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Abstract—The rapid growth of optical imaging technologies in-
creased the access and collection of data, which boosts the demand
of data and knowledge discovery. This is a fast growing topic in
several industry and research areas. Nowadays, a large number
of images and signals must be analysed in order to gain and learn
proper knowledge. Detecting images with similar contents without
specifying an image, recently attracts the researches in image
processing domain. Motif discovery in image processing aims to
tackle the problem of deriving structures or detecting regularities
in image databases. Most of the motif discovery methods solve this
problem by converting images into one dimensional time series
in a pre-processing step and then applying a motif discovery
on these one dimensional time series for image motifs detection.
Nevertheless, this conversion might lead to information loss and
also the problem of inability to discover shifted and multi-scale
image motifs of different size. Contrary to other approaches,
here, a method is proposed to find image motifs of different size
in image data sets by employing images in original dimension
(2D) without converting them to one dimensional time series.
The proposed approach consists of three steps: Mapping or
transformation, feature extraction and measuring similarities.
First, images are inspected by the Complex Quad Tree Wavelet
Packet transform, which provides broad frequency analysis of an
image in various scales. Next, statistical features are extracted
from the wavelet coefficients. Finally, image motifs are detected
by measuring the similarity of the features applying various
similarity measures. Here, the performance of six similarity
measures are benchmarked in details. Moreover, the efficiency of
the proposed method is demonstrated on a data set with images
from diverse applications such as hand gesture, text recognition,
leaf and plant identification, etc. Additionally, the robustness of
this method is examined with the image data overlaying with
distortions such as noise and blur.

Keywords–Motif discovery; Image processing; Wavelet transfor-
mation.

I. INTRODUCTION

The accelerated growth of digital computation, telecom-
munication and imaging technologies results in a flood of
information and data. These data are obtained in various
forms such as text, graphics, pictures, videos or integrated
multimedia. Such data are valuable if efficient information can
be acquired from them. This issue is addressed by data mining
and machine learning tasks. These tasks can be categorised
into clustering, classification, anomaly detection and motif
discovery [1].

Information such as number of clusters or classes, pro-
totype patterns/images for each class or providing an image
query to find, is necessary for such tasks [2]. The problems
of clustering or classifying images as well as finding a query
image in an image database are fairly known problems, which

have been investigated during last decades [3]–[5]. The prob-
lem of deriving structures or detecting regularities in image
databases is rather new topic and investigated by researchers
[6]. This new topic is called motif discovery and aims to
detect frequently repeated unknown images in a database
without any prior information. The term motif has its roots
in genetics and DNA sequences. A sequence motif in a DNA
is a widespread amino-acid sequence pattern, which shows a
biological significance [7]. In time series data mining, the term
motif was first triggered by Patel et al. [8].

Motif discovery recently applied in image processing ap-
plications with various image databases. The aim of the image
motif discovery is also to detect similar images and shapes
within an image database without prior information. Such
images are called image motifs. Fig. 1 aims to enhance the
role of image motifs by given examples of some petroglyphs
that are gathered in the USA [9]. The study of such petroglyphs
is important for anthropologists, since these images show the
spread of cultures and people. Therefore, detecting similar
images that captured in different locations are in concerns
for anthropologists. As depicted in Fig. 1, the images (a)
and (c) captured in Capitol reef are similar to (b) and (d)
that are obtained in Nine Mile Canyon [10]. Consequently,
anthropologists are interested to discover such images (image
motif) in a petroglyph image data set [9].

(a) (c)

(b) (d)

Figure 1. Examples of petroglyphs from Capitol reef and Nine Mile Canyon
in Utah, USA [10]. Images (a) and (c) are from Capitol reef, and images (b)

and (d) are captured in Nine Mile Canyon.

Detecting motifs add valuable insights about the problem
under investigation to the user. Huge research effort has been
performed on this topic [6], [11]. However, most of the image
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motif discovery methods detect motifs by converting images
into one-dimensional time series and then attempt to find
motifs in such data by operating a motif discovery algorithm.
This converting might lead to information loss and also the
problem of inability to detect shifted and multi-scale motifs of
different size [9]. Correspondingly, a method is proposed to
find shifted and multi-scale motifs of different size in image
data sets by applying the images in original dimension without
converting them to one dimensional time series [1], [9].

This contribution is the extend version of the article pub-
lished in [1]. Detailed information about the approach and
comprehensive results are provided in this work. The proposed
approach is benchmarked also with the distorted test cases in
order to obtain the robustness of this method. This paper is
structured as follows: the related work in motif discovery for
image data type is described in Section II. Section III explains
the proposed approach. The evaluation and the obtained results
are illustrated in Section IV. At the end, a conclusion and the
future work are indicated in Section V.

II. RELATED WORK

Over the past decades, image and shape analysis have
attracted several researchers and been a matter for discussion.
Huge amount of research has been performed in several image
processing tasks such as clustering, classification, query by
content, segmentation, etc. [4], [12]–[15]. Recently, a new
topic namely motif discovery in image and shape analysis is
added to this research area. Motif discovery has evoked the
interest in several researches, who aimed to link time series
data mining tasks and issues to the image and shape analysis
domain [6], [9], [16]. For instance, Barone et al. [17] studied
the problem of classifying ordered sequences of digital images.

The first approach in image motif discovery is proposed by
Xi et al. [9]. The authors detected image motifs in image data
sets by representing an image or a shape in a one dimensional
time series. This method extracts a time series from the contour
of an image. The main problem of such an approach is that
transforming a two dimensional data to a one dimensional
might lead to information loss. Moreover, the image should
be segmented in order to obtain the shapes in it.

The same procedure as in [9] is applied by Chi et al.
[18] in order to detect image motifs in face image data sets.
The term shapelet was introduced by Ye and Keogh [16].
Shapelets are a discriminative subsequence of the time series,
which is considered instead of analysing the whole time series.
Ye and Keogh [9] as well as Grabocka et al. [19] extended
the proposed approach in [9]. After transforming an image
to a one dimensional representation, shapelets are analysed to
detect motifs. The performance of these methods is promising,
but these approaches transform the data to a one dimensional
time series. Caballero and Aranda [20] proposed an effective
shape-based image retrieval system for leaf images. This
contour descriptor reduces the number of points for the shape
representation considerably.

Rakthanmanon and his colleagues [21] handled this prob-
lem by detecting motifs in images without representing them
into a one dimensional signal. They, first, segmented the
tested images using a sliding window of a fixed size, then
the similarity between these segments are measured by the
generalised Hough transform [22]. The fixed size of the sliding
window is one of the disadvantages of this method. Since,

a fixed size sliding window results in inability of detecting
motifs with various proportions. En et al. [23] followed a
similar approach, nevertheless they employed sliding windows
with varying sizes of 20, 40, 80, and 160 pixels.

