
A Programming Model for Heterogeneous CPS from the Physical POV
with a Focus on Device Virtualization

Martin Richter, Christine Jakobs, Theresa Werner, Matthias Werner
Operating Systems Group

Chemnitz University of Technology
09111 Chemnitz, Germany

email: {martin.richter, christine.jakobs, theresa.werner, matthias.werner}@informatik.tu-chemnitz.de

Abstract—The emergence of cyber-physical systems leads to
an integration of the digital and physical worlds through sensors
and actuators. Programming such systems is error-prone and
complex as a plethora of different devices is involved, each of
which may be mobile and unreliable. In existing approaches,
the developer views the world from the digital point of view.
He or she has to implicitly interpret digital values as sensor
measurements of the environment or as control values, which
influence the environment through actuators. This leads to an
increase of complexity as the number of sensors and actuators
in cyber-physical systems is ever-increasing and different types of
devices may become available during the runtime of the system.
These devices may be located in different physical contexts that
may bear no relation to each other. Therefore, the developer
has to take the properties of the environment into account
when designing his or her application as he or she has to
acknowledge the impact of varying devices being located in
different contexts. Additionally, he or she has to consider the
coordination of interactions between different types of distributed
sensors and actuators. This increases the likelihood of errors in
the programmer’s implicit interpretations of the digital values.
Current approaches mainly focus on providing abstractions from
the distribution and heterogeneity of the system, but fail to
explicitly address the impact of digital calculations on the physical
world and vice versa. We present a programming model, which
reverses the view of the developer on the system. It allows
him or her, to take the perspective of the physical system of
interest and to explicitly describe its desired behavior. Therefore,
a virtualization of devices is possible. This allows to transparently
handle failing, moving, as well as emerging sensors and actuators.

Keywords—cyber-physical systems; programming model; context
awareness; heterogeneity; virtualization.

I. INTRODUCTION

This paper expands on our work presented in [1]. There,
a programming model for Cyber-Physical Systems (CPS) is
introduced which allows the developer to take a physical
point of view. The paper at hand provides a more detailed
description of the model and further elaborates on the possibil-
ities of introducing device virtualization, especially concerning
sensors.

Sophisticated programming models as well as device vir-
tualization play a crucial role in enabling the developer to
create adaptable and robust applications for CPS. This proves
especially valuable in the contexts of the Internet of Things [2],
Smart Grid [3], automated warehouse logistics [4], and In-
dustry 4.0 [5] as an increasing number of possibly unreliable
devices are interconnected and have access to a multitude

of different sensors and actuators in their environment. The
emergence of such CPS leads to an integration of digital
computations and the physical world. This entanglement raises
multiple challenges, which do not exist in classical distributed
systems [6]. Apart from being distributed over space, the
different devices possess varying capabilities, regarding what
they measure and how they influence their environment. There-
fore, the developer has to ascertain that the employed sensors
and actuators are able to achieve his or her goals with respect
to affecting and monitoring the physical world. Additionally,
the devices may be unreliable and mobile. They may therefore
fail, move between different physical contexts of the system
(e.g., between two different rooms within a house), or leave
the system entirely. This leads to changes in the semantics of
their abilities with respect to which parts of the physical world
they observe or influence.

Current approaches leave the task of managing the con-
tinuously changing set of heterogeneous devices to the pro-
grammer. When compared to classical distributed systems,
this leads to an impairment of the portability of applications
and an unproportional increase in complexity for the design
process. Applications for CPS are currently created via classic
programming models, where the application implicitly con-
verts sensor measurements to a digital representation of the
physical phenomenon of interest (e.g., reading a value from
a register of a sensor). Based on this digital representation,
the programmer’s application performs calculations of which
the results are implicitly converted to impacts on the physical
world (e.g., writing a value into a register of an actuator).
This procedure further increases the difficulty of designing
applications as digital values do not directly translate to
observations of and influences on the physical world. Our goal
is to relieve the programmer from having to work with this
implicit conversion of distributed measurements of physical
phenomena to a digital representation and subsequently the
translation of digital computations to a variety of actuator
influences on the physical environment.

This paper presents a programming model for reducing the
complexity of application design for heterogeneous CPS. To
achieve this, we provide the developer a new view on the
system. We reverse the programmer’s perspective, such that he
or she no longer directly controls the devices through digital
computations. Instead, he or she describes the properties of the
physical system of interest and how these properties should

31

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

evolve over time to reach a desired target state. The developer
is concerned with the CPS’ effect on the environment (i.e., the
desired state change) rather than the cause (i.e., the controlled
actuators). This perspective is comparable to declarative pro-
gramming where the properties of a solution are described
rather than the procedure of achieving the solution.

As the programmer designs the application from the view
of the physical system, he or she does not have to implicitly
translate physical phenomena to digital representations and
vice versa anymore. Rather, the Runtime Environment (RTE)
transparently handles this conversion by utilizing sensor and
actuator specifications in addition to the programmer’s phys-
ical system and target state descriptions. As the RTE is able
to decide which sets of sensors and actuators are suited for
the tasks at hand, this approach enables the virtualization of
sensors and actuators. Therefore, the developer does not have
to account for failing or moving devices as the RTE is able
to transparently evaluate and choose alternatives. To achieve
this, the RTE maintains a location-aware digital representation
of the physical system by interpreting sensor measurements.

