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Abstract—The programming of classic software systems is well-
supported by integrated development environments. They are
able to give immediate information about syntax and some
logic failures. Although service compositions are widely used
within modern systems, such a support for building service
compositions is expandable. In this paper, we plead for the
creation of an integrated development environment for service
compositions, which enables immediate failure feedback during
the development. To this end, there is a need for new research
activities on occurring failures and how they can be found.
Since most current failure finding techniques are based on
dynamic approaches, e. g., state space exploration, we show
in a case study on soundness that the application of dynamic
techniques is not a suitable solution for integrated development
environments. In most cases, they are either too time consuming
or their output does not lead easily to the root of a failure.
As a result, we suggest new advanced (static) analyses of
service compositions. To accentuate that pleading, the paper
demonstrates a static analysis tool, Mojo, which can be used to
check soundness and to get detailed fault diagnostics. With the
help of this tool, it was possible to compare the behaviour of
dynamic and static analysis techniques in a practical context.
For this, a benchmark of real world service compositions
was checked regarding soundness with a state space-based
(dynamic) and a compiler-based (static) tool. Altogether, the
case study and the comparison in a practical context show that
dynamic analyses are not suitable for development support.
Static analyses should be used instead.

Keywords–Service Composition; Analysis; Case Study; Mojo;
Soundness.

I. INTRODUCTION
The development of service compositions (aka work-

flows) is an error-prone task just like the development of
software systems. For example, only approx. 46% of com-
positions of a real world benchmark have a comprehensible
behaviour, as will be shown later in this paper. Whereas
integrated development environments (IDEs) exist for the
development of software systems, the tool support for the
development of service composition is expandable at this
time. That is surprising since there is a substantial common
ground between both: There is data information passed
through variables and there is a flow graph, which represents
the structure. However, most tools for service compositions
cover only their modelling and execution. They do not
support the creation of correct compositions.

As an example, Figure 1 shows a service composition

(taken from the conference version of this paper [1]). The
composition handles the logic during the execution of a
survey and follows the notation and semantics of the Busi-
ness Process Model and Notation (BPMN) [2]. Typically,
the execution begins at the start node. Then, the execution
reaches a task/service node, which loads the survey at first.
After the task node, the execution reaches a fork node. A
fork node produces parallelism so that all outgoing edges
are followed by a control flow.

One control flow of the fork node follows the lower edge
to a further service, which handles the inputs of the survey.
Subsequently, it reaches a join node, which synchronizes
parallel control flows. Since another control flow has not
reached the other incoming edge of the join node yet, the
current flow has to wait.

The other control flow produced by the fork follows the
upper outgoing edge. It loads the current page and reaches
a merge node. A merge node combines sequential control
flows. After the merge is executed, the flow arrives at a split
node. The split node decides, which outgoing edge the flow
follows. Either the flow goes to the upper edge and loads the
next page, or it executes the task node at the right hand side
and loads the previous page of the survey. If the previous
page is loaded, the flow reaches another merge node, which
guides the flow to a node visited previously. Therefore, the
composition contains a cycle.

If the split node decides to load the next page, then
the flow arrives a further split node. It decides whether the
survey is finished or not. If the survey is finished, the control
flow reaches the join node like the other flow before. Now,
the join node can be executed and a conclusion will be
shown. Eventually, the survey is finished when it reaches
the end node.

As mentioned, we expected a wide development support
during the creation of the composition of Figure 1 since the
research on service-oriented architectures has passed its 20th
anniversary. However, it is hard to find tools that give imme-
diate development support. For this missing support, there
are two possibilities, which exclude each other: Either there
is some research, which seriously supports the development,
but it is not used in the tools. Or, there is no such research
and, therefore, the tools need qualified research results for
that support.

We found some research approaches to verify service
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Figure 1. A service composition, which handles the logic of the execution of a survey.

compositions in form of business processes in the literature.
A large number of those approaches concentrate on the veri-
fication of the soundness property [3] requiring that a service
composition cannot run into deadlocks or in undesired dou-
ble executions of services (lacks of synchronization). Since
the soundness property is defined on the runtime behaviour
of the composition, most algorithms search for undesired
behaviour in a simulation. That means, they regard the state
space of the composition, whereas the state space defines
all possible reachable states.

State space-based algorithms perform dynamic analyses
of service compositions since each found error can actually
appear at runtime. However, as each error is a malformed
reachable state, which has a cause within the service com-
position, finding exactly that cause given a specific error is
a hard task.

Imagine, a developer extends the composition of Figure 1
to the one of Figure 2, i. e., the developer adds a new ser-
vice, which delivers additional information (e. g., when the
survey was started). The developer does it in a composition
tool with a state space-based algorithm. After performing
the algorithm, an error message is displayed and the tool
visualizes the malformed state — a deadlock — directly
into the composition (cf. Figure 2, illustrated by the black
dots, tokens, which represents the control flows). As the tool
does provide the error only and not its cause (the fault), the
developer has to search the cause of the deadlock. However,
there is not a classic cause of that deadlock since it happens
because of a possible previous lack of synchronization, i. e.,
the double execution of the same nodes (illustrated by grey
dots in the figure). If the composition contains additional
nodes and becomes complexer, it be harder to detect the
cause of that error in the composition. It seems that dynamic
approaches are too imprecise and time consuming to support
the development of service compositions seriously.

In this paper, we will demonstrate that problem in a
case study on soundness with dynamic analyses relating
to classical software testing terms. Furthermore, we will
accentuate that problem by a direct comparison of dynamic
and static analysis techniques in the field of user support. As
a case example for a dynamic analysis technique, state space

exploration is used throughout the paper. For static analyses,
our own proposals for checking soundness are used. They
search for faults of deadlocks and lacks of synchronization
instead of errors [4][5][6][7]. We refer to our techniques
as fault finding. The comparison is done in a practical
application of both techniques in form of the tools LoLA
(state space exploration) and our analysis tool Mojo (fault
finding).