In our first approach [24], motifs in an image data base are
discovered in their original dimension without converting them
to time series. Images are decomposed into several frequency
scales by the dual tree complex wavelet transform (DTCWT)
[25], next features are extracted from the wavelet coefficients
and finally motif images are found by measuring the similarity
of their features. However, further experiments showed that
the DTCWT is shift tolerance and not shift invariant [26]. For
this reason, in this work, an approach is proposed, which is
based on a shift-invariant feature extraction method for motif
discovery (SIMD), given in [26]. This method is applied as
core in our approach and explained in the following section.
Additionally, this contribution is an extended version of the
paper presented in [1] with comprehensive experiments.

III. PROPOSED APPROACH

The proposed motif discovery algorithm combines two
research areas: pattern recognition and motif discovery. Motif
discovery algorithms mainly consist of a representation and a
similarity measure step. In this contribution, feature extraction
step, which mostly applies in pattern recognition tasks, is
added to the procedure of the approach depicted in Fig. 2.

CQTWP SF SM 

Detected 
Motifs 

Motif Discovery 

Input 
Data 

Figure 2. The proposed approach; CQTWP is the Complex Quad Tree
Wavelet Packet; SF is the statistical features and SM represents similarity

measures.

First, images are transformed by the Complex Quad Tree
Wavelet Packet (CQTWP) into a broad frequency scales.
Wavelets have several properties such as: ability to analyse
data into different frequency scales, flexible time-frequency
resolution and prefect reconstruction. Wavelet transformations
proved their performance in signal and image processing ap-
plications [27]–[29]. In the second step, features are extracted
from the normalised wavelet coefficients. At last, motifs are
discovered by measuring the similarity between features using
various distance measures. Before explaining these steps in
details, some notations and useful definitions used in this paper
are described in the following.
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A. Definitions and Notations

Definition 1 (Image). A digital image Xm,n is represented in
a 2D discrete space as a m× n, m, n ∈ N matrix:

Xm,n =


x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n

...
...

. . .
...

xm,1 xm,2 · · · xm,n

 .

Images can vary in their size and the applications they are
captured from.

Definition 2 (Image Motif). An image motif in an image data
base is a pair of images (Xm,n,Yp,q), where m, p ∈ N are the
number of rows and n, q ∈ N are the number of columns, so
that distance(X,Y) is the smallest among all possible pairs
[9].

Function distance(X,Y) is a distance similarity measure.

Definition 3 (1st-Image Motifs). Given an image data base
D = Xi, i = 1, 2, ..., N, N ∈ N, the most significant image
motif in D is the image Xj that has the highest amount of
matches. This image motif is called the 1st-Image Motif.

Definition 4 (K-Image Motifs). The K-th most significant
image motif in D is the image Xk with the kth highest amount
of image matches.

B. Complex Quad Tree Wavelet Packet Transform

1) 1D-CQTWP: The CQTWP is proposed to overcome
the drawbacks of the DTCWT. It is an extended version of
the DTCWT [25] and it consists of two wavelet packet trees
(WPT) working parallel to each other. “WPT A” represents
the real part and “WPT B” provides the imaginary part of the
signal. A graphical representation of the “1D-WPT A” is given
in Fig. 3, where ↓ 2e and ↓ 2o depict the even and odd down-
sampling. The low and high-pass filters are denoted by sga
and sha, for s ∈ N. Parameter s represents the scale of the
decomposition. The wavelet coefficients are given by sci for
i ∈ [0, 4s].

1ga
1ha

x[n]

1ga
1ha

↓2e↓2o

↓2e↓2o

2C0
2C2

2C1
2C3

2C4
2C6

2C5
2C7

2C8
2C10

2C9
2C11

2C12
2C14

2C13
2C15

2ha
2ga

2ha
2ga

2ha
2ga

2ha
2ga

↓2e↓2o ↓2e↓2o ↓2e↓2o ↓2e↓2o↓2e↓2o↓2e↓2o ↓2e↓2o

↓2o ↓2e

Figure 3. First wavelet packet filter bank of a two scale CQTWP. The
second wavelet packet is obtained by replacing the filters 1ga and 1ha with
1gb and 1hb for the first scale and 2ga and 2ha with 2gb and 2hb for the

second scale.

The low and high-pass filters applied in CQTWP are
similar to the filters of DTCWT. The filters of the DTCWT
satisfy the conditions required for having an analytic and
complex wavelet transforms [25]. An analytic representation
of a signal is achieved if and only if the filters of the CQTWP
form a Hilbert pair [25], [26].

Definition 5. Wavelets ψa and ψb with the following property

Ψa(jω) =

{
−jΨb(jω), ω > 0,
jΨb(jω), ω < 0,

are called the Hilbert pair, where Ψ(jω) is the Fourier
transform of ψ(t).

Consequently, the response of each branch of the “WPT A”
and the corresponding branch of the “WPT B” forms a Hilbert
pair and therefore, the CQTWP is approximately analytic in
each sub band. Besides obtaining complex wavelet coefficients,
the analytic representation has advantages such as reduction of
aliasing.

To accomplish wavelets with Hilbert form, they must be
designed by the following theorem:

Theorem 1 (Half-sample delay [30]). Wavelets ψa and ψb

form a Hilbert pair, if the filters sga and sgb satisfy the
condition,

sGa(ejω) = sGb(e
jω)e−j

ω
2 . (1)

Eq. (1) can be presented in terms of the magnitude and phase
functions:

|sGa(ejω)| = |sGb(e
jω)|, ∠sGa(ejω) = ∠sGb(e

jω)− 1

2
ω,

(2)
which is the so-called “half-sample delay” condition between
two low-pass filters sga,

sgb.

Proof. Proof is represented by Selsnick in [30].
Based on the half-sample delay theorem, the scaling low-

pass filters must be offset from one another by a half sample.
This is the necessary and sufficient condition for two wavelets
to form a Hilbert transform pair, proved by Yu and Ozkara-
manli [31].

Definition 6 (q-shift filters [32]). Kingsbury’s solution for
design such suitable filters is called “q-shift”, which satisfies
the “half-sample delay” condition given in Theorem 1, where
the low-pass filters are set as

sga[n] = sgb[M − 1− n]. (3)

Here, M ∈ N+ is the even length of filter sgb, which is
supported on 0 ≤ n ≤M − 1.

In order to achieve the half-sample delay theorem, at each
scale the filters of WPT A translated by 2s must be fall
midway between the translated filters of WPT B. However, this
condition leads to have filters in the first scale that have one
sample delay difference. All the filters are real, orthonormal
and are obtained by the design given by Abdelnour [33] and
Kingsbury [32]. In the first scale, the filters have the even-
length of 10 [33] and in the scale greater than one, filters have
the even-length of 14 [32].