Not all sensor measurements may be related to each other
due to their positioning and environmental circumstances.
Therefore, the RTE requires a description of environmental
contexts to precisely identify locations of interest within the
system that can be observed by available sets of sensors. Each
environmental context refers to a region of space that restricts
the interpretability of sensor measurements. For example, a
picture taken by a camera in one room of a house may not
be interpretable for other rooms of the house. The definitions
of contexts allow the RTE to decide which sensor readings
stand in relation to each other and for which locations they
provide relevant information. Therefore, it is able to create a
more precise and less error-prone digital representation of the
physical environment while taking the motion of sensors and
the resulting physical context changes into account.

The RTE uses the digital representation of the system to
compute sufficient actuator inputs to reach a target system
state. It achieves this by utilizing a constraint solver which
takes the digital representation of the system and the pro-
grammer’s target state description as inputs. Its computations
provide a sufficient set of actuator inputs to reach the de-
sired target state. Hence, our programming model abstracts
from complex conversions between digital computations and
physical phenomena. Moreover, it provides transparency to the
developer with respect to changing device configurations (i.e.,
through motion, failure, or emergence). It is intended to be
used in applications utilizing a variable set of arbitrary sensors
and actuators to measure and influence physical systems with
well-understood properties and dynamics.

From an Operating System (OS) perspective, the presented
programming model enables the decoupling of the system
and application programmers for CPS. Therefore, a system
programmer is not bound to certain applications anymore. This
allows him or her to provide required system functionalities
to the RTE (e.g., device drivers) as well as commonly utilized
abstractions to the application programmers (e.g., libraries

for the specification of the physical system). Additionally,
the application developer is not bound to hardware specifics
anymore due to the employment of the RTE and unified
interfaces. This makes the development of applications for
CPS more robust as the reusability of code is enhanced and the
portability of applications is improved. For the remainder of
the article, we refer to the application developer as developer
or programmer, and the system developer will be specifically
labeled so.

This paper is structured as follows. Section II reviews the
related work. Section III presents two running examples for
illustrative purposes. Section IV depicts our system model.
Section V describes the application programmer’s view on
the system. Section VI presents the RTE as a link between
the programmer’s specifications and the physical world (i.e.,
sensors, actuators, and physical objects). Section VII supplies
a conclusion and an outlook for future work.

II. RELATED WORK

A CPS incorporates the digital and the physical world.
The configuration of such heterogeneous distributed systems
may change at any point in time due to device failures
and the emergence of new sensors or actuators. Under such
circumstances, programming errors are easily introduced as
current solutions rely on the developer to work out the physical
semantics of the digital inputs and outputs of varying sets of
devices.

Approaches like Aggregate Computing [7] focus on con-
vergence. They enable the developer to write an application
for a set of computational nodes situated in a given region.
The computations of each node take place on the basis of its
local state and its neighbors states. Therefore, the behaviors
of the nodes in a region converge over time. Such approaches
abstract from the distribution of the system. Nevertheless, they
are only suited for homogeneous CPS since a converging node
behavior implies that the devices possess similar capabilities.

Physical modeling languages like Modelica [8] or
Simulink [9] enable the developer to describe the properties
and the behavior of a physical system. These approaches are
designed for the simulation of physical systems and for code
generation purposes for non-distributed systems. Here, the
developer explicitly handles the heterogeneity of the system.
The main goal of physical modeling languages is to draw
conclusions on the design of a system rather than controlling
and observing it directly in a distributed fashion.

Approaches like Regiment [10], Hovering Data Clouds [11]
or Egocentric Programming [12] provide mechanisms for the
rule-based aggregation and dissemination of environmental
data in a distributed CPS. The goal of these propositions is
to monitor the environment, rather than to influence it. The
programmer therefore has to utilize additional frameworks to
describe the desired changes of the physical system state.

Other propositions like Spatial Views [13] or Spatial Pro-
gramming [14] allow the programmer to control specifically,
which part of the code is executed in which region within
the system. These regions can be interpreted as environmental

32

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

contexts in which certain devices are situated. They do not take
the impact of the physical regions of space on the capabilities
of the devices into consideration. For example, multiple robots
being located in different closed rooms may not be able to
cooperate but if they are located on two hills located next to
each other their camera measurements may be related to each
other. The discussed programming models do not allow this
differentiation. Regarding the control of devices, the developer
statically specifies which types of sensors and actuators are
required for the execution of the program for different spatial
regions. Thus, the programmer cannot take changing types of
devices into account.

The presented programming models tackle challenges like
providing distribution transparency or managing heterogeneity.
The programmer’s main concern still is the management of
digital data, which obstructs him or her from focusing on
the main goal: influencing the physical environment. Our pro-
gramming model reverses the developer’s view on the system.
He or she describes the properties and the desired behavior of
the physical system from which the RTE deduces the required
digital computations while managing a possibly changing set
of heterogeneous devices. Additionally, we take the impact
of sensors being located in different contexts into account.
Our approach provides the programmer with the possibility of
defining the relevant physical contexts for determining which
sensor measurements are related.

