Layer Supertype,

Separated Interface

Enterprise
Integration

Patterns

Messaging Channels Point-to-Point
Channel Adapter

Message Construction Request-Reply

Message

Transformation

Content Enricher

Content Filter
Claim Check

Canonical Data Model

Composed Messaging Synchronous (Web
Services)

Des ig n Pr inc ip l e s

SOLID

Design

Principles

Single Responsibility Principle (SRP)

Open/Closed

Interface Segregation
Liskov Substitution (in conjunction with co- and

contra-variance of generic types in .NET)

Dependency Inversion (Data Access and
Repositories are injected using MEF and Unity)

IV. A FEW CHALLENGES AND SOLUTIONS

This section captures a few interesting aspects that
surfaced during the design and implementation of the API.

A. Handling POST Requests for Large Numbers of

Specialized Resource Types with Few URIs

Simplified URI schemes have the benefit of providing a
clean interface to consumers, without having to introduce a
myriad of URIs, as would be the case of one URI per actual
hardware device supported by the AIM system. The different
representations of these resources are grouped by category,
while specific details are handled using custom JSON
deserialization behavior injected in the HTTP transport
pipeline [3] [5]. Since all resources must specify the concrete
entity type they represent (under the ConcreteAssetTypeId
property), the custom deserialization framework can easily
create instances of the specialized resource types based on
this property, and pass them to the appropriate controller
(one per URI/resource category) for handling.

The impact on performance is negligible given the use of
a lookup dictionary mapping asset type ID to resource type,
which is created only once (per app pool lifecycle) based on
metadata defined on the model. Even if new specialized
resource types are added, the lookup table will automatically
be updated at the time the application pool is (re)started.

For example, a “360 iPatch Ultra High Density Fiber
Shelf (2U)” and a “360 iPatch Modular Evolve Angled (24-

Port)” [12] – two hardware devices that map to two different
specialized types in the imVision API resource model, are
both resources of type PatchPanel . Therefore, a POST
request to create either of these will be sent to the same URI:
http: //[host :port /app/]Pa tchPanels .

This means that the same service components (controller
and repository – and even stored procedure) will be able to
handle either request but the API would also be aware of the
distinction between these two different object instances, as
created by the custom deserialization component.

B. Adding Support for Composite Resources

Hardware components are built as composite devices,
containing child elements, which in turn contain sub-child
entities. For example, the Quattro Panel contains six Copper
Modules with each module containing exactly four Quattro
Panel Ports. To realize these hardware-driven requirements
and avoiding multiple POST requests, while preserving the
integrity and correctness of the device representation, a rule-
based composition representation model was used in
conjunction with the Builder design pattern applied
recursively down the object hierarchy. The composition rules
for the Quattro Panel and its module sub-elements are shown
in Figure 9 (using C#.NET). The strings represent optional
name prefixes for the child elements.

C. A Functional and Rule-Based Approach for Default

Initializations and Validations of Resources

Given the considerable number of specialized resources
to be supported by CommScope’s imVision API and the
even larger number of business rules regarding the
initialization and validation of these entities, a functional
approach was adopted. This rendered the validation engine
into a rule-based system: there are composition rules, default
initialization rules, and validation rules – which apply to
both simple as well as complex properties that define a
resource. Following the same example of Quattro Panel used
earlier, an important requirement for creating such resources
is the labeling of ports and their positions, which must be
continuous across all six modules of the panel.

Figure 10 shows a snapshot of the rules defined for this
type of asset. Figure 10 (a) shows the initialization rules
whereas Figure 10 (b) shows a few of the validation rules. In
both cases, the programming constructs like the ones shown
make heavy use of lambda expressions as supported by the
functional capabilities built into the C#.NET programming
language [16], demonstrating the functional implementation
approach adopted for the imVision AIM API.

Figure 9. Composition Rules for Quattro Panel and Its Child Elements of Type Copper Module

//…
{ ObjectType.QuattroPanel24Port, new CompositionDetail<ModuleCopperModule, int, ModuleValidator>(ObjectType.CopperModule, "Module", 6) },

//…
{ ObjectType.CopperModule, new CompositionDetail<PortBasicPort, int, PortValidator>(ObjectType.QuattroPanelPort, "Port", 4) },
//…

34

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. (a) Default Initialization Rules Sample

Figure 10. (b) Validation Rules Sample

Among some of the reasons worth mentioning for
embracing the functional model are:
✓ a more robust, concise, reusable, and testable code
✓ minimizing side effects from object state management

and concurrency.
Explicit goal specification – central to the functional

programming paradigm – confers clarity and brevity to the
rule definitions, as seen in the code samples provided here.