The wavelet and scaling functions of the CQTWP are
defined as:
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Definition 7. Let ψa,2J+1(t),ψa,2J+3(t), ψb,2J+1(t),
ψb,2J+3(t) and φa,2J(t),φa,2J+2(t), φb,2J(t), φb,2J+2(t) be
the wavelet and scaling functions of the CQTWP. The wavelet
and scaling functions in “WPT A”, ∀n ∈ N are given by

s+1ψa,2J+1(t) =
√

2

M∑
n=0

sha[n] sφa,2J(2t− n),

s+1ψa,2J+3(t) =
√

2

M∑
n=0

sha[n] sφa,2J+2(2t− n+ 1),

s+1φa,2J(t) =
√

2

M∑
n=0

sga[n] sφa,2J(2t− n),

s+1φa,2J+2(t) =
√

2

M∑
n=0

sga[n] sφa,2J+2(2t− n+ 1).

Parameter J = 2j where 0 ≤ j < 2s · (s − 1), and s ∈ N is
number of scales, and M ∈ N+ is the length of the filters.

For “WPT B” the wavelet and scaling functions are defined
in the same manner, but the high-pass filter sha and the low-
pass filter sga are replaced by shb and sgb respectively. All
filters are causal so sha,b[n] = 0 and sga,b[n] = 0 for n < 0.

The wavelet and scaling coefficients of the CQTWP for the
“WPT A” are defined in Def. 8.

Definition 8. Coefficients of the CQTWP
for the “WPT A” are given by sC[n] =
{ s+1C2J [n], s+1C2J+1[n], s+1C2J+2[n], s+1C2J+3[n]}
and obtained by

s+1C2J [n] =

M+Len−1∑
k=0

sga[k] sCj [2n− k],

s+1C2J+1[n] =

M+Len−1∑
k=0

sha[k] sCj [2n− k],

s+1C2J+2[n] =

M+Len−1∑
k=0

sga[k] sCj [2n+ 1− k],

s+1C2J+3[n] =

M+Len−1∑
k=0

sha[k] sCj [2n+ 1− k].

(4)

where Len = length(sCj), J = 2j, and 0 ≤ j < 2s · (s− 1).
Similarly, the wavelet and scaling coefficients of the “WPT B”
are obtained by replacing the high and low-pass filters sha and
sga to shb and sgb. These coefficients are depicted by sD[n] =
{ s+1D2J [n], s+1D2J+1[n], s+1D2J+2[n], s+1D2J+3[n]}.

Beside comprehensive frequency analysis, the CQTWP has
another advantage of being shift-invariant [26].

Definition 9 (shift-invariant). The shift-invariant is defined by
studying the wavelet coefficients of every scale s ∈ N from both
the original and translated signal. This means if x[n] and x[n−
S] are respectively the original and translated signal shifted
by S ∈ Z, then the corresponding wavelet coefficients are
given by sC[n] and sC[n, S]. Let the wavelet transformation
be presented by x[n] 7→ sC[n], then this transformation must
satisfy x[n− S] 7→ sC[n, S], where sC[n, S] = sC[n− S].

The shift-invariant property is obtained by decomposing
a non-shifted and a shifted version of the input signal in
each scale. Thus, the wavelet and scaling functions of the
CQTWP select both even and odd samples of the signal in
order to detect the occurred shift. The results of this property
is identical wavelet coefficients for both the original signal and
its shifted versions. The shift invariance property is proved by
the following corollary:

Corollary 2. Assume x[n] is a discrete signal and let Se/o ∈ Z
be shifts occurred on signal x[n], where Se/o can be even
or odd. The CQTWP wavelet coefficients of x[n − Se] and
x[n−So] from “WPT A” in scales s, are depicted by sC ′e[n, Se]
and sC ′o[n, So], given by:

sC ′e/o[n, Se/o] = { s+1C ′2J [n, Se/o], s+1C ′2J+1[n, Se/o],
s+1C ′2J+2[n, Se/o],s+1 C ′2J+3[n, Se/o]},

and for “WPT B” are provided by
sD′e/o[n, Se/o] = { s+1D′2J [n, Se/o], s+1D′2J+1[n, Se/o],

s+1D′2J+2[n, Se/o],s+1D′2J+3[n, Se/o]},
Then, the following equations hold

∀ x[n− Se],

{
sC[n] = sC ′e[n− bSe2s c],
sD[n] = sD′e[n− bSe2s c].

∀ x[n− So],

{
sC[n] = sC ′o[n− bSo2s c],
sD[n] = sD′o[n− bSe2s c].

(5)

Proof. Proof is given in Appendix A.
For simplicity, the odd and even wavelet and scaling func-

tions of “WPT A” are denoted by ψa,e(t) = ψa,2J+1(t) and
ψa,o = ψa,2J+3(t); and φa,e = φa,2J(t), φa,o = φa,2J+2(t).
The functions of “WPT B” are represented in the same manner.

2) 2D-CQTWP: It is able to expand the CQTWP to a
higher dimension. The 2D-CQTWP analyses an image into
various frequency bands. The structure of two scales decom-
position of the “2D-WPT A” is depicted in Fig. 4(b), where
both low and high-pass filtered sub bands decomposed further.
This property results in a more flexible and broad frequency
decomposition of the images.

The first scale of the 2D-CQTWP is similar to the 2D-
discrete wavelet transform [34], where an image is decom-
posed into four sub bands namely LL1, LH1, HL1 and HH1,
cf., Fig. 4(a). However, in the first scale, the 2D-CQTWP has
two LL, two LH, two HL and two HH sub bands obtained
from both “2D-WPT A” and “2D-WPT B”.

The product of the low-pass function φa() along the first
dimension (row) and the low-pass function φa() along the
second dimension (column) results in LL1. LH1 is the product
of the low-pass function φa() along the first dimension and the
high-pass function ψa() along the second dimension. Similarly,
the HL1 and HH1 are labelled, and the index 1 determines the
decomposed scale. The same procedure is performed on each
sub band in order to obtain the second scale coefficients.

The wavelet and scaling functions of the 2D-CQTWP are
defined as:

Definition 10. The “2D-WPT A”of the 2D-CQTWP is char-
acterised by twelve wavelets and four scaling functions.
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Figure 4. Structure of two scales decomposition of the “2D-WPT A”: (a) the
first scale decomposition, (b) the second scale decomposition.