III. RUNNING EXAMPLES

This section presents two running examples that we will use
for illustrative purposes: robot soccer and a street surveillance
system. The former focuses on the control of actuators and
their impact on the physical world while the latter is mainly
concerned with observing the environment. This allows us to
demonstrate the expressive power of our programming model
in the domains of observing as well as influencing the physical
environment of the CPS. The rest of the paper will show that
both use cases can be adequately treated by the developer by
utilizing the presented programming model.

A. Robot Soccer

The first running example consists of a set of robots that
interact with a soccer ball. There are different sensors and
actuators attached to each robot and the system consists of
multiple physical objects of interest (i.e., the robots, the ball,
and the goal). The robots possess different properties such
as varying masses and different maximum velocities. Both
characteristics influence the robots’ capabilities to move and
kick the ball. Naturally, the developer has to take the mobility
of the objects into account as well. Therefore, this example
offers all the system traits that are of interest to us when
focusing on influencing the physical environment.

Figure 1 shows an exemplary team of three robots 𝑅1, 𝑅2,
and 𝑅3 as well as a ball 𝐵. Two cameras are installed on the
robots 𝑅1 and 𝑅2 which are therefore mobile. Their fields of
view are depicted as dashed lines. One static camera is located

𝐵

𝑅1

𝑅2

𝑅3

Figure 1. Robot soccer with three robots 𝑅1, 𝑅2, and 𝑅3, as well as a ball
𝐵. 𝑅1 and 𝑅2 possess a camera and a stationary camera is installed above

the playing field. The fields of view of the cameras are indicated by dashed
and dotted lines.

above the playing field. Its field of view is represented by the
dotted line.

B. Street Surveillance System

As a second running example, we utilize a street surveil-
lance system. Its purpose is the identification of environmental
hazards close to the road such as wildfires or burning cars.
The system consists of multiple static cameras located at
the roadside and dashboard cameras situated within the cars
driving by. Additionally, cars possess temperature sensors
measuring their interior that are located under the driver seat as
well as temperature sensors measuring the exterior of the car
situated behind the bumper bar. Each car has tinted windows
in the back which do not allow outside cameras to observe
the inside of a car. In contrast, cameras within the car are
able to observe locations outside through these windows. This
example offers all relevant features for identifying physical
objects of interest via sensors that are constrained by varying
environmental contexts (e.g., tinted windows).

Figure 2 shows an example of such a street surveillance
system with two static cameras 𝑆𝐶1 and 𝑆𝐶2 on the roadside
and one camera mounted on the dashboard of a car 𝐶. Similar
to Figure 1 static cameras’ fields of view are depicted as dotted
lines and mobile fields of view are depicted as dashed lines.

IV. SYSTEM MODEL

This section describes our system model. It is divided into
modeling physical objects, sensors, and actuators.

A. Physical Objects

The programmer desires to influence a physical system
through digital computations such that a certain goal is
reached. A physical system Σ consists of a set of locations
𝑋Σ in which a set of physical objects of interest 𝑂 is situated.
Each object 𝑜 ∈ 𝑂 takes up a region of space 𝑋𝑜 ⊆ 𝑋Σ and
features a state ®𝑧𝑜 which comprises multiple properties 𝑧

(𝑖)
𝑜

(e.g., color and shape):

®𝑧𝑜 (𝑡) =
[
𝑧
(1)
𝑜 (𝑡) . . . 𝑧

(𝑤)
𝑜 (𝑡)

]𝑇
(1)

Each property is characterized by a type and a value, e.g., a
ball’s shape may be round and its color red.

33

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Sensors

The RTE creates instances of such physical object properties
by utilizing interpretation methods. They are provided by the
system developer and interpret the available sensor measure-
ments as described in [15]. The RTE instantiates a property
by performing one or more interpretation methods on a set
of suitable sensor outputs (e.g., performing image recognition
on camera outputs to identify objects of a given shape). Each
instance of a property is valid for a region in space. The extent
of this region depends on multiple factors:

1) the method chosen for interpreting the sensor measure-
ments (e.g., spatial interpolation for a set of temperature
sensors or triangulation for multiple cameras),

2) the locations a sensor may be able to measure (e.g., a
camera takes measurements of a cone in front of it and
a temperature sensor measures a single location), and

3) the environmental contexts of the sensors as they restrict
their measured locations (e.g., a camera within a closed
room can not take measurements of locations outside the
room).

The RTE requires a sensor capability model to decide which
sensors can be utilized for the available interpretation methods
to observe the desired physical object properties. This model is
implemented by the system developer through a corresponding
driver that provides the required information to the RTE. In
our capability model, a sensor 𝑠 is specified by the following
five tuple.