As the result of this paper, it can be shown why it
is better to use static analysis techniques for tool support
during development instead of dynamic analyses. As a
consequence, we plead for more research of static analyses
for service composition.

This paper is structured as follows: At first, it introduces
the field of verifying service compositions by taking a
look on the state of the art (see Section II). Afterwards,
a more formal and language independent model for service
compositions will be explained — the workflow graphs (see
Section III). Subsequently, in Section IV, it shows within a
case study on soundness that dynamic analysis approaches
are not suitable to give profitable tool support. Based on
this case study, further practical considerations are done in
Section V by a direct comparison of a dynamic and a static
approach. Eventually, this paper closes with a summary in
Section VI, which will support the notion that it is important
to use static analyses instead of dynamic ones during com-
position development. Furthermore, it shows possible future
work.

II. STATE OF THE ART
The soundness analysis of service compositions, espe-

cially in the case of workflows and processes, has a long
tradition. It appears firstly in the work of van der Aalst [3]
in the year 1995. To this day, several different notions of
soundness were introduced. The interested reader can find
them in Puhlmann [8] and van der Aalst et al. [9].

In this paper, we have chosen the classic notion of
soundness. There are several approaches, which try to clas-
sify whether a workflow is sound or not. The first known
algorithm was introduced by van der Aalst [3]. It is based
on the rank theorem [10], which can be solved in cubic
time complexity regarding the size of the workflow graph
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Figure 2. A malformed service composition of the service of Figure 1.

[11]. However, this approach does not give any diagnostic
information, where or why the workflow graph is unsound
[12]. For this reason, other approaches were developed,
which we classify into three main approaches: (1) Model
checking, (2) graph decomposition, and (3) pattern and
compiler-based approaches.

A. Model Checking
The dominating approach in workflow verification is

state space exploration [13]. In state space exploration, each
possible execution step of a workflow will be considered
(the state space). If during the consideration there is an
execution step, which contains an error, the analysis will
be stopped and the erroneous state inclusive a so-called
trace will be returned. The analysis will be stopped since
some (even small) workflows have a very large (sometimes
arbitrary large) state space and a complete examination of
the state space would take too much time or will not end.
This fact is called the state space explosion problem [14].
To counteract this problem, arbitrary growing states are
replaced with a neutral element. The resulting state space is
called Coverability Tree [15], but its size is still exponential
large with regard to the entire workflow.

Therefore, Lohmann and Fahland refined the state space
approach by performing some graph reductions [16]. They
also tried to explain why errors happen in processes, how-
ever, there work never reached a final state and there are
still open issues unfortunately.

Finished graph reduction techniques, which consider the
state space of processes too, are used by the tools Woflan
[17] and LoLA [18]. The Low Level Petri Net Analyzer
(LoLA) serves as general model checking tool for Petri
nets. It performs graph reduction techniques and state space
exploration. The verification property to prove (e. g., sound-
ness) must be given as formal equation. Then, LoLA checks
whether each state in the state space fits to the propery.

Woflan seems to be the most complete analysis tool for
workflows and is based on workflow nets and state space
exploration. Besides soundness it checks other quality crite-
ria. This is done by reducing the entire workflow iteratively.
If the result of this reduction is trivial, the workflow is
sound. Otherwise, Woflan decides with the S-coverability
[10] whether it can give diagnostic information or not. If

the workflow is not S-coverable, it is unsound, however,
it is unknown whether there is a deadlock or a lack of
synchronization. If the workflow is S-coverable, a state space
exploration has to check the soundness property. That results
in an exponential runtime of Woflan.

Besides state space exploration there are other model
checking approaches to check soundness for workflows.
Sadiq and Orlowska have introduced the instance graphs,
which are subgraphs and represent possible execution traces
[19]. Eshuis and Kumar use this approach to find erro-
neous instance graphs with integer programming [20]. That
gives enough diagnostic information to repair a workflow.
However, the workflows have to be acyclic and the integer
program has an exponential worst-case runtime.

B. Graph Decomposition
Since model checking techniques have their limits in

performance and failure diagnostic, other approaches were
considered. A prominent approach is the decomposition of
the workflow into smaller subgraphs. Chrza̧stowski-Wachtel
et al. use this approach and offer a new concept of rep-
resenting workflows at the same time: The representation
as a tree [21]. They propose to construct a workflow start-
ing by the root and adding child nodes iteratively. Then,
the workflow is sound by construction. However, such a
structured construction of workflows is not used in practice
since most workflows should represent unstructured service
compositions or real-world business processes.

The derivation of a tree structure starting by an unstruc-
tured workflow was done by Vanhatalo et al. [22][23]. They
split the entire workflow into fragments (subgraphs) with one
ingoing and one outgoing edge — a Single-Entry-Single-Exit
(SESE) fragment. Since this splitting into SESE fragments
results in a hierarchy of fragments, they can be visualized
as a tree: The Process Structure Tree (PST). Each fragment
can be analysed separately by replacing subfragments with
a single edge. Simple fragments are analysed by performing
some rules and heuristics. Complex fragments cannot be
handled, however, alternative soundness approaches can be
applied. That approach reduces the size of the graphs to
consider, allows the finding of one error per fragment, and
has a linear asymptotic runtime [24]. But it is incomplete
regarding soundness.
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C. Pattern and Compiler-based Approaches
Actually, SESE decomposition is a compiler-based ap-

proach since it considers the workflow without simulation
and it was already applied for compilers by Johnson et al.
[25][26]. Besides typical compiler approaches, there is a
growing number of approaches considering patterns in the
last years.