The 2D-wavelet ψ(x, y) = ψ(x)ψ(y) is associated with
the row-column implementation of the wavelet transform. The
wavelet functions for the wavelet packet tree A are given by

ψa,1(x, y) = φa,e(x)ψa,e(y), ψa,4(x, y) = φa,e(x)ψa,o(y),

ψa,2(x, y) = ψa,e(x)φa,e(y), ψa,5(x, y) = ψa,e(x)φa,o(y),

ψa,3(x, y) = ψa,e(x)ψa,e(y), ψa,6(x, y) = ψa,e(x)ψa,o(y).

The rest of the wavelet functions are obtained similarly. The
scaling functions are defined as

φa,1(x, y) = φa,e(x)φa,e(y), φa,2(x, y) = φa,e(x)φa,o(y),

φa,3(x, y) = φa,o(x)φa,e(y), φa,4(x, y) = φa,o(x)φa,o(y).

The wavelet and scaling functions of the “2D-WPT B” are
given accordingly.

The wavelet and scaling coefficients of the 2D-CQTWP for
the “2D-WPT A” are given by

Definition 11. Coefficients of the 2D-CQTWP
for the “2D-WPT A” are given by sC[x, y] =
{ s+1C2J [x, y], s+1C2J+1[x, y], ..., s+1C2J+11[x, y]}
and obtained by

s+1C2J [x, y] = sCj [x, y] ∗ sga[2x] sga[2y],
s+1C2J+1[x, y] = sCj [x, y] ∗ sga[2x+ 1] sga[2y],

...
s+1C2J+5[x, y] = sCj [x, y] ∗ sga[2x] sha[2y],
s+1C2J+6[x, y] = sCj [x, y] ∗ sga[2x] sha[2y + 1],

...
s+1C2J+14[x, y] = sCj [x, y] ∗ sha[2x] sha[2y],
s+1C2J+15[x, y] = sCj [x, y] ∗ sga[2x+ 1] sga[2y + 1].

Parameter s ∈ N is the number of scales and pa-
rameter J = 8j is the index of the coefficient nodes,
whereby for s = 1, j = 0 and for s > 1, 0 ≤

j < 4s. The wavelet coefficients for the “2D-WPT
B” are computed similarly and denoted by sD[x, y] =
{ s+1D2J [x, y], s+1D2J+1[x, y], ..., s+1D2J+15[x, y]}.

The 2D-CQTWP has the same properties of the one di-
mensional CQTWP.

3) Selection of the Best Nodes: Decomposing the data
in each scale leads to the number of nodes which grows
exponentially in each wavelet packet tree. Therefore, selecting
the nodes with the most information content reduces the
amount of redundant and unnecessary information. Every node
of the wavelet packet tree A and B has a potential to be chosen
as a proper node, which provides meaningful information for
feature extraction. In order to select the best nodes, a method
is applied, which is based on the algorithm introduced in [35]
for the discrete wavelet packet and its concept is established
by an additive cost function.

Definition 12 (Cost function [35]). A cost function CF that
maps the sequences {xi}Ni=1 to real numbers considers as
additive, if CF ({xi}) =

∑N
i=1 g(xi) for some g : R → R

and for all {xi}Ni=1.

An entropy-based cost function is considered here.

Definition 13 (Entropy-based cost function). The entropy-
based cost function for the wavelet packet “WPT A” is denoted
by WH(sC[n]) and obtained by

WH(sC[n]) = −
N∑

n=1

Ec[n] log(Ec[n]),

where (sC[n]) is the wavelet coefficients defined in Def. 8, and
the normalized energy is given by Ec[n] = (sC[n])2∑

n(
sC[n])2 . The

entropy-based cost function for the wavelet packet “WPT B”
is obtained by replacing sC[n] with sD[n].

The normalized energy of the wavelet coefficients applied
in the above definition allows to adjust and compare coeffi-
cients from different scales. The algorithm for detection the
best node, Algorithm 1, has the following steps:

Algorithm 1 Best Nodes Selection
Input: Entropy-based cost function WH(sC[n])
Output: Best nodes

1: for s = s− 1 : 1 do
2: for j = 0 : 2s do
3: J = 2j
4: if WH(sCj [n]) < WH(s+1C2J [n]) + ... +
WH(s+1C2J+7[n]) then

5: sBNj = (sCj [n]) is selected as best node.
6: else
7: WH(sCj [n]) = WH(s+1C2J [n]) + ... +
WH(s+1C2J+7[n])

8: end if
9: end for

10: end for

The best nodes selection algorithm computes the entropy-
based cost function for each coefficients node upwards from
the scale s to the first scale. The same approach applies for
the 2D-CQTWP transform.
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C. Feature Extraction
Feature extraction plays an important role in pattern recog-

nition applications, and it helps to reduce the size of the
data. Since, features present the special characters of the
data, it is important that they are detectable under changes
in proportion, location or even under noise circumstances. A
proper feature extraction method must be able to generalise
over differences within a class (intra-class) and determine the
variations between various classes (inter-class).

In the second step, from wavelet coefficients features must
be extracted. But before extracting features, it is necessary
to normalise the coefficients of each scale. The normalisation
is performed because the proposed method is able to analyse
images of various size, therefore the wavelet coefficients have
also different size. Thus, normalisation allows to rescale all
the coefficients in order to compare them. The normalised
histogram of the wavelet coefficients is denoted by H(p) and
is given by

H(p) =
1

v · u
· h(p),

where u, v ∈ N determine the size of the matrix coefficients
and parameter p is number of the histogram bins. The rate in
each bin is presented by h(p).

The first four statistical moments [36], namely, mean value,
variance, skewness and kurtosis are extracted from the wavelet
coefficients in both wavelet packet trees. As 2D-CQTWP is
shift-invariant, then these features have identical values even
in the case of shift occurrence in the data.

Additionally, the energy of the wavelet coefficients is con-
sidered as another feature. Since the CQTWP is shift-invariant,
the energy of the wavelet coefficients and their shifted ones
are similar. Moreover, according to the Parseval’s theorem the
energy of the signal or image is preserved in the coefficients
and as described in Section III-B1, the scaling and wavelet
functions of the CQTWP are orthonormal, which satisfy the
Parseval’s theorem.

D. Similarity Measures
In order to detect image motifs, the similarity between their

features must be measured. In general, similarity measures can
be divided into four groups: shape-based, edit-based, model-
based and feature-based methods [6].

Shape-based distance similarity measures compare the total
shape of the signals or images. Members of the Minkowski
distance family [37], and Dynamic Time Warping (DTW) [37]
belong to this group of measures. Here, the two members
of the Minkowski distance or Lp-distance namely, Euclidean
distance (ED) and Canberra distance (CD) are applied. Both
of these measures have linear computational time complexity
O(n), and are metric. The Euclidean distance is obtained by
setting p = 2 in Lp-distance. This measure is also known as
L2-distance. Besides the advantages of the Euclidean distance,
results of this similarity measure are not promising, when
performing directly on the data, in the case of outliers. The
Canberra distance is actually a weighted version of Manhattan
distance or L1-distance, and is useful in the case of ranking
lists or results. DTW matches various sections of a signal by
warping of the time axis, or finding the proper alignment.
This similarity measure is more flexible than Euclidean or
Canberra distance although its time-complexity is O(n2).