𝑠 = (𝑞, 𝜇, ®𝑥(𝑡), ®𝑝(𝑡), 𝑋 (®𝑥, ®𝑝, 𝑡)) (2)

A sensor provides measurements of a physical quantity 𝑞

for a region in space 𝑋 . This region is dependent on the
sensor’s position ®𝑥(𝑡) and other sensor-specific parameters
®𝑝(𝑡) (e.g., the orientation and angle of view for a camera).
Both parameters ®𝑥 and ®𝑝 may change over time due to changes
in the configuration of the sensor and its mobility. A sensor
provides its measurements in the form of a digital output signal

𝐶

𝑆𝐶1

𝑆𝐶2

Figure 2. Street surveillance system with one car 𝐶 that incorporates one
interior temperature sensor, one exterior temperature sensor, and a dashboard
camera. On the roadside two stationary cameras 𝑆𝐶1 and 𝑆𝐶2 are installed.

The cameras’ fields of view are indicated by dashed and dotted lines.

𝑣 which it creates by performing a measurement process 𝜇 on
its physical input.

𝑣(𝑡) = 𝜇(𝑞, 𝑡) (3)

An example of this is a camera measuring electromagnetic
radiation in a cone in front of it which it transforms into a
digital array of pixels.

A sensor belongs to a certain sensor class based on the
physical quantity it observes and its measurement process.
Based on these sensor classes, the RTE determines which
sensor outputs are suitable for each interpretation method. The
RTE may utilize multiple different interpretation methods ®𝑚𝑧

for instantiating a property 𝑧. For example, for determining
the shape of an object it may utilize image recognition on
cameras as well as methods for interpreting the output of laser
scanners. This allows the conversion of various types of sensor
outputs to a more holistic and precise digital representation
of the physical object. Additionally, different sensors of the
same class may replace each other when providing inputs for
methods based on their failure or motion. The RTE chooses
the set of methods for determining the properties of a physical
object based on the available interpretation methods, the
corresponding property of interest, and the currently accessible
sensors.

Figure 3 gives an overview of the creation of the state vector
of a physical object 𝑜, multiple sensors 𝑠 𝑗 , and multiple dif-
ferent interpretation methods ®𝑚

𝑧
(𝑘)
𝑜

for each of the properties

𝑧
(𝑘)
𝑜 of the object 𝑜. Dotted lines refer to a mapping that may

or may not be used. These mappings depend on the object’s
properties, the sensors’ measurands, and the required method
inputs.

Physical Environment

𝑜

𝑠2

𝑠2.𝑣

𝑠1

𝑠1.𝑣

... 𝑠𝑟

𝑠𝑟 .𝑣

𝑠1.𝑞 𝑠2.𝑞 𝑠𝑟 .𝑞

Applying Interpretation Methods

®𝑚
𝑧
(1)
𝑜

®𝑚
𝑧
(2)
𝑜

... ®𝑚
𝑧
(𝑤)
𝑜

®𝑧𝑜

[𝑧 (1)𝑜 , 𝑧
(2)
𝑜 , ..., 𝑧

(𝑤)
𝑜]

Figure 3. Creation of the state vector ®𝑧𝑜 of a physical object 𝑜.

34

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Additionally, the RTE has to take the environmental contexts
𝐶 of sensors into account as these restrict the locations 𝑠.𝑋

for which a sensor 𝑠 provides measurements. The contexts
also allow the RTE to reason on whether sensor measurements
stand in relation to each other. An example of this are camera
measurements from different closed rooms that can not be
utilized for a method like triangulation. In contrast, if the
cameras are situated in the same room and their measurement
regions overlap they may be used for such a method. Recog-
nizing these relations allows the RTE to decide which sensor
measurements may be used as inputs for an interpretation
method. Therefore, the provision of environmental contexts is
essential for determining the properties of physical objects of
interest. An environmental context is a possibly mobile region
in space that influences a physical quantity. The measurement
regions of sensors that observe this physical quantity may be
constrained by the corresponding contexts. This depends on
whether the context is inward-blocking or outward-blocking:

• inward-blocking implies that sensors from the outside are
not able to observe locations within the context, and

• outward-blocking refers to sensors located within the
context not being able to observe locations outside of
the context.

An example of this is a car with tinted windows. Cameras
from the outside are not able to observe the inside of the car
but the opposite is possible.

In conclusion, a context 𝑐 is characterized by the following
five tuple.

𝑐 = (®𝑥(𝑡), ®𝑟 (𝑡), 𝑋 (®𝑥, ®𝑟, 𝑡), 𝑞,¬𝑖𝑛,¬𝑜𝑢𝑡) (4)

The vector ®𝑥 depicts the anchor location of the context which
may change over time. The vector ®𝑟 relates to the orientation
of the context which may also change over time. The spatial
extent of the context is described by the set 𝑋 . It depends
on the context’s anchor location and its orientation to be fit
correctly into space. Additionally, the context influences a
physical quantity 𝑞 depending on the boolean attributes ¬𝑖𝑛
(inward-blocking) and ¬𝑜𝑢𝑡 (outward-blocking). A sensor is
situated within a context if its location 𝑠.®𝑥 is in the spatial
region 𝑐.𝑋 of the context 𝑐. As contexts may overlap, a sensor
may be located in multiple contexts at once. A context 𝑐

influences the spatial interpretability of the output of a sensor 𝑠
if the context influences the same physical quantity the sensor
measures (i.e., 𝑠.𝑞 = 𝑐.𝑞), and either

1) the sensor is located within the context and the context
is outward-blocking (i.e., 𝑜𝑢𝑡𝑠𝑐 = 𝑠.®𝑥 ∈ 𝑐.𝑋 ∧ ¬𝑐.𝑜𝑢𝑡), or

2) the sensor is located outside the context and the context
is inward-blocking (i.e., 𝑖𝑛𝑠𝑐 = 𝑠.®𝑥 ∉ 𝑐.𝑋 ∧ ¬𝑐.𝑖𝑛).