Dongens et al. began with pattern approaches by defining
two relations called causal foot prints [27]. On the base of
this foot prints, they find three (anti) patterns for deadlocks
and lacks of synchronization. However, it is not sure that an
anti pattern means that the workflow is really unsound.

Another pattern-based approach was introduced by Favre
and Völzer [12]. They define two relations for deadlocks
and lacks of synchronization too. With a kind of data-
flow analysis, the information needed by the relations are
propagated through the workflow. The approach results in
good diagnostic information and has a polynomial asymp-
totic runtime. However, the pattern approach only works for
acyclic workflows.

Based on anti-patterns, Favre et al. proposed another
approach [28][29]. The used anti-patterns are similar to those
of Dongens et al. and can be applied to workflows with
cycles. If a workflow contains such an anti-pattern, then the
workflow is unsound. In the case of incorrectness, additional
analyses are started to supply diagnostic information. The
diagnostic information are very good, but the runtime be-
haviour is quintic and it is only possible to detect one error
at once.

We proposed a compiler-based approach in [4][5][6][7].
Instead of considering the errors of deadlocks and lacks of
synchronization, we investigated their faults by starting our
analyses from different entry points of the workflow — a
partial analysis. This makes it possible to detect potential
errors behind others. Based on this partial analysis, we
introduced two new techniques: One for detecting faults
of deadlocks and a second for detecting faults of lacks of
synchronization.

For deadlocks, we observed that in sound workflows, a
node never jams obviously. It never jams since its execution
is guaranteed every moment, the execution reaches it. We
figured out that a node never has a deadlock when on each
path to this node another node guarantees its execution.
Otherwise, there is the potential for a deadlock.

Our second technique considers faults of lacks of syn-
chronization. At first, we observed that parallelism must
occur before the manifestation of a lack of synchronization
obviously. Each of the parallel control flows can meet each
other first, where two paths starting from the start of the
parallelism meet at first. We call them meeting points. If all
meeting points are synchronization nodes (join nodes), we
cannot run into a lack of synchronization. Otherwise, there
is a potential for a lack of synchronization.

Both techniques have in common that they are complete
regarding soundness. Furthermore, they find the causes of
deadlocks and lacks of synchronization in a bi-quadratic
asymptotic runtime (depending on the number of edges in
the workflow). As result, exact diagnostic information are
provided and it is possible to detect faults behind faults.

task

fork join split merge

endstart

Figure 3. Notations for start, end, task, fork, join, split, and merge nodes.

At this time, we believe that our approach is the best one
helping to build sound service compositions.

III. PRELIMINARIES
There are different languages and notations to describe

service compositions and business processes. Popular exam-
ples of those languages are BPMN [2], the Business Process
Execution Language (BPEL) [30], and the Yet Another
Workflow Language (YAWL) [31]. In research, however,
the general concepts of those composition languages are
simplified to describe service compositions in a language
independent way. For this purpose, two notions are used:
The workflow nets introduced by van der Aalst [3][13]
and the workflow graphs of Sadiq and Orlowska [19].
Whereas the former uses the notions of Petri nets [32],
the latter are similar to control flow graphs of the theory
of compiler construction. Since we believe that workflow
graphs are easier to understand and to illustrate, we use
workflow graphs throughout this paper to represent service
compositions.

In general, a workflow graph is a directed graph consist-
ing of nodes and edges. Each of the workflow graph nodes
is either a task, a fork, a join, a split, a merge, the unique
start, or the unique end node; where all nodes of the same
type have the same appearance and semantics, i. e., how they
are executed. Rules define how the nodes are connected.
They depend on the kind of node: The start node has no
incoming but exactly one outgoing edge, whereas the end
node has exactly one incoming but no outgoing edge. Each
task node is reached and leaved by exactly one edge. A
split and fork node has exactly one incoming edge and at
least two outgoing edges. Merges and joins are reached by at
least two incoming edges and can be leaved by one outgoing
edge. For the visualization of workflow graphs, we use the
same notations as the BPMN standard [2]. For this reason,
start and end nodes are visualized as (thick) circles. Tasks
are illustrated as simple rounded rectangles. Split and merge
nodes are visualized by diamonds with crosses. Eventually,
diamonds with pluses are used to illustrate fork and join
nodes (cf. Figure 3).

The different visualizations mark the different semantics
of the nodes. Usually (e.g., from Vanhatalo et al. [22]),
the semantics of the nodes are described as a token game
known from Petri net semantics [32]. In token games, the
numbers of tokens on the edges are used to describe a single
execution situation (a state). In each state there is a number
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Figure 4. A simple workflow graph within an execution state.

of tokens assigned to each edge. There are two important
states of workflow graphs: (1) The initial state and (2) the
termination state. Within the initial state, only the single
outgoing edge of the start node carries a token, whereas
within the termination state only the single incoming edge of
the end node carries a token. Throughout this paper, we use
black dots on edges to illustrate tokens in a state. Figure 4
shows such a state of a simple workflow graph.

In each state (except the termination state), there should
be some nodes, which are executable, i. e., their functionality
can be performed. After the execution of a node, the state
changes (a state transition). A sequence of state transitions
is an execution sequence of the workflow graph and we can
say, that the last state of the sequence is reachable by each
other state of the sequence [22].

As mentioned before, whether a node is executable and
what happens after the execution of this node is defined by
its type. The start and end node have no special semantics.
Therefore, they are only used to mark the start and end of a
workflow graph. Each node, except a join node, is executable
once there is at least one token on one of its incoming edges.
A task node takes a token from its incoming edge and puts
it back to its outgoing edge. Split and merge nodes perform
non-deterministic choices instead: Split nodes take a token
from their incoming edge and put a single token to one
of their randomly chosen outgoing edges; whereas merge
nodes take one token from one randomly chosen incoming
edge (with a token) and put a token to their outgoing
edge. Eventually, fork and join nodes handle parallelism.
Fork nodes take a token from their incoming edge and put
a token on each outgoing edge. However, join nodes are
only executable if each of their incoming edges has at least
one token. If a join node is executed, a token is removed
from each incoming edge and a single new token is placed
on its outgoing edge. Figure 5 summarizes the execution
semantics.