Apart from its quadratic computational time complexity, still
DTW is one of the most popular approaches for measuring
similarity/dissimilarity.

Edit-based similarity measures compare two signals ac-
cording to the minimum number of operations needed to trans-
form one signal or feature vector into another one. Such oper-
ations are insertion, deletion, and substitution. These methods
are also known under Levebshtein distances [38]. Examples
of these similarity measures are Edit Distance [38], and the
Longest Common SubSequence(LCSS) [39]. The Edit distance
method is usually applied on the string data sets. This can be
seen as one disadvantage for this method. If s1 =‘Hello’ and
s2 =‘Have’ are two strings, then the Editdistance(s1, s2) = 4.
Since 4 operations must be done: replace(e,a), replace(l,v),
replace(l,e) and delete(o).

LCSS aims to detect the characteristic segment between
two time series by looping over all possible Edit distances.

Definition 14 (Longest Common SubSequence). The LCSS
of two time series x[n] = (x1, x2, ..., xN )T and y[n] =
(y1, y2, ..., yM )T of lengths N,M ∈ N is denoted by
LCSS(x, y) and computed by [39]

LCSS =


0 if N = 0 or M = 0,

LCSS(rest(x), rest(y)) + 1 if dist(x1, y1) ≤ ε,

max(LCSS(rest(x), y), LCSS(x, rest(y))) else,

where the threshold 0 < ε < 1 should be defined in advance,
in order to show if two elements match. The dist() function
is defined by dist(x1, y1) = |x1 − y1| and rest(x) defines the
remaining sequence of x.

The main problem of the LCSS is being sensitive to noise.
Similar to the Euclidean and Canberra distance, the time-
complexity of the Edit distance is O(n). LCSS for n ∈ N
number of time series or sequences performs in O(2n).

Typically model-based methods use prior knowledge about
the model that generated the data sets. These methods compute
the similarity between data sets by first modelling one data set
and then examine the likelihood that other data sets are also
generated by the same model. Methods such as Hidden Markov
Models (HMM) [40] and Autoregressive Moving Average
model (ARMA) [41] belong to this group. Since these methods
need prior knowledge about the data, they are not applied in
this work.

Feature-based methods measure the similarity between
different data sets based on the obtained sets of features. In
these methods, first features are derived from the data and then
distance measures are applied to capture patterns. Likelihood
ratio [42] is a measure belongs to the feature-based methods.

Definition 15 (Likelihood ratio LR). Given the two time
series x[n] = (x1, x2, ..., xN )T and y[n] = (y1, y2, ..., yN )T

with periodograms ai and bi respectively, the likelihood ratio
between them is determined by [42]

LR(X(ω), Y (ω)) = 4

k∑
i=1

{2 log(ai + bi)− log ai − log bi},

where X(ω) and Y (ω) are the DFT of the time series x[n]
and y[n]. Periodogram ai is obtained by ai = p2i + q2i , where
(pi, qi) are Fourier coefficients of the time series x[n].
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The class of shape-based similarity measures usually is
considered as another candidate for feature-based similarity
measures. The edit-based measures can be also utilized as
feature-based similarity measures. Since, feature extraction
belongs to the process of our approach, the performance of
feature-based similarity measures are tested in this work.

IV. EXPERIMENTS AND RESULTS

In this section, the results of the proposed method are
described. All the tests are executed on Windows 10 with a
AMD Ryzen 5 1600 core processor and 16GB RAM. The
codes are performed by MATLAB R2017a [43].

A test case image data base with different images is consid-
ered, which is sent as input data to the proposed approach. The
experiments followed the procedure given in Fig. 2. To evaluate
the performance of the proposed approach, different validation
principles are performed, given in Section IV-A. After that,
the captured results of image motif discovery are presented
in Section IV-C. The experiments are executed in two parts:
the first part is performed on the test case images without
any added distortions. In the second part of experiments, two
types of noise are added to the data. Finally, the test images
are distorted by effects such as blurring.

A. Validation Principles
As described in Section III-C, different features are ex-

tracted from the normalised histogram of the wavelet coeffi-
cients. The quality of the selected features is measured by the
linear discriminant analysis (LDA) algorithm [2], [44].

There are various validation methods to analyse the perfor-
mance of a method. Here, the outcome of the investigations
is benchmarked by the quality measures explained in the
following section.

1) Linear Discriminant Analysis: Linear Discriminant
Analysis (LDA) is a supervised method, which projects the
features from the samples of the two or more classes onto a
lower dimensional space with good class separability in order
to avoid over-fitting and computational costs reduction. This
method projects a data set into a lower dimensional space with
good class separability.

Given samples from two motif groups, C1 and C2, LDA’s
aim is to find the direction W = (w1, w2, ..., wN ) such that
when the data are projected onto W , the motif examples of
each group are as perfectly separated as possible:

Fprj = WTF,

where F = (f1, f2, ..., fN ) is the vector of the objects and
Fprj is a scalar that samples in F are projected onto.

To be able to obtain a good projection vector, a measure
for separation between the projections must be defined. The
arithmetic mean value of the vector F and its projected one
Fprj are given by [2]

µ =
1

N

N∑
i=1

fi, µ̃ =
1

N

N∑
i=1

WT fi.

One possibility is to consider the distance between the pro-
jected means of each motif group, but this option is not
a proper measure since it does not consider the standard
deviation within each motif group.

Fisher proposed a solution to maximise a function that
represents the difference between the means, normalised by
a measure of the within-class (group or cluster) scatter. For
each motif group, the scatter is defined as [2]

σ̃i =
∑

Fprj∈Ci

(Fprj − µ̃i)
2,

where parameter i ∈ N is the number of motif groups (here
i = 2). The Fisher linear discriminant is determined by [2]

J(W ) =
|µ̃1 − µ̃2|2

σ̃2
1 + σ̃2

2

.

Thus, LDA searches for a projection where the motifs belong-
ing to the same group are very close to each other, and the
motifs of various groups are as farther apart as possible [2].
Therefore, to estimate the efficiency of the extracted features,
the classification error by LDA is considered here. This error
is denoted by e where 0 ≤ e ≤ 1. The less the error, the
better is merit of the features. If the data can be separated
linearly and correctly, the error will be 0, and if the whole
data cannot be classified linearly and correctly, then the error
has its maximum amount of 1.