The set of all contexts 𝐶𝑠 ⊆ 𝐶 that influence a sensor 𝑠 can
therefore be described by the following equation.

𝐶𝑠 = {𝑐 ∈ 𝐶 : (𝑠.𝑞 = 𝑐.𝑞) ∧ (𝑜𝑢𝑡𝑠𝑐 ∨ 𝑖𝑛𝑠𝑐)} (5)

Based on these contexts 𝐶𝑠 , a sensor’s interpretable locations
𝑠.𝑋 are narrowed down to the actually observed locations 𝑠.𝑋 ′.

𝑠.𝑋 ′ = 𝑠.𝑋 ∩ (
⋂

𝑐𝑜𝑢𝑡 ∈𝐶𝑠

𝑜𝑢𝑡𝑠𝑐=𝑡𝑟𝑢𝑒

𝑐𝑜𝑢𝑡 .𝑋) \ (
⋃

𝑐𝑖𝑛∈𝐶𝑠

𝑖𝑛𝑠𝑐=𝑡𝑟𝑢𝑒

𝑐𝑖𝑛.𝑋) (6)

Therefore, the sensors’ outputs are exclusively valid for these
locations. The results of interpretation methods are also only
valid for certain locations. This depends on the used sen-
sors (i.e., their observed locations 𝑠.𝑋 ′) and the methods
themselves. For example, interpolation of temperature sensor
readings increases the size of the set of valid locations and
triangulation via cameras decreases it. For the valid locations
of method results the RTE evaluates whether given physical
object properties are present and if so instantiates correspond-
ing state vectors for the physical objects of interest.

In conclusion, based on the presented information regard-
ing sensor capabilities, their environmental contexts, and the
utilized interpretation methods, the RTE is able to determine
regions of space in which physical objects of interest are
present (i.e., 𝑋𝑜 for each object 𝑜). Subsequently, it is able
to instantiate their state representations ®𝑧𝑜.

C. Actuators and Internal Object Dynamics

The properties of a physical object may change over time,
which leads to a change of its state ®𝑧′𝑜. This change of state can
be caused by internal dynamics (e.g., a rolling ball) or external
influences ®𝑢𝑜 due to actuator actions (e.g., a ball being kicked).
The change of state at each point in time is a function 𝑓 of
the object’s state and the corresponding external influences.

®𝑧′𝑜 (𝑡) = 𝑓 (®𝑧𝑜, ®𝑢𝑜, 𝑡) (7)

An actuator takes a digital signal as input and transforms it
into one or more actions that affect their environment. These
actions have measurable impacts on the properties of physical
objects. For example, a gripper arm performs the action of
grabbing an object. This action can be measured as a force
(in Newton) acting on the object from two directions. The set
of all actuators makes up the output interface of the CPS. The
external influences ®𝑢Σ on the physical system of interest are
the concatenation of the external influences on the different
physical objects.

®𝑢Σ (𝑡) =
[
®𝑢𝑜1 (𝑡) . . . ®𝑢𝑜𝑚 (𝑡)

]𝑇 (8)

The state ®𝑧Σ of the system is a concatenation of the different
physical object states ®𝑧𝑜𝑖 .

®𝑧Σ (𝑡) =
[
®𝑧𝑜1 (𝑡) . . . ®𝑧𝑜𝑚 (𝑡)

]𝑇 (9)

The change of the state of the physical system ®𝑧′
Σ

depends on
the internal dynamics of the physical objects that populate the
system and their external influences. The function 𝑓Σ describes
the system’s state change.

®𝑧′Σ (𝑡) = 𝑓Σ (®𝑧Σ, ®𝑢Σ, 𝑡) (10)

We regard actuator actions as external influences on physical
objects (e.g., a robot kicking a ball). This stands in contrast

35

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to viewing any interactions between arbitrary physical objects
as external influences (e.g., a ball rolling against another ball).
Considering all possible interactions between any physical
objects would lead to an explosion in complexity, as there may
be an arbitrary number of specified and unspecified physical
objects. Instead, we treat interactions between objects as
disturbances, which may or may not require countermeasures
by the CPS.

V. THE APPLICATION PROGRAMMER’S VIEW

In our programming model, the developer views the system
from the standpoint of physics. He or she provides speci-
fications for the objects that populate the physical system.
These specifications encompass information on the properties
of the physical objects (i.e., their state) and a definition
of their behavior, based on internal dynamics and external
influences. Additionally, the developer provides environmental
context descriptions that restrict the capability of sensors to
observe their environment. These descriptions allow the RTE
to decide which sensor measurements stand in relation to
each other and for which regions the measurements are valid.
This enables the RTE to decide in which regions the given
physical object properties are present, based on the available
sensors, the utilized interpretation methods, and the relevant
context regions. The RTE requires all of these specifications
to determine which sensors are necessary for observing the
physical objects and how the objects react to given actuator
inputs.