As explained in the introduction of this paper, we con-
sider the notion soundness [3][19] as correctness criterion of
service compositions. A workflow graph is called sound if
neither a deadlock nor a lack of synchronization is reachable
from the initial state. A deadlock is a non-termination state,
in which no node is executable. A lack of synchronization
is a state in which at least one edge carries more than one
token.

Figure 6 shows a typical and simplified deadlock state.
The join node in the figure (the right node with the plus)
will never be executed since it needs another token on its
lower incoming edge. A typical lack of synchronization is

task

fork

join

split

merge

Figure 5. The execution of the different kind of nodes.

Task 1

Task 2

Figure 6. A deadlock.

Task 1

Task 2

Figure 7. A lack of synchronization.

illustrated in Figure 7. The outgoing edge of the merge
node carries two tokens. This is possible since both tokens
produced by the left fork node will never by synchronized.

IV. CONSIDERATION OF DYNAMIC ANALYSES FOR
WORKFLOW DEVELOPMENT

If an execution of a workflow graph results in a deadlock
or lack of synchronization, the graph’s behaviour is not well
defined and comprehensible. So, it is beneficial to know
whether a workflow graph is sound or not. This can be easily
answered by the usage of dynamic analysis techniques like
state space exploration.

State space exploration dominates the literature in pro-
cess verification up to the present date. It indicates whether
the workflow graph is sound. Furthermore, the developer
gets a failure trace, or more precisely, a path within the
state space from the initial to the erroneous state.
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Figure 9. The success message is never printed leading to a failure.

The strength of such dynamic analyses are that new
correctness criteria can be defined and checked easily. This
makes it possible to use the same dynamic analysis tech-
nique for different verification problems and to add new
analyses very fast. This is useful to guarantee the delivery
of correct software products. However, as mentioned in
the introduction, dynamic analysis techniques have their
weaknesses during development time since they answering
rarely, why a workflow graph runs into a deadlock and a
lack of synchronization. But a developer needs to know, why
some wrong behaviours happen to repair and to avoid them.

In the following, we reinforce these weaknesses by
showing that dynamic analysis techniques lead to a time
expensive and hard troubleshooting when we try to identify
the causes of wrong workflow graph behaviours. For this,
we consider a case study on dynamic analyses regarding
typical terms of software testing (taken from [33]). We
use this vocabulary since we talk about the development
of workflows like software. Furthermore, these terms make
it possible to evaluate the located errors and how they
can be used for troubleshooting. In addition, the following
comparisons motivate the usage of service composition
specific static analyses. An overview of the terms and their
interdependencies is illustrated in Figure 8.

A. Failures, Errors, and Faults
In software testing, there are different terms with dif-

ferent meanings for wrong execution states of a program.
A state is called a failure if a user of the program sees
an undesired behaviour or result [33]. For example, in the
workflow graph in Figure 9, we see that the last task —
the printing of the success message — will not be executed

since the composition runs into a deadlock in the join node.
Therefore, the user is informed by the missing success
message that there is a failure.

Such a failure is the manifestation of an incorrect devel-
opment of the composition. This manifestation is called an
error [33]. For example, the process developer may know
why the user does not see the success message, as the
developer may identify that the execution blockades. The
reason, why the execution blockades, is called a fault. A
fault is the wrong human action during the development of
the service composition [33].

Obviously, to repair an erroneous service composition, a
developer has to know the fault instead of errors and failures.
If the developer knows only the error or the failure, it has
to derive the fault from the diagnostic information.

Considering the previous term definitions, each dynamic
analysis technique always results in an error since it searches
within the different execution possibilities of a workflow
graph instead at the workflow graph itself. As a result, the
developer has to derive the real fault after each dynamic
analysis, to be able to repair the composition. However,
this derivation of the fault is a difficult task since errors
can be masked or disguised. Furthermore, the developer
may underestimate the possible distance between the error
and the fault, thus disregarding an origin early in the
composition. All those different difficulties are considered
in the following sub sections.

B. Fault Distance
The distance between a fault and its error is known as

the passed time or passed program instructions until a fault
results in an error [34]. The workflow graph in Figure 10
has some bigger subgraphs, which are folded as services D
and E for reasons of lack of space. After the subgraph D is
executed, the workflow graph will end in a deadlock state as
the join on the right-hand side cannot be executed. Naturally,
a developer would now search the corresponding fault near
the error. Since a lot of time has passed and the workflow
graph is complex owing to the subgraphs D and E, it is very
difficult to identify the fault. A natural and simple correlation
is that the difficulty of finding corresponding faults of errors
grows with their distances.
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Figure 10. The distance between the fault and its error may be large.
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Figure 11. One fault masks another fault so that the failure may disappear.

C. Fault Masking
Fault masking is the situation, in which one fault prevents

the detection of another fault [33]. This leads to much
difficulty as the faults do not necessarily cause a visible
failure. Furthermore, it may happen that one fault is repaired
by another one.

An example of fault masking in the context of service
compositions is illustrated in Figure 11. The first part of
the workflow graph (the loop) results in a lack of synchro-
nization, whereas the second part has an obvious deadlock.
However, the first part produces an endless number of tokens
so that the previous lack of synchronization always prevents
the latter deadlock at runtime. A dynamic approach would
now result in a lack of synchronization only — it is not
able to detect the deadlock as it does not appear at runtime.
To this end, the first fault has to be repaired before the
deadlock appears within a dynamic approach. This makes
the correction of a service composition more time expensive
since a necessary analysis has to run for each error at least.