2) Quality Measures: An image motif which matches all
the images in the target class and no other images out of
that class, is considered as a perfect motif. To qualify a motif
matching an image, four possibilities of the confusion matrix
are available; namely, true positive rate (TP), false negative
rate (FN), true negative rate (TN), and false positive rate
(FP). Parameter (TP) represents a positive example that is also
predicted positive. A positive example with a false prediction
shows by (FP). (TN) depicts a negative example when the
prediction is also negative. Finally, (FN) is a result of having
a positive prediction for a negative example [2].

The results of the proposed algorithm are evaluated by the
following quality measures [2]: Correct motif discovery rate
CR, Sensitivity Sn, Precision Pr and F-Measure F −M .

Definition 16 (Correct motif discovery rate). This rate ex-
presses the performance of the algorithm. It is given by

CR =
n+

N
,

where N ∈ N is number of all motifs and n+ is number of
correctly detected motifs.

Definition 17 (Sensitivity). Sensitivity measures the capacity
of images of the target class correctly matched by the motif.
This measure is also denoted by recall.

Sn =
TP

TP + FN
,

where Sn ∈ [0, 1] and the optimal case is Sn = 1.

Definition 18 (Precision). This measure provides the fraction
of images of the target class that are matched by the motif and
the images that are not correctly matched by the motif.

Pr =
TP

TP + FP
,
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where Pr ∈ [0, 1]. In other words, Pr relates the number of
correct detected motifs to all positive determined motifs with
the optimal case of Pr = 1.

Definition 19 (F-Measure). F-Measure considers both preci-
sion and sensitivity and is determined by

F −M = 2 · ( Pr · Sn
Pr + Sn

).

The best value for F-Measure is 1 and the worst is 0.

B. Test Case
The test image data base consists of images from diverse

applications and domains like hand gesture, leaf identification
[45], [46], and text and object recognition. Fig. 5 represents
some images of four groups. All the images have various size
and scale, to analyse the performance of the proposed method.
Since, both images of fixed and variable size can be analysed
in this work.

(a) (b) (c) (d)

Figure 5. Data set of different images captured from various applications.

Top inserted image motifs or the most occurred images are
the pictures of hands and leaves, which are depicted in Fig. 6.
In order to demonstrate the shift-invariant property of the 2D-
CQTWP in feature space, images such as given in Fig. 6 (a-d)
are considered. These images are the shifted version of the
image (a), and image (e) is the rotated version of image (a).
Images (f-j) are different leaf types with various size and shape.
The number of test images is increased from 280 to 2202
images. From these figures, 400 images are the inserted motif
images.

C. Results and Evaluation
The proposed method starts with a pre-processing step,

where all the images are converted in grey-scale, since the
colour information is not required.

Next, all the images are sent to the main part of the method
namely to the 2D-CQTWP transform. As explained, the 2D-
CQTWP is able to decompose the images into various signals
(up to s = log

(m×n)
2 ). In this work, the wavelet coefficients

of the second scale are selected, since the amount of noise is
usually reduced in the second scale for the noisy data. The
best nodes with the highest information content are selected
from these scales, according to the algorithm 1.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Images of hands and leaves. Images (b-d) are the shifted version
of image (a); Image (e) is the rotated version of image (a). Images (f-j) are

various sorts of leaves.

As the test case consists of images of various size, the
wavelet coefficients have also different size. Therefore, the
normalised histograms of the selected wavelet coefficients
are calculated. Fig. 7 is the graphical representation of the
normalised histogram of the HL sub band coefficients of “2D-
WPT A” from the images depicted in Fig. 5.

0 100

0 100(c)

0 100 0 100

0 100(a) 0 100(b) 0 100(d)

0 100

Figure 7. Normalised histogram of the HL sub band coefficients, obtained
from the corresponding images from Fig. 5 (a-d).

According to Fig. 7, the histograms of wavelet coefficients
from the two depicted images in each group (a), (b), (c) and
(d) are similar to each other but different to the histograms of
other groups. This helps to determine the variations between
various motif classes (inter-class).

In order to represent the shift-invariant property of the 2D-
CQTWP, the hand images in upper subfigures of Fig. 8 are
considered. The position of the hand is shifted in these images.
Based on the 2D-CQTWP transform the wavelet coefficients
and therefore, the normalised histograms of these images
must be identical to each other. As illustrated, the normalised
histograms are all identical to each other, which shows the
shift-invariant property of the 2D-CQTWP. The normalised
histograms depicted in Fig. 8 are obtained from the HL sub
band coefficients of the hand images in Fig. 6 (a)-(d).

After determining the normalised histograms from the
wavelet coefficients, the five stated features are extracted from
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Figure 8. (a) a hand pattern; (b) shifted version of image in (a); (c) and (d)
represent the normalised histograms of the HL sub band coefficients from

images (a) and (b).

them. The efficiency of these features are investigated by
the linear discriminant analysis (LDA) algorithm [2], [44].
The experiments show that for most of the tested features
the minimum error is 0 ≤ e ≤ 0.01. Furthermore, the
distance between feature clusters is as great as possible, which
facilitates the grouping.

The result of the LDA projection of the two extracted
features (skewness and variance) from the image motifs in Fig.
6 is given in Fig. 9. As demonstrated, the distance between
the two groups is large enough in order to separate them
correctly. Moreover, the distance between features belonging
to the same image motif group (represented on the projection
line) is minimised.

The features of the first four hand images are as close as
possible to each other and their projection on the projection
line is at the same position. This also depicts a graphical rep-
resentation of the shift-invariant property of the 2D-CQTWP
transform. These images are depicted by the circle red marker.
Nevertheless, the projection of the features extracted from the
rotated image (illustrated by the square red marker) is not at
the same position of other hand images. This illustrates that the
2D-CQTWP is nearly rotation invariant, but still we are able
to detect this image motif and separate it from other image
motifs.

Another example is presented in Fig. 10, where similar to
the Fig. 9 the features (energy and kurtosis) of the first four
hand images are as close as possible to each other and their
projection on the projection line is at the same position. On
the contrary to Fig. 9, in Fig. 10 the projection of the features
extracted from the rotated image (illustrated by the square red
marker) is closer to the position of other hand images.

In the last step, the similarity between feature values is
measured by the Euclidean, Canberra and Edit distance, and
also by the Dynamic Time Warping, the Longest Common
SubSequence measures and the Likelihood ratio.

The results of these measures the are given Table I. The
best performance is obtained by the Canberra distance and
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Variance
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Shifted hand motif
Rotated hand motif
Leaf motif

Figure 9. LDA projection of the two features from some of the hand and leaf
image motifs; the distance between features within an image motif group is
as minimum as possible and the distance between features of different image

motif groups is large enough. Red circle markers represent the shifted
images of the hand where the red square marker depicts the rotated image of

the hand. Blue circle markers demonstrate the leaves images.
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Figure 10. LDA projection of the kurtosis and energy features from some of
the hand and leaf image motifs; the images of both groups can be easily
separated. Red circle and square markers represent the shifted and rotated

image of the hand. Blue circle markers demonstrate the leaves images.

the LCSS provided the inadequate results (under 0.5). The
LR measure is applied only on the wavelet coefficients of the
images with the fixed size, since this measure is unable to
compare images of various size and also the periodogram of
the extracted features does not provide any useful information.