For the RTE to decide which actions have to be taken by
the actuators to reach a target state, a target state description is
necessary. This description refers to the whole physical system
rather than a single physical object, as relative relationships
between physical objects may be of interest to the programmer.
The target state description spans a state space, because
different states may satisfy the goal of the developer. Table I
summarizes the described requirements for the functionality
of the RTE and for which of its actions they are necessary.

TABLE I. REQUIREMENTS FOR RTE ACTIONS.

ID Specification Requirement RTE Actions

Req.1 Physical objects’ properties Recognizing objects and com-
paring the current system state
with the target state space.

Req.2 Physical objects’ internal dy-
namics

Estimating when objects reach
the target state through inter-
nal dynamics.

Req.3 Physical objects’ reactions to
external influences

Estimating when objects reach
the target state through exter-
nal influences.

Req.4 Target state description Calculating actuator actions to
reach a target system state.

Req.5 Environmental context specifi-
cations

Determining which sensor
measurements are related and
localizing objects.

A. Physical Object Specification

The physical system consists of possibly multiple physical
objects of interest, each of which possesses a designated
state and behavior. Hence, the object-oriented programming
paradigm fits the described requirements and system model.
A class enables the developer to specify attributes (state) and
methods (change of state) of a physical object. From such a
class, the RTE creates a digital representation of a physical
object whenever it recognizes the corresponding properties of
the described object in the environment. If the RTE recognizes
multiple objects of the same class, multiple instances are
created. As a physical system may encompass a variety of
physical objects, the programmer may have to provide multiple
different class specifications.

Through inheritance, a class may extend the state and
behavioral descriptions of other classes. This simplifies the
specification of different types of objects that partially share
their state and behavior descriptions. For example, a car and
a ball both possess the properties of moving objects (i.e.,
position, velocity, and acceleration) and they also have similar
internal dynamics in the sense that their position changes with
their velocity and their velocity changes with their accelera-
tion. The specific differences in the behavior and properties
of balls and cars are then described in their specific classes
respectively, e.g., how external influences affect their positions,
velocities, and accelerations. Figure 4 shows an example of a
ball that extends the class of a moving object.

C l a s s MovingObject e x t e n d s P h y s i c a l O b j e c t {
MovingObject () {

t h i s . p = P o s i t i o n (m) : t r u e ;
t h i s . v = V e l o c i t y (m/ s) : t r u e ;
t h i s . a = A c c e l e r a t i o n (m/ s ^2) : t r u e ;

}
mot ion (ElapsedTime d e l t a) {

t h i s . v = t h i s . a + d e l t a * t h i s . a ;
t h i s . p = t h i s . p + d e l t a * t h i s . v ;

}
}

C l a s s B a l l e x t e n d s MovingObject {
C o n s t r u c t o r B a l l () {

t h i s . s = Shape : s p h e r e (r a d i u s ==30cm) ;
t h i s .m = Mass : mass ==0.3 kg ;

}
Requ i remen t (Act (v) == Act (m) AND

Act (v) . p o s i t i o n == t h i s . p)
k i c k (V e l o c i t y v , Mass m) {

t h i s . v = 1 / (t h i s .m + m) * (t h i s .m * t h i s . v +
m * v + m * 0 . 8 (v − t h i s . v)) ;

}
}

Figure 4. Example for physical object specifications.

The programmer provides the state description of a physical
object of interest by providing a set of tuples (𝜏𝑖 , 𝑟𝑖) where 𝜏𝑖 is
the type of a property (e.g., a shape) and 𝑟𝑖 is a rule for further
specifying the characteristics of the object (e.g., its shape has
to be a sphere with a radius of 30 centimeters). Based on the
type 𝜏𝑖 , the RTE determines which interpretation methods to

36

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

utilize for evaluating the available sensor measurements (see
Section IV). The RTE continuously assesses the results of
these methods with respect to whether the corresponding rule
𝑟𝑖 is satisfied. If it is satisfied, the object attribute is instantiated
with the methods’ result. The logical representation of the
object’s state vector is the instantiation of all its attributes.

For a programmer to declare such attributes comfortably,
the system developers provide libraries that supply definitions
of commonly used attribute types including their domains
(e.g., the type Shape which encompasses values like sphere
and cube). The values of a type may be further constrained
depending on their characteristics (e.g., the shape sphere
can be additionally characterized by its radius). In Figure 4,
a ball is defined as a spherical object with a radius of exactly
30 centimeters. Its position, velocity, and acceleration are not
specific to the object and therefore the corresponding rules
always evaluate to true.

The methods of a class describe the state change induced
by the physical object’s internal dynamics and its reactions
to external influences. Each method has access to the object’s
state and describes a change of its state. A method’s calcu-
lations may depend on parameters that represent inputs from
actuators. They affect the digital object’s state and correspond
to external influences on the physical object. For example, in
Figure 4, the method kick takes the actuator’s velocity and
its mass as parameters, which influence the velocity of the ball
after the impact.