V. INTEGRATION WITH OTHER AIM SYSTEMS

As stated in the introduction, one of the main goals of the
API is to allow easy integration between AIM systems. This
section presents a theoretical approach to such an integration.

A. Quareo Middleware API

CommScope’s Quareo physical layer management
solution is a real-time physical connectivity provisioning

system with a dual hardware and software implementation
[17]. Using an eventing mechanism, Quareo provides
immediate feedback on all network connection elements,
while enabling technicians to efficiently and accurately
respond to address a variety of infrastructure connectivity
concerns and responsibilities.

Originally, Quareo was developed under one of TE
Connectivity’s units – which was acquired by CommScope
in 2015. Now, two similar yet different systems provide
comparable services to CommScope’s clients and, not
surprisingly, the need to unify the two systems’ functionality
of provisioning managed connectivity data has become a
recognized necessity and focus for the company.

The Quareo Middleware API exposes networking
infrastructure elements via a RESTful API but the focus is
exclusively on telecom assets. It is also using a more generic
approach to modeling these elements than does imVision.

35

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The next sub-section briefly describes the main resource
models as designed and implemented for the Quareo system.

B. Quareo Resource Models

A more generic representation of telecom assets makes
the API more flexible and extensible. However, this puts a
burden on the model itself to allow for this generalization –
requiring potentially a more complex mapping of concrete
assets to generic elements which may or may not be able to
describe all the attributes of the assets in a straightforward
and strongly-typed fashion. Additional complexities may
arise on the consumer end; integrators must have sufficient
detail as of how to restore specialized hardware information
from the generalized representation and how new hardware
elements will be represented by the system.

From a high-level perspective, some of the main entities
of the resource model employed by the Quareo Middleware
API are shown in Figure 11. Since the hardware assets that
the middleware provisions feature the Connection Point
Identification (CPID) technology [18], all assets (including
the most granular of elements, i.e., Port) inherit from the
base class CpidComponent , which encapsulates a large
array of hardware-specific attributes – modeled as simple or
complex types, such as color, connector type, copper/fiber
cable category/rating/polarity, manufacturer Id, hardware
revision, insertion count, catalog, etc.

class Quareo Resource Model

Control ler Dev ice Module

Network Context

+ endIpAddress: string

+ networkContextID: int

+ startIpAddress: string

Port

+ ipAddress: string

+ portIndex: int

+ portLabel: string

+ status: string

+ plugData: string

- plugAttributes: CpidComponent

- portState: PortState

PortS tate

+ error: boolean

+ indicatorState: string

Standard-specified AIM

Resource types that map

to a DEVICE type:

• Closures

• Patch Panels

• Network Devices

CpidComponent

Encapsulates hardware-

specific attributes

HardwareComponent

portState

1..*1

1..*

portList

1

«monitors»

0..* 1

Figure 11. Simplified View of Quareo’s Telecom Assets Resource Model

C. AIM Software Systems Integration Scenarios

1) One-way Integration
Assuming one of the systems as the system-of-record, or

primary infrastructure provisioning system, a one-way
integration solution could be devised such that telecom assets
provisioned by the secondary system can be retrieved via
RESTful GET API requests by the designated primary
system. Consequently, the infrastructure elements managed
by the secondary system become visible to the primary
system. Given that imVision currently provisions more than
just the telecom assets, it would be an obvious choice for
being considered as the primary system in this proposed
integration solution. This would include having its resource
model become the canonical model for all data exchange –
as described later.

Pulling the data managed exclusively by Quareo into
imVision can either be (a) a one-time operation - which
would then require managing connectivity via imVision
only, or (b) a periodic process which would allow the Quareo
system to continue managing telecom assets while imVision
would only be allowed to report on these assets.

Figure 12 shows the general integration scenario and the
data flow between these two systems.

2) Bidirectional Integration
If a unified collection of networking resources is to be

managed by more than one software system, assuming that
each system enables some highly-specialized set of features
that would be prohibitively expensive to migrate to the other
system, then data – and (to a lesser extent) functional –
integration concerns would be applicable at both ends. If
only two systems are considered, then a direct point-to-point
integration mechanism via the already exposed integration
APIs is possible and recommended.

cmp One-way Integration Solution

TE/Quareo MiddlewareimVision AIM System

imVision AIM API Quareo AIM API

TE/Quareo Middleware

and Provisioned

Telecom Assets

imVision

Repositories

Quareo

Repositories

imVision-provisioned

Networking

Infrastructure

Assumption : imVision to become

PRIMARY/single provisioning AIM system

data-translation

include

GET

Figure 12. A Straightforward One-Way Integration Scenario

36

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, adding even one more system to the mix, an
integration infrastructure would be required in order to
reduce complexity and isolate the integration responsibilities
and models. A similar problem, where multiple business
domains required both data and functional integration across
the enterprise, has been presented and discussed in [19]. For
the CommScope integration scenario, a comparable
framework based on messaging and eventing communication
mechanisms would also be appropriate, especially given the
real-time nature of Quareo’s solution as opposed to the
offline update features of imVision.