From 400 image motifs, Euclidean distance and DTW are
able to detect respectively 327 and 322 motif images. The Edit
distance and LCSS distinguished 244 and 139 motif images.
Number of 154 image motifs are identified by the LR measure.
It should be noticed that for the LR measure only 250 inserted
motifs are tested, as these images have the same size. The
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TABLE I. Results of detected motifs considering the best selected wavelet
nodes, CR: Correct motif discovery rate, F-M: F-Measure, Sn: Sensitivity,

Pr: Precision; ED: Euclidean distance, DTW: Dynamic Time Warping, CD:
Canberra distance, Edit: Edit distance, LCSS: Longest common

subsequence, and LR: Likelihood ratio.

Similarity Measure CR Sn Pr F-M

ED 0.812 0.812 0.820 0.816
DTW 0.807 0.807 0.794 0.801
CD 0.927 0.927 0.913 0.920
Edit 0.617 0.617 0.601 0.609
LCSS 0.344 0.344 0.339 0.341
LR 0.625 0.625 0.615 0.627

maximum amount of 370 image motifs is detected by the CD
similarity measure.

As mentioned, the most repeated image motif is the hand
images. All the tested similarity measures are able to detect
this image motif as the 1st-Image motif. The highest amount
F-Measure is obtained by the Canberra and the Euclidean
distance measures, which confirms the accuracy of these
measures.

In the experiments given in the last contribution [1], the
best motif discovery rate was achieved by the Euclidean
distance (correct motif discovery = 0.861), and the Canberra
and DTW measures performed in the same manner. Here, by
increasing the size of the data set the performance of the
Canberra distance improves since this measure involves some
standardisation across the two observations being compared
rather than simply adding the distance differences. The DTW
achieves the lower results than the Euclidean distance by
increasing the size of the data. This issue is also mentioned in
[47], where the authors showed that by increasing the size
of the data, the Euclidean distance outperforms the DTW
measure. Moreover, by selecting the nodes with the best infor-
mation content the performance of these similarity measures
is increased.

In order to test the robustness of the proposed method, the
same experiments are performed by adding noise to the test
images. The test case is overlaid with two different types of
noise namely Gaussian and Salt & Pepper [48], cf., Fig. 11.
The Gaussian noise is the most occurring noise in images. It
has the same discrete probability density function as the normal
distribution.

p[X] =
1

σ
√

2π
e

−(X−µ)
2σ2 ,

where X(m,n) is the original image (grey-scaled) and µ and
σ are the mean value and the standard deviation. Thus, the
values of the noise are Gaussian-distributed.

The Salt & Pepper noise does not corrupt the whole image,
instead some pixel values of the image are changed. The
damaged image by Salt & Pepper looks like that several black
and white dots scattered on the image. The Salt & Pepper noise
can be simply modelled by

p[X = XN ] = 1− α,
p[XN = max] = α/2,

p[XN = min] = α/2,

where X(m,n) is the original image and XN (m,n) is the
image altered by the Salt & Pepper noise. The min and max
are the minimum and maximum image values (for 8-bit images
min = 0 and max = 255), and 0 ≤ α ≤ 1 is the probability
that a pixel is corrupted. By the discrete probability density
equals to 1−α, the pixels stay unchanged and with probability
α/2, the pixels are changed to the largest or smallest values
[48]. The added Gaussian and Salt & Pepper noise to the
images are respectively 20dB and 13dB.

The performance of the proposed motif discovery algorithm
under the influence of noise and applying the above similarity
measures is given in Tables II-III.

TABLE II. Detected motifs from test images overlaid with the Gaussian
noise, CR: Correct motif discovery rate, F-M: F-Measure, Sn: Sensitivity, Pr:

Precision; ED: Euclidean distance, DTW: Dynamic Time Warping, CD:
Canberra distance, Edit: Edit distance, LCSS: Longest common

subsequence, and LR: Likelihood ratio.

Similarity Measure CR Sn Pr F-M

ED 0.781 0.781 0.769 0.775
DTW 0.781 0.781 0.769 0.775
CD 0.835 0.835 0.822 0.829
Edit 0.601 0.601 0.592 0.596
LCSS 0.329 0.329 0.324 0.326
LR 0.590 0.590 0.584 0.586

(a)

(b)

(c)

(d)

Figure 11. Example of the tested images overlaid with the Gaussian and Salt
& Pepper noise. Images (a) and (c) are original images, and images (b) and

(d) are images overlaid respectively with the Salt & Pepper and the
Gaussian noise.

As stated, the performance of the LCSS is very poor under
the noise circumstances, and it provides under 50% correct
motif discovery rate. The best outcome is obtained by the
Canberra distance in all three cases. The rest of the similarity
measures provide the similar performance. As the CQTWP
transform reduces the amount of noise, the performance of
most of these similarity measures stays alike, but in general the
correct motif discovery of the noisy test data is lower than the
original test data (without noise). The Euclidean and Canberra
distances and the DTW measure are more robust to noise than
the Edit distance and LCSS measure. The outcomes of the LR
measures is only obtained from images of the equal size.
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TABLE III. Evaluating results of detected motifs under Salt & Pepper noise,
CR: Correct motif discovery rate, F-M: F-Measure, Sn: Sensitivity, Pr:
Precision; ED: Euclidean distance, DTW: Dynamic Time Warping, CD:

Canberra distance, Edit: Edit distance, LCSS: Longest common
subsequence, and LR: Likelihood ratio.

Similarity Measure CR Sn Pr F-M

ED 0.732 0.732 0.721 0.727
DTW 0.748 0.748 0.736 0.742
CD 0.832 0.832 0.820 0.826
Edit 0.565 0.565 0.557 0.551
LCSS 0.326 0.326 0.354 0.340
LR 0.527 0.527 0.519 0.523

Image blurring [49] is another distortion occurs by an
optical system. Fig. 12 is a graphical representation of this
effect. The same experiments are carried out on the test case
with blurred images and the outcome is given in Table IV.

(a) (c)

(b) (d)

Figure 12. Image blurring effect. Subfigures (b) and (d) are the blurred
images, figures (a) and (c) are the original images.