Multiple actuators may provide the inputs to an object’s
method. This enables the RTE to coordinate a variety of
actuator actions for better efficiency or to supply inputs, which
a single actuator may not be able to provide. For example,
if a building component has to be clamped, two forces on
opposite sides of the component have to be at work toward its
center. From a result perspective, it does not matter whether
this is accomplished by one single actuator or two independent
actuators.

Depending on the properties of the physical object and
the method parameters, the programmer may have to specify
requirements for the inputs from actuators. For example, an
actuator has to be close to a component to exert a force on
it. The actuator requirements may incorporate the following
information:

• the origin of the inputs to the method (e.g., they have to
be provided by the same actuator),

• the actuators’ states (e.g., their positions), and
• the object’s state (e.g., its position).

This allows the RTE to choose actuators capable of influencing
the given object and achieving the desired results.

Figure 4 depicts two methods for the classes
MovingObject and Ball. Method motion describes
the change of position and velocity, based on the object’s
velocity and acceleration, respectively. The delta parameter
stands for the elapsed time between two evaluations of the
method. Method kick takes two parameters v and m, which
correspond to an actuator’s velocity and mass, respectively.
For this method, requirements for the actuator inputs are

®𝑥

◦𝐶

Interior Exterior

𝑐𝑡

(a) Discontinuity in the interpretation
of the output of a temperature sensor

within a car by a context 𝑐𝑡 .

®𝑥
Interior Exterior

𝑐𝑙

(b) Discontinuity in the interpretation
of the output of a camera sensor

caused by a context 𝑐𝑙 .

Figure 5. Discontinuities in interpretations of sensor measurements caused
by contexts.

given. They specify that both mass and velocity have to be
provided by the same actuator and that the actuator has to
be situated at the position of the ball. The method calculates
the approximate velocity of a ball after being kicked by an
actuator with a coefficient of restitution of 0.8.

B. Environmental Context Specification

The RTE localizes physical objects within the system by
employing interpretation methods on sensor measurements and
inspecting whether the given object properties are present and
the corresponding rules are fulfilled. To achieve this, the RTE
requires a description of environmental contexts within the
system (see Section IV). An environmental context restricts the
regions for which a sensor provides measurements. As already
mentioned, a context consists of an anchor location, a spatial
extent, an influenced physical quantity, and an annotation of
whether it is inward- and/or outward-blocking. Each context
may either have a static anchor location or be bound to a
physical object of interest. The latter option may lead to the
context being mobile.

The borders of a context exist wherever discontinuities arise
in the interpretation of a sensor measurement between the
sensor’s location and the location for which the measurement
is interpreted. Figure 5a exemplifies this for a temperature
sensor located within a car. From its temperature readings no
inferences can be made on the ambient temperature outside
the car and the readings of interior as well as exterior sensors
do not stand in any relation to each other. Something similar
can be observed when considering light passing through a
tinted window. In this case, the discontinuity is only present
if the light passes through the window in one direction (see
Figure 5b). The programmer has to consider these discon-
tinuities to determine for which regions in space he or she
has to define contexts. The RTE offers a module to support
the developer in this regard. It infers the possibly utilized
interpretation methods from the object property descriptions of
the programmer. The methods allow the RTE to reason which
sensor classes may be required to observe these properties.
Based on this, it is able to provide the programmer the sets
of relevant physical quantities. Subsequently, the developer is
able to examine the system space for corresponding contexts
that influence these physical quantities.

37

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When specifying a context, the programmer utilizes a
similar paradigm when compared to specifying a physical
object. He or she creates a class that describes the required
parameters for a context, i.e., its anchor location, orientation,
spatial extent, influenced physical quantity, and whether it is
inward- and/or outward-blocking. Figure 6 shows an example
of the specification of a context for the temperature within
a car. The context is inward- and outward-blocking as there
is no relation between temperature readings from the interior
and the exterior of the car. The position and orientation
of the car are determined by the RTE through available
positioning systems (e.g., GPS and/or camera triangulation).
The developer provides the definition of the spatial extent of
the context in the form of a CAD model to ensure sufficient
precision. In most cases, such models are in use already such
that the programmer is able to utilize them. Otherwise, he or
she has to utilize modeling tools to create the definition of the
spatial extent.

C. Target State Description

The preceding sections depicted how the developer specifies
physical objects and environmental contexts such that the
RTE is able to localize objects of interest. To infer required
actuator actions the RTE requires a target state description.
We chose a variant of declarative programming, i.e., con-
straint logic programming [16], as a programming interface
for describing the target state. It allows the developer to
specify the properties of a solution to a problem rather than
how to reach the solution. This fits our requirements, as the
developer describes a desired physical system state and the
RTE deduces the sufficient actuator inputs to the physical
system. This approach abstracts from the individual actuators.
Therefore, the developer is able to focus on the impact of the
actuators’ actions on the individual physical objects rather than
controlling individual devices.

Since relations between the different states of physical
objects may be of interest, the programmer defines target
states based on the overall system state. To analyze whether a
target state is reached and whether the system state develops
correctly, the RTE evaluates the set of constraints periodically.