D. Fault Illusion
Fault illusion is not a classic term of software testing.

We introduce it at this point, because such a situation is
not accurately described by the existing terms. Figure 12
exemplifies this illusion with a workflow graph. Currently,
that workflow graph is within a deadlock state since there
is no node, which can be executed.

A dynamic analysis technique could provide this dead-
lock state. However, if the developer of the service com-
position takes a closer look at the workflow graph, it will
not find a good fitting fault of the deadlock. This happens
for the reason that the deadlock is caused by a lack of
synchronization: The left-hand side fork node has two upper
outgoing control flows that are not synchronized by a join
node. Only a merge node combines both flows, which
possibly results in a lack of synchronization on its outgoing

Call service A

Call service B

Call service C

Figure 12. One error produces another error so that there is the illusion of
a fault, which does not exists.

edge. Nevertheless, if, e. g., service A needs much more time
than service B, the control flow of service B reaches the join
node on the right-hand side before the control flow, which
performs service A. Because of this, the join node can be
executed before the lack of synchronization appears. Then,
however, the workflow graph runs into a deadlock although
there is the fault of a wrong control flow synchronization.

So, in short, a fault illusion is the appearance of an error
although the faults of other errors cause it. The finding
of such a fault illusion is a very hard task in big service
compositions. In this context, dynamic analysis techniques
are not suitable for fault identification.

E. Fault Blocking
Fault blocking is the condition, in which a fault blocks

the further failure detection [35]. Since software testing aims
at detecting the presence of errors only, fault blocking is not
bad. However, when it is the goal to find as many errors
as possible, fault blocking makes the fault detection time
expensive since a necessary analysis has to run at least for
each error (which can be an arbitrary large number, e.g., in
the case of lacks of synchronization). It is easy to see that it
is not possible to detect errors after a deadlock in dynamic
approaches since there is no further reachable state. As a
result, it is not possible to detect all errors, let alone faults,
within a service composition with dynamic approaches.

Another difficulty of fault blocking is that one error may
result in another error. This is linked to fault illusion. In
Figure 13, we see a simple workflow graph, in which a
split node causes (local) deadlocks in the upper and lower
join nodes. However, as we can also see, the deadlock of
the lower join node is caused by the deadlock of the upper
one, i. e., if the upper join node would be a merge node,
the deadlock of the lower join node disappears. Therefore,
the deadlock of the lower join node is the result of the
blocking of a control flow of the upper join node. Since a
dynamic error finding approach like state space exploration
may return the deadlock of the lower join node, it is hard
to find its fault.

F. Discussion
In summary, dynamic approaches are dependable analy-

ses considering soundness verification of workflows. They
decide trusty whether a workflow is sound or not. However,
the case study has shown their weaknesses as tool support
for workflow developers seriously. The typical problems
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Figure 13. One error blocks another error.

of fault distance, blocking, masking, and illusion compli-
cate the derivation of the fault knowing only the error
significantly. They make dynamic approaches inefficient
and imprecise. As a result of this case study, to support
developers, other tools must be provided.

V. DIRECT COMPARISON OF DYNAMIC AND
STATIC ANALYSES

The consideration of dynamic analyses during workflow
development showed their weaknesses relating to support the
developer seriously. To strengthen this result, we show in this
section that problem-specific static analyses have advantages
over more general dynamic ones. Since the argumentation
in the last section is based on a theoretic consideration of
dynamic approaches verifying soundness, we want to show
that these theoretic considerations have relevance in practice.
Therefore, we have developed a tool Mojo, which uses our
static fault finding techniques. Since there are tools like
LoLA [18] allowing dynamic soundness checks of service
compositions, Mojo round off the palette of tools by a
complete static approach. This makes it possible to compare
dynamic and static approaches for soundness checking for
the first time.

In this section, we introduce our tool Mojo at first.
Afterwards, we use Mojo to compare static and dynamic
analysis techniques.

A. The Analyser Mojo
Mojo is a research static analyser, which is freely avail-

able and can be downloaded on GitHub [36]. It allows the
writing of own analyses, which can be applied as extensions
to the system. Conceptionally, Mojo is part of our idea of
a system for the development and execution of workflows
[37], simplified illustrated in Figure 14. In the current state
of build, it covers a part of the system’s producer side.

On the producer side (the static analyser), the parser
reads the service composition (alias workflow). During the
reading, it checks the structure of the input. Afterwards,
the transformer takes the syntactically correct workflow and
transforms it into an intermediate representation (IR). Mojo
uses the notion of workflow graphs as IR. The IR is an
abstract format and hides special properties of the entire
modelling language, e. g., of BPMN. The Business Process
Executation Language (BPEL) is difficult to use as IR since
it is a structured language whereas most workflows are
unstructured.

After the creation of the IR, the composition is checked
regarding some semantic properties. An example of such a
semantic property is the introduced notion of soundness. If
the semantic analyser finds faults, the system informs the
developer such that the developer can repair the workflow.
Otherwise, if the workflow is already correct, it will be
encoded and stored within a file or workflow repository.

Besides the producer side, the system even consists of a
consumer side. The consumer side is a virtual machine. It
reads a composition from a file or repository and rebuilds
the IR. Furthermore, the verifier checks the IR regarding its
semantics. This revised check of semantics is necessary to
exclude the possibility of manipulations on the IR. With the
help of annotations, the check can be sped up significantly.
In conclusion, the virtual machine executes the workflow
and does some runtime analyses in some cases.

Detailed information about our whole system of com-
piling and executing workflows are available in [37]. An
overview about the static analyser and virtual machine can
be found in preceding papers [38] and [6].