D. Data Integration Approach and Challenges

The following discussion assumes the adoption of the
first integration option, where imVision system will be
provisioning the entire infrastructure using a persistent
representation of all the telecom assets, as well as the
premise, organizational, and container elements.

1) Data Model Refactoring
In order to support specialized hardware attributes

featured by the CPID technology specific to Quareo [18], the
data layer currently used to model assets managed by the
imVision system must be refactored and enhanced
accordingly. For example, Table IV shows the additional
Quareo attributes that were extended to the imVision data
model for Port and Cable assets. They can also be seen in the
Entity Relationship Diagram (ERD) in Figure 13, which
defines these attributes under the two corresponding tables.

As part of a comprehensive architectural effort, a set of
data model updates were designed and recommended. Figure
13 highlights a sample output of such data model refactoring
– more precisely, the models corresponding to the main asset
connectivity elements (ports and cables).

TABLE IV. QUAREO-SPECIFIC CABLE AND PORT ATTRIBUTES

Entity Required Attributes

Port Detail

Colo r
In s e r t i on Cou n t
In d i ca to r S t a t e
Is Man ag ed

Cable Detail

Colo r
Hard wa re R evi s i on
Se r i a l Nu mb er
Cou n t r y of Man u fac tu re
Da t e of Man u fac tu r e
Man u fac tu rer Pa r t Id
Ma ter i a l Track in g Nu mb er

While the data models capture all relevant attributes of

the hardware assets that they represent, other essential data
layer design requirements and concerns were addressed as
part of this effort. To provide a few pointers as to what this
effort entailed, the list below highlights some of the data
layer refactoring tasks that were undertaken:

✓ Appropriate entity relationship modeling (realized
by adding the missing foreign keys)

✓ Data integrity and referential integrity (also done via
foreign keys and unique constraints)

✓ Careful data type selection/updates

✓ Lookup data specification for modeling essential
domain attributes

✓ Normalization and vertical partitioning of tables to
reduce data redundancy among entities that share
similar attributes

✓ Refactoring of functions and procedures; moving
stored procedure implementations to table-valued
functions where no data mutation was involved

✓ Proper schema partitioning, associations and object
renaming, while creating synonyms for these objects
in order to reduce the impact on the application layer

✓ Data cleansing required to remove existing invalid
data or data that would not conform to the added
constraints.

2) Representation and Identification of Telecom Assets
Both AIM systems use integer-valued surrogate keys to

identify the provisioned entities but – in order to migrate data
from one system to the other, or to continuously exchange
data between the two – it is imperative to identify attributes
that uniquely identify concrete hardware asset types.
Fortunately, the ISO/IEC standards document has accounted
for such natural keys based on serial numbers, manufacturer
details, and component identifiers. Since these attributes
have been included into the various models (data, domain,
resource), an integration solution would no longer require a
resolution framework where cross-domain asset identifiers
would be stored and looked up. Serial numbers and perhaps
manufacturing data will represent the business domain
identifiers that integration adapters on both sides of the
integration boundary would use when adding, updating and
deleting asset data from the corresponding repositories.

However, model translators/adapters are required on both
sides since the asset representations are quite different, but
not irreconcilable – given the semantics imposed by the
Standards specification and the extent to which they are
implemented by each system participating in the integration.

To alleviate the constant need for updating these adapter
components whenever new hardware must be handled by the
AIM systems, extensible models and intelligent mapping
frameworks could be created; ideally, these would be
encapsulated under distributable and reusable model brokers
that are capable of bi-directional data translation and
consistent asset type resolution.

Schematically, this brokered adaptive integration layer
would look similar to the one depicted in Figure 14. The
AIM systems will not depend directly on each other’s asset
representation but rather delegate the translation task to the
adapter component.

Given that only two systems are involved in the message
exchange, there is no need for designing a common model to
normalize the two representations of assets. However, to
facilitate future integration needs, it would be beneficial to
designate the more comprehensive model as the canonical
representation of telecom assets, expose it to all integrating
systems, and use it as the ubiquitous integration language
across the enterprise, analogous to the approach described in
[19], following a pattern quite similar to the Normalizer
messaging EIP (Enterprise Integration Pattern) [14].