Figure 7 shows an example of a defending constraint for a
game of robot soccer. The target state refers to the positions

C o n t e x t C a r I n t e r i o r T e m p {
t h i s . p h y s i c a l Q u a n t i t y = Tempera tu r e ;
t h i s . a n c h o r L o c a t i o n = Car . p o s i t i o n ;
t h i s . o r i e n t a t i o n = Car . o r i e n t a t i o n ;
t h i s . s p a t i a l E x t e n t = fitCAD (

t h i s . a n c h o r L o c a t i o n ,
t h i s . o r i e n t a t i o n ,
c a r I n t e r i o r C A D

) ;
t h i s . i n w a r d B l o c k i n g = t r u e ;
t h i s . o u t w a r d B l o c k i n g = t r u e ;

}

Figure 6. Example for a context specification for the interior of a car.

Defense@OpponentOffense {
do ub l e k , l ;

∀𝑝𝑙𝑎𝑦𝑒𝑟 , 𝑜𝑝𝑝 ∈ 𝑀𝑦𝑃𝑙𝑎𝑦𝑒𝑟 × 𝑂𝑝𝑝𝑃𝑙𝑎𝑦𝑒𝑟 :
d i s t a n c e (p l a y e r . p , opp . p) <= 1 . 0 [m] ;

∃𝑝𝑙𝑎𝑦𝑒𝑟 ∈ 𝑀𝑦𝑃𝑙𝑎𝑦𝑒𝑟 , ∀𝑔𝑜𝑎𝑙 ∈ 𝑀𝑦𝐺𝑜𝑎𝑙, ∀𝑏𝑎𝑙𝑙 ∈ 𝐵𝑎𝑙𝑙 :
g o a l . p + k * (g o a l . p − b a l l . p) == p l a y e r . p ;

∀𝑏𝑎𝑙𝑙 ∈ 𝐵𝑎𝑙𝑙, ∀𝑜𝑝𝑝 ∈ 𝑂𝑝𝑝𝑃𝑙𝑎𝑦𝑒𝑟 , ∃𝑝𝑙𝑎𝑦𝑒𝑟 ∈ 𝑀𝑦𝑃𝑙𝑎𝑦𝑒𝑟 :
b a l l . p + l * (b a l l . p − opp . p) == p l a y e r . p ;

}

Figure 7. Examples of defensive positioning in robot soccer.

of the players of the own team with respect to the ball, goal,
and opposing player positions:

• all players of the own team should be close to an opposing
player (i.e., closer than one meter),

• there should always be one player between the ball and
the own goal, and

• there should always be one player between any opposing
player and the ball.

This positioning allows to intercept the ball and prevents
undisturbed passes as well as attempts of the opponent to
score. To reach this objective, the RTE has to coordinate
the available actuators, such that the physical properties of
the robots (i.e., their positions and velocities) are changed
accordingly.

D. Application Context Specification

Depending on the present physical objects and their con-
figuration (e.g., their positioning), the developer may desire
to provide different target state descriptions. For example,
in robot soccer, the programmer’s team has to defend if the
opponents possess the ball. Vice versa, if the developer’s team
possesses the ball it should attack to score a goal. Application
contexts allow the programmer to describe such relations
between physical objects of interest. They form constraints
that allow the RTE to decide which target state description
to follow at each point in time. Therefore, each target state
description has to be bound to an application context (see Fig-
ure 7). Similarly to the target state description, the developer
utilizes constraints to describe application contexts. Figure 8
shows an example of an application context that describes
when defensive player behavior should be adopted in robot
soccer. This occurs whenever an opponent possesses the ball,
the ball moves toward the programmer team’s goal, and an
opponent moves toward the programmer team’s goal.

VI. RUNTIME ENVIRONMENT

The RTE maintains a set of physical object descriptions
provided by the programmer. It continuously utilizes interpre-
tation methods to evaluate sensor measurements of the CPS
environment to determine the state of the physical objects
populating the physical system. Moreover, the RTE contin-
uously evaluates the constraint system for the target state and

38

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application context specifications. In its evaluations, the RTE
takes into account the actuator requirements in addition to the
available actuators since they narrow down the possibilities for
the available physical inputs.

Figure 9 depicts the architecture of the RTE. It consists
of four modules, which are executed in a distributed fashion:
the interpreter, the observer, the controller, and the constraint
solver. Furthermore, it facilitates drivers for sensors and ac-
tuators. They provide an interface for utilizing the devices
and supply information on their state (e.g., their positions and
orientation) to the other modules. The following paragraphs
describe the functionalities of the RTE.

A. Interpreter

The interpreter offers an interface to the programmer for
registering class specifications for physical objects, target state
constraints, as well as environmental and application context
specifications. It extracts three basic types of information from
the class descriptions for physical objects:

(i) the state description of the physical object (i.e., what the
properties of the object are and how it differs from other
objects),

(ii) the behavioral description (i.e., how the object’s state
changes, based on internal dynamics and external influ-
ences), and

(iii) the actuator requirements for providing input signals (i.e.,
what conditions have to be met for an actuator to be able
to supply a