As mentioned before, the tool Mojo can be interpreted
as a first version of the producer side of our proposed
system. Since Mojo is not closed in its functionality and
the implementation and testing of new analyses is time-
consuming in the context of service compositions, Mojo
was implemented with the concept of extensions. Extensions
(or plugins) allow the easy integration of new analyses and
can be used by other researchers without changing the core
application. For this, it defines extension points as interfaces,
which have to be used to write own plugins. At the moment,
extension points for new input languages and new analyses
are defined.

In Mojo, the order of the performed analyses are defined
by analysis plans. An analysis plan structures the necessary
stages to guarantee correct analyses. In some cases, such
a stage can be a complex analysis plan again consisting
of different stages. For that reason, Mojo follows a classic
compiler architecture.

An overview about the current version of Mojo is illus-
trated in Figure 15. The input is possible via files in the
languages Petri Net Markup Language (PNML) [39] and
BPMN [2], or directly via programmatic defined workflow
graphs. There exist two predefined plugins to enable the
input languages PNML and BPMN. Each of these plugins
consists of a parser and a transformer.

Afterwards, the resulted workflow graphs can be analy-
sed using the analysis plans. Typical stages of such an
analysis plan are a dominance and post dominance analysis
[40][41] as well as the determination of the causes of
deadlocks and lacks of synchronization. The analysis plan,
which should be used, can be defined as a parameter of
the tool. Since each analysis plan has a unique number, the
precise selection of an analysis plan is easy.

The analysis plan with number 0 performs a soundness
inspection with our fault finding techniques explained in
previous work [4][5][7] and in Section II. Therefore, (1)
Mojo uses a complete static analysis based on well-known
compiler theory, (2) it is the first implementation of our
soundness checking algorithms, and (3) it finds development
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faults instead of runtime errors. The found faults will be
registered and annotated to the workflow graph. It is possible
to get a textual fault output or to use a graphical visualization
when Mojo is integrated in a workflow modelling tool. Such
a tool is the Activiti BPMN 2.0 Designer[42], which we have
modified to allow analyses with Mojo. Figure 16 shows the
application of Mojo in Activiti.

In this application, Mojo performs analyses without a
visible delay in each modification step of the workflow.
Furthermore, the faults can be visited in two modes: (1) The
overview mode and (2) the detailed mode. In the overview
mode (1), all faults are visualized within the workflow with
reduced information. Thus, it is possible to get an overview
of the faults within the composition. In the detailed mode
(2), the user selects a fault and gets all detailed diagnostic
information. That visualizes the fault more precisely to the
developer and it should be easier to repair the workflow.

B. Comparison
After the introduction of the tool Mojo, it is possible to

practically compare the application of static and dynamic
analysis approaches for soundness in service compositions.
As a typical example of dynamic approaches, we use the
state space exploration tool LoLA. For static analyses, our
compiler-based tool Mojo is considered. Both tools were
used to study how they perform for real-world service
compositions. These service compositions were taken from
a business process library [43].

Before we can consider the results of the study, the

evaluation settings have to be explained at first. Afterwards,
three examples of compositions from the library are con-
sidered in detail. For these three compositions, the dynamic
approach leads to different results than a static approach
in practice. Subsequently to this detailed consideration, we
give an overview of the results and differences of static
and dynamic analyses of all service compositions of the
considered library. At the end, the evaluation shows that a
detailed fault analysis has not to be expensive regarding the
invested time.

1) Settings: For quantitative statements of evaluation, a
large number of test cases is necessary to minimize the effect
of irrelevant influencing factors. In the context of soundness
checking of workflows, a library of real world business pro-
cesses of the IBM WebSphere Business Modeler[44] is used.
That library contains 1, 368 processes (i. e., workflows) and
is separated into five benchmarks: A (282 workflows), B1
(288 workflows), B2 (363 workflows), B3 (421 workflows),
and C (32 workflows). Thereby, the benchmarks B1 to B3
describe ongoing improved and developed workflows.

Originally, the library was provided by IBM Zurich.
However, the official support was stopped. A more simple
parsing and usage is possible in the standardized PNML
format. PNML describes Petri nets in a simple syntax with
transitions, places and arcs. The workflows are available in
the context of the work of Fahland et al. [45][46], who
compared different soundness checkers in year 2011. For
our evaluation, we have used these PNML files.
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Figure 16. Integration of Mojo in the Activiti BPMN 2.0 Designer.

We have considered the PNML workflow library with
two tools: (1) The previous introduced tool Mojo [5] and (2)
the state space-based tool LoLA [18]. LoLA requires the Petri
nets to be in a special, proprietary file format. The needed
files can be downloaded inclusive an installation guide on
[45].

The runtime system for the evaluation was a typical
computer with a 64 bit Debian GNU/Linux 9.0 (stretch)
operating system. The Linux kernel was 4.8.0-2-amd64
x86 64. The computer used a 4-core Intel c©CoreTMi5-4570
CPU with 3.2 GHZ frequency and 8 GB main memory.
Since Mojo is implemented in Java, we run an OpenJDK
runtime environment in version 1.8.0 111 with 2 GB heap
space.

2) Examples: In our first evaluation setting, we consider
some workflows of the library that show remarkable dif-
ferences between LoLA and Mojo. We have reduced the
complexity of these compositions so that we can illustrate
them in the context of this paper.

The first workflow, we consider in more detail, has the
name a.s00000031 s00001361 and is part of benchmark
A. The reduced version of this workflow is illustrated in
Figure 17 a).

LoLA finds exactly one deadlock (error) for this work-
flow. It detects it in one of the upper both join nodes depend-
ing on the strategy of state space exploration. Furthermore,
LoLA is able to give a failure trace to that error. In the figure,
we have illustrated this trace with the help of tokens, which
contain numbers where, e. g., the number 2 describes the
position of all tokens in the second state.