TABLE IV. Evaluating results of detected motifs under image blurring
effect, CR: Correct motif discovery rate, F-M: F-Measure, Sn: Sensitivity,

Pr: Precision; ED: Euclidean distance, DTW: Dynamic Time Warping, CD:
Canberra distance, Edit: Edit distance, LCSS: Longest common

subsequence, and LR: Likelihood ratio.

Similarity Measure CR Sn Pr F-M

ED 0.794 0.794 0.792 0.793
DTW 0.807 0.807 0.794 0.801
CD 0.786 0.786 0.774 0.780
Edit 0.421 0.421 0.415 0.418
LCSS 0.331 0.331 0.326 0.329
LR 0.606 0.606 0.619 0.613

The highest correct motif discovery rate is obtained by the
DTW measure (CR=0.807). The Euclidean distance outper-
forms the Canberra distance, since the Canberra distance is
very sensitive to the values close to zero.

The performance time for each of these similarity measures
that took to detect image motifs is given in Table V and Fig.

13, where the number of the image motifs is increased up to
2000 images.

TABLE V. Evaluating the performance time took by the applied similarity
measures ;ED: Euclidean distance, DTW: Dynamic Time Warping, CD:

Canberra distance, Edit: Edit distance, LCSS: Longest common
subsequence,, and LR: Likelihood Ratio.

Measures ED DTW CD Edit LCSS LR

Run-Time(s) 0.09 3.28 0.05 10.28 29.15 3.94
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Figure 13. Performance time of the proposed method applying different
similarity measures while increasing the size of the data. ED: Euclidean

distance, DTW: Dynamic Time Warping, CD: Canberra distance, Edit: Edit
distance, LCSS: Longest common subsequence, and LR: Likelihood Ratio.

As the size of the data increases, the performance takes
longer. Among these similarity measures, Canberra distance
was the fastest one with 0.05 s and the LCSS was the
slowest measure with 29.15 s. The DTW and LR have similar
execution time.

V. CONCLUSION AND OUTLOOK

In order to handle the drawbacks of existing methods, in
this contribution an approach for detecting image motifs is
proposed. This method overcomes the existing limitation by
considering both fixed and variable size. Moreover, the tested
images are not transformed to a one dimensional representation
form, thus no information is lost.

This image motif discovery method is performed within
three steps: In the first step, the Complex Quad Tree Wavelet
Packet transform (CQTWP) analyses the images in various
frequency scales. In this work, images are decomposed up to
the second scale, since the amount of noise is mostly decreased
at this scale. The nodes with the highest information are chosen
in order to reduce the amount of redundant information and
increase the execution time. The CQTWP consists of two
wavelet packets working parallel to each other. Besides the
advantages of wavelet transformations, the CQTWP transform
has an efficient property of being shift-invariant. Also, its
ability for approximately analytic representation is helpful in
order to reduce aliasing.

In the second step, features are extracted from the nor-
malised histograms obtained from the wavelet coefficients.
These features are the first four statistical moments, and the
energy of the wavelet coefficients. Since motif discovery is
an unsupervised task, there is no information about the tested
images. Consequently, the statistical features are applied in
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this work, but depending on the task it is possible to employ
other types of features. The efficiency of these features is
benchmarked with the linear discriminant analysis (LDA)
algorithm [2].

In the last step, motifs are detected by measuring the
similarity between their feature values. Six different simi-
larity measures are applied here. The performance of the
proposed method and these similarity measures are evaluated
by different quality measures. The highest amount of correct
motif discovery rate is achieved by the Canberra distance.
The Euclidean distance and DTW provide the second best
correct motif discovery. By increasing the size of the data,
the performance of the Canberra distance improves while the
performance of the DTW decreases. The Euclidean distance
provides better results than the DTW in the case of larger
test cases. The Canberra distance includes the standardisation
of the differences between various test data and therefore, it
provides the higher correct motif discovery rate compared with
the Euclidean distance.

All the experiments carried out with the test cases that are
overlaid with noise and blurring effects. These distortions are
added to the data to measure the robustness of the proposed
method. The best outcome is obtained by the Canberra distance
and the LCSS provided the lowest result. The correct motif dis-
covery of the noisy test data is lower than the original test data
(without noise). However, as the CQTWP transform decreases
the amount of noise, the results obtained from these similarity
measures in the case of noisy data are still proper. In case of
image blurring, the Euclidean distance executed robuster than
the Canberra distance, since the Canberra distance is sensible
to the values near zero.

From these similarity measures, the Canberra and Eu-
clidean distance were the fastest one, and the Longest Common
SubSequence has the lowest execution time among all.

In the future approach, our aim is to examine other cost
functions or approaches to detect the proper nodes of the
2D-CQTWP with the best information content. The approach
applied here, is based on the entropy-based cost function,
nevertheless other cost functions such as energy or variance
can be applied as well. Investigation in effects of image
rotation for image motif discovery is another concept, which
has to be regarded in the future work. Finally, discovery of
motifs within various images without segmenting these images,
is the last issue that must be considered in outlook.
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APPENDIX A
Proof: The coefficients of signal x[n−Se/o] for both odd

and even shifts are given in following:
1. Even Shifts. If x[n − Se] where the shift Se =

2m, m ∈ Z then CQTWP’s coefficients s+1C ′2J [n, Se] and

s+1C ′2J+1[n, Se] are able to detect the shift. Thus,

s+1C ′2J [n, Se]
Se=2m

=

M+Len−1∑
k=0

sga[k] sC ′j [2n− 2m− k] =

=

M+Len−1∑
k=0

sga[k] sC ′j [2(n−m)− k] = s+1C2J [n−m],

s+1C ′2J+1[n, Se]
Se=2m

=

M+Len−1∑
k=0

sha[k] sC ′j [2n− 2m− k] =

=

M+Len−1∑
k=0

sha[k] sC ′j [2(n−m)− k] = s+1C2J+1[n−m],

(6)
where Len = length(sCj) and M ∈ N+ is the length of the
filters.
2. Odd Shifts. If x[n − So] where the shift So = 2m +
1, m ∈ Z then CQTWP’s coefficients s+1C ′2J+2[n, So] and
s+1C ′2J+3[n, So] are able to detect the shift. Thus,

s+1C ′2J+2[n, So]
So=2m+1

=

=

M+Len−1∑
k=0

sga[k] sC ′j [2n+ 1− 2m− 1− k] =

=

M+Len−1∑
k=0

sga[k] sC ′j [2(n−m)− k] = s+1C2J [n−m],

s+1C ′2J+3[n, So]
So=2m+1

=

=

M+Len−1∑
k=0

sha[k] sC ′j [2n+ 1− 2m− 1− k] =

=

M+Len−1∑
k=0

sha[k] sC ′j [2(n−m)− k] = s+1C2J+1[n−m].

(7)
Similarly, the coefficients for the second wavelet packet “WPT
B” are obtained.
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