37

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

AiType (sm)
ID

Name

NumberOfChannels

Speed

PortType

Label

Cable (sm)
ID

Name

Type

Description

PartNumber

CableDetail (sm)
CableId

ColorId

HardwareRevision

SerialNumber

CountryOfManufacture

DateOfManufacture

ManufacturerPlantId

MaterialTrackingNumber

CableType (sm)
ID

Name

Description

FromPortType

FromPortCount

ToPortType

ToPortCount

CableConnectorShape

FiberTranspositionFlag

PolarityMethodId

CategoryId

RatingId

CatalogNumber

ManufacturerId

Length

Diameter

PolarityMethod (sm)
Id

Name

Description

IsTransposition

Port (sm)
ID

Name

Type

ParentId

Description

PolarityLabel

IndexLabel

OtherLabel

IsFrontPort

PortDetail (sm)
PortId

ColorId

InsertionCount

IndicatorState

IsManaged

AiType

AiTypeUpdatedBy

AiTypeLastUpdatedDate

PortType (sm)
ID

Name

Description

NumberOfFibers

Figure 13. The Entity Relationship Diagram (ERD) Including the Refactored Connectivity Elements

cmp Integration Component Model

AIM System #2 (Quareo)AIM System #1 (imVision)

«RESTful Service»
imVision AIM API

«Model»
imVision Model

«Model»
Quareo Model

Model Adapter

«RESTful Service»
Quareo AIM API

Translates one model into
the other, both ways.

«use»

«includes»

«use»

«includes»

Figure 14. Enabling Data Exchange via a Model Adapter

VI. CONCLUSION

Modeling large varieties of telecommunication assets can
be a challenging task, even more so if other applications
intend to integrate with one or more systems that automate
the management of such complex telecommunication
enterprise infrastructure and their physical connectivity.

The benefits entailed by the model standardization of the
entities managed by such systems are significant and can be
summarized as follows:

✓ Standardized models facilitate a common understanding
of the AIM systems in general and of the elements that
such systems expose and provision;

✓ The common model is divorced from any proprietary
representation of telecommunication assets while still
allowing the inclusion of vendor-specific details;

✓ The ISO/IEC specifications define a true domain model
of the physical layer connectivity;

✓ The model is technology-agnostic;
✓ By omitting unnecessary detail, the model is highly

flexible, allowing both present and future network
hardware specification in a unified fashion;

✓ The ISO/IEC standardization enables and ensures a
systematic, consistent, and unified modeling of AIM
systems;

✓ Functional features of AIM systems, such as
connectivity provisioning and asset management, can
easily be described and modeled in terms of the
structural elements introduced by the Standards
document;

✓ Integrating with AIM systems is a considerably less
complex undertaking, given the standardized model that
systems can now use to communicate with each other.

38

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This paper took further steps to elaborate on these models
and the relationships between them via concrete design
artifacts developed using UML (Unified Modeling
Language). Inheritance, composition/aggregation, and
generic typing were used in designing a hierarchical resource
model shown to be extensible and fit for representing
telecommunication assets, connectivity features and
activities, premises, organizational elements, and system
notifications – as they relate to any AIM-centric domain.

Although the primary focus of the 18598/DIS draft
ISO/IEC Standards document is to address the representation
of network connectivity assets, the motivation behind this
specification is to facilitate custom integration solutions with
AIM systems. Given the challenging nature of software
systems integration in general, building AIM systems with
the right quality attributes that support such integration is
essential. Extensibility, scalability, rigorous and stable
interface and model design, and performance through
adequate technology adoption are important goals to
consider. For this reason, the present paper also introduced
the layered architecture adopted by CommScope’s imVision
API, targeting the management of telecommunications
infrastructure.

Emphasis was placed on the Standards-recommended
RESTful architectural style, while technology specifics were
succinctly described to show how they helped align the
system’s design and functionality with the AIM standards
requirements. Various design and implementation aspects
were elaborated along with a selection of key benefits, such
as dynamic resource composition, custom serialization to
support consistent handling of similar resources, efficient
POST request construction and network traffic, and a simple
URI scheme despite large varieties of specialized resources.

Delving into a few technology-specific facets, a brief
overview of a rule-based engine and supporting frameworks
designed for resource initialization and validation was
described. Interesting implementation details that highlight
aspects of the functional programming paradigm employed
by key components of CommScope’s imVision API were
also shared.