In contrary, Mojo finds the causes of two potential
deadlocks and one potential lack of synchronization (cf.
Figure 18 a)). That means, Mojo finds a structural fault that
may lead to a lack of synchronization which LoLA cannot

detect. In this case, it is impossible to find the potential
lack of synchronization with the help of a state space-based
approch since there is no state in the whole state space, in
which an edge contains more than two tokens. However, if
we assume that both upper join nodes should actually be
executed correctly, then the lack of synchronization is pos-
sible — the static approach of Mojo discovers faults behind
other faults and ignores the problem of fault blocking.

Furthermore, the static approach of Mojo provides all
faults with a lot of detailed diagnostic information. Figure 19
shows a possible description of one of the deadlocks of the
example, which helps a developer to repair the composition.

In conclusion to the first remarkable composition, the
static approach gives more help to the developer than the
state space-based approach of LoLA.

The second workflow to consider with name
b2.s00000793 s00006437 of benchmark B2 is shown
in Figure 17 b). In this example, the state space-based
approach finds a lack of synchronization and a deadlock.
The lack of synchronization is possible after the merge
node since two parallel flows can execute that node at the
same time. However, if they are run asynchronously, the
failure trace of Fig. 17 b) is possible containing a deadlock
in the join node.

If we consider the same workflow with the static ap-
proach of Mojo, we find only the cause of one lack of
synchronization because the merge node cannot synchronize
two parallel control flows (cf. Figure 18 b)). Since the
deadlock found by LoLA results from a lack of synchro-
nization, the static approach does not find it. That behaviour
helps the developer since the deadlock is a fault illusion.
In conclusion, for this second remarkable case, the static
approach shows its benefits since fault illusions are ignored.

The last example shows similarities to the previous one.
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Figure 17. Workflows with noteworthy differences between LoLA and Mojo: The LoLA output.

It has the name b1.s00000115 s00003189 and is part of
benchmark B1 (Figure 17 c)). Although the example has the
same basic structure as the previous workflow, LoLA results
only in one lack of synchronization, i. e., a deadlock in the
upper join node is not reached in the state space. Maybe, the
differences in the structures lead to those different results.
This could be supported by the fact that LoLA stops its
error detection after a first error is found — a case of fault
blocking. As a consequence, the result of state space-based
approaches depends on the strategy and, sometimes, on pure
coincidence.

Instead, Mojo shows the same behaviour and, further-
more, finds the fault of a potential deadlock in the lower join
node (cf. Figure 18 c)). That means, fault blocking and fault
illusion does not have a chance to occur in static approaches.

As summary of the consideration of the three different
workflows of the benchmark, state space-based and static
compiler-based approaches show different results. For the
three considered examples, a static approach shows more
benefits since fault illusions and fault blocking are ignored,
the results are transparent, and it provides detailed diagnostic
information.

3) Benchmark: It is of interest whether the observations
of the last sub section hold in general. For this, we have
compared the results of Mojo and LoLA for the whole
workflow library.

Table I shows the number of faults (not errors!) found by

Table I. Number of faults found by Mojo.

Deadlocks Lacks of synchronization

A 140 170
B1 273 720
B2 326 948
B3 289 1,056
C 24 61

Sum 1,052 2,955
Total 4,007

Mojo for the different benchmarks. In total, Mojo has found
4, 007 faults. That means, each workflow contains approx. 2
to 3 faults on average. Furthermore, on average a workflow
contains more causes for potential lacks of synchronization
than deadlocks.

Our expectation was that LoLA finds more errors than
Mojo faults, because an arbitrary number of errors could
be derived from one single fault. However, Table II shows a
different picture: Only, 1, 137 errors (not faults!) were found
by LoLA. That means, LoLA does only find approx. a quarter
of the number of errors than Mojo faults. One reason for
this behaviour is that LoLA can find only up to one error
per analysis since it stops its state exploration after a first
error is found. As LoLA performs two separated analyses
for the deadlock and lack of synchronization detection, two
errors are the maximum.
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Figure 18. Workflows with noteworthy differences between LoLA and Mojo: The Mojo output.
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Figure 19. Detailed fault diagnostic with Mojo.

Table II. Number of errors found by LoLA.

Deadlocks Lacks of synchronization

A 97 68
B1 81 200
B2 84 238
B3 83 262
C 10 14

Sum 355 782
Total 1,137

On closer inspection of the differences between LoLA
and Mojo, for 3 workflows LoLA finds one lack of synchro-
nization as well as one deadlock. Mojo, however, finds only

causes of lacks of synchronization for them (cf. example
b) of Figure 17). For these workflows, the deadlocks are
the result of lacks of synchronization as explained before.
Such a behaviour could be the case for many workflows,
however, since LoLA stops its state space exploration after
the first found error, they are hard to identify.

For 171 workflows, Mojo finds causes of lacks of syn-
chronization and deadlocks; in comparison, LoLA reaches
only lacks of synchronization (cf. example c) of Figure 17).
In 205 cases, LoLA finds no lack of synchronization since a
deadlock blocks the occurrence of a lack of synchronization
at runtime (cf. example a) of Figure 17). However, Mojo
finds both: Lacks of synchronization as well as deadlocks.

All those cases strengthen our hypothesis that the static
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Table III. Number of sound and unsound workflows with Mojo and LoLA.

Mojo LoLA
Total sound unsound sound unsound

A 282 152 130 152 130
B1 288 107 181 107 181
B2 363 161 202 161 202
B3 421 207 214 207 214
C 32 17 15 15 17

Summe 1,386 644 742 642 744

soundness approach used by Mojo has many advantages over
the state space-based approach of LoLA.

We also have checked whether a static approach can
be used for pure soundness checking. Therefore, we have
checked whether Mojo and LoLA detects the same sound
and unsound workflows in the library. Furthermore, we have
counted the total number of sound and unsound workflows.
Table III shows the results of this aggregation for Mojo (left)
and LoLA (right).