Considering the imVision and Quareo resource models,
the AIM API architecture, and exposed features of the
CommScope’s networking infrastructure provisioning
system, integration-related aspects were also addressed. Data
integration concerns were considered for the imVision
software system as they were tackled as part of the data layer
refactoring effort prompted by non-functional requirements
such as extensibility, robustness, and – last but not least –
organizational data integration needs.

A straightforward integration candidate solution between
CommScope’s imVision AIM API and Quareo API RESTful
services was presented – one based on model normalization
and point-to-point messaging. Both one-way/one-time and
two-way integration scenarios were discussed, concluding
with a brief debate regarding the need for a canonical model
to allow the AIM systems to efficiently communicate with
each other.

VII. REFERENCES

[1] M. Iridon, “Automated Infrastructure Management Systems.
A Resource Model and RESTful Service Design Proposal to
Support and Augment the Specifications of the ISO/IEC
18598/DIS Draft,” FASSI 2016 : The Second International
Conference on Fundamentals and Advances in Software
Systems Integration, ISBN: 978-1-61208-497-8, pp. 8-17,
Nice, France, July, 2016.

[2] Automated Infrastructure Management(AIM) Systems–
Requirements, Data Exchange and Applications, 18598/DIS
draft @ ISO/IEC.

[3] G. Block et. al., “Designing Evolvable Web APIs with
ASP.NET,” ISBN-13: 978-1449337711.

[4] J. Kurtz and B. Wortman, “ASP.NET Web API 2: Building a
REST Service from Start to Finish,” 2nd Edition, 2014,
ISBN-13: 978-1484201107.

[5] J. Webber, “REST in Practice: Hypermedia and Systems
Architecture,” 1st Edition, 2010, ISBN-13: 978-0596805821.

[6] E. Evans, “Domain-Driven Design: Tackling Complexity in
the Heart of Software,” 1st Edition, Prentice Hall, 2003,
ISBN-13: 978-0321125217.

[7] Microsoft, “Microsoft Application Architecture Guide
(Patterns and Practices),” Second Edition, Microsoft. ISBN-
13: 978-0735627109. [Online] Available from:
https://msdn.microsoft.com/en-us/library/ff650706.aspx
[retrieved: March 2016].

[8] M. Fowler, “Patterns of Enterprise Application Architecture,”
Addison-Wesley Professional, 2002.

[9] T. Erl, “Service-Oriented Architecture (SOA): Concepts,
Technology, and Design,” Prentice Hall, 2005, ISBN-13: 978-
0131858589.

[10] R. Daigneau, “Service Design Patterns: Fundamental Design
Solutions for SOAP/WSDL and RESTful Web Services,”
Addison-Wesley, 1st Edition, 2011, ISBN-13: 078-
5342544206.

[11] M. Fowler, “The Richardson Maturity Model”. [Online].
Available from http://martinfowler.com/articles/
richardsonMaturityModel.html [retrieved: March 2016].

[12] CommScope Enterprise Product Catalog. [Online] Available
from: http://www.commscope.com/Product-Catalog/Enterprise/
[retrieved March 2016].

[13] G. M. Hall, “Adaptive Code via C#: Agile coding with design
patterns and SOLID principles (Developer Reference),”
Microsoft Press, 1st Edition, 2014, ISBN-13: 978-
0735683204.

[14] G. Hohpe and B. Woolf, “Enterprise Integration Patterns;
Designing, Building, and Deploying Messaging Solutions,”
Addison-Wesley, 2012, ISBN-13: 978-0321200686.

[15] M. Seemann, “Dependency Injection in .NET,” Manning
Publications, 1st Edition, 2011, ISBN-13: 978-1935182504.

[16] T. Petricek and J. Skeet, “Real-World Functional
Programming: With Examples in F# and C#,” Manning
Publications; 1st edition, 2010, ISBN-13: 978-1933988924.

[17] CommScope Quareo Physical Layer Management System.
[Online] Available from: http://www.commscope.com/Docs/
Quareo-Physical-Layer-Management-System-BR-319828-
AE.pdf [retrieved February 2017].

[18] CommScope NG4access ODF Platform [Online] Available
from: http://www.commscope.com/Docs/NG4access_ODF_Platf
orm_Quareo_CO-319580-EN.pdf [retrieved February 2017]

[19] M. Iridon, “Enterprise Integration Modeling – A Practical
Enterprise Integration Solution Featuring an Incremental
Approach via Prototyping,” International Journal on
Advances in Software, vol. 9 no. 1&2, 2016, pp. 116-127.

39

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