As it turned out, Mojo and LoLA mark the same
workflows as sound except for two of them. Mojo marks
both as sound, LoLA as unsound. They have the names
c.s00000042 s00001033 and c.s00000042 s00001050
and are part of benchmark C. This can also be observed
in Table III on the differences between the total number
of sound and unsound workflows. We considered both
compositions in detail and worked out that both workflows
are unconnected. Since Mojo was implemented as a tool,
which supports the development of workflows, it must be
able to handle unconnected workflows. For this, it builds a
connected workflow using the semantics of BPMN. After a
long inspection of both workflows, we could not find any
fault. Since we do not know how LoLA handles unconnected
workflows, we assume that this fact is the origin of the
divergence of both tools. As a consequence, the results of
Fahland et al. [46] should be handled with care since they
consider the same process library and the tool LoLA too.

In summary, we see that the usage of static analysis
approaches has benefits in the context of soundness verifi-
cation. It results in a more detailed fault overview ignoring
difficulties like fault illusion and fault blocking.

4) Time Behaviour: In the last step of our evaluation, we
want to take a look on the time behaviour of both tools since
it is possible that static approaches are more time expensive
than dynamic techniques. To be used in an IDE, analyses
should be fast such that they can be performed during each
modification step of a program or, in our case, of a service
composition. Figure 20 shows the distribution of the analysis
times of Mojo and LoLA in two histograms. As we can see in
the figure, Mojo spends for approx. 95% of the workflows
less than two milliseconds to find the faults of deadlocks
and lacks of synchronization. It needs 0.03 [ms] in the best,
0.25 [ms] in the median, and 24.5 [ms] in the worst case. In
summary, Mojo works very fast with the workflows of the
library and can be used without a noticeable latency.

LoLA spends a bit more time for its analysis of the
workflows (bottom histogram). Nearly 67% of the workflows

need approx. 5 [ms] to be analysed with LoLA. Almost all
workflows (99%) of the library can be analysed within 5 to
10 milliseconds. In the minimum, LoLA needs 5.26 [ms], in
the median 5.78 [ms], and in the maximum 17.97 [ms] for
the analysis of a single workflow.

In total, Mojo spends 818 milliseconds to check all 1, 386
workflows. LoLA uses 8, 238 milliseconds instead and is,
therefore, approx. 10 times slower than Mojo. Although it
is slower than Mojo, it has a respectable time and can also be
used without any visible latency. However, as shown in this
evaluation, the usage of a static analysis as used by Mojo
has more advantages than a state space-based approach as
used by LoLA.

VI. CONCLUSION AND FUTURE WORK
The major advantages of well-known analyses used in

modern IDEs for software development are the extensive
diagnostic information and the possibility to find potential
failures along the whole program. We have shown in a
case study that dynamic analysis techniques can result in
an imprecise and time consuming error detection. Though,
most analyses for service compositions do use dynamic error
finding techniques as motivated in the state of the art. But
dynamic techniques can only find first appearing errors since
afterwards the program is within a dirty state. This makes
it difficult and inefficient to repair a defect composition.
Furthermore, the case study showed that dynamic analysis
techniques are not suitable as immediate tool support during
the development of service compositions. This fact was
strengthen by a direct comparison of dynamic and static
analyses. The comparison was done with our static fault
finding technique and the dynamic state space exploration.
The static analysis techniques give detailed and precise
fault information throughout a whole process, whereas the
dynamic analysis techniques are only suitable for which
they were made for: Verification, i. e., checking whether a
verification criterion holds or not. So, dynamic error finding
techniques like state space exploration have some serious
disadvantages during the reparation of malformed service
compositions.

The introduced tool Mojo shows the strengthen of ap-
plying static analyses during the creation of workflows. The
analyses cannot only be performed in each modification step
of the service composition, they also give detailed diagnostic
information about the faults. For this reason, Mojo is the first
tool that can be used profitable as an extension to a service
composition modeller making the modeller to a first IDE.
We believe that there are many other composition-specific
problems, which can be avoided by static analyses.

Although there is a substantial common ground between
the creation of service compositions and a software product,
there are some serious differences making the adaptation
of static analyses from classical software development to
service compositions difficult: (1) In most cases, service
compositions are developed by the use of visual modelling
languages, e. g., BPMN and Event-driven process chains
[47]. Visually modelled compositions often result in unstruc-
tured workflow graphs, e. g., approx. 60% of all real world
processes taken from IBM Zurich [43] are unstructured. Un-
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Figure 20. Distribution of analysis times for Mojo (top) and LoLA (bottom).

fortunately, most known fast analysis algorithms of compiler
theory work only for structured graphs.

(2) A second major difference between the development
of software systems and service compositions is the ability
to model explicit parallelism within service compositions.
Since most algorithms for program analysis cannot be ap-
plied to parallel programs, they must be adapted [48]. Lee et
al. [49] introduced the Concurrent Static Single Assignment
(CSSA) form, making it possible to use algorithms of
sequential programs for parallel software. Unfortunately, the
building of the CSSA form requires knowledge about pos-
sible race conditions to ensure high quality analysis results.
The derivation of race conditions, however, is inefficient for
unstructured workflow graphs so far [49].

In summary, we plead for an adaptation of fast and
well-known analysis techniques of modern IDEs to the
development of service compositions. Furthermore, we ar-
gue for the development of new static analysis techniques
especially for service compositions to solve composition-
specific problems. In this context, we also plead for a
first real compiler for service compositions, which enables
those analyses as well as the transformation of service
compositions into runnable applications [37]. The practical
benefits of such an approach were demonstrated by the
introduction of the analysis tool Mojo and its usage in an
evaluation of the soundness checking of real world service
compositions.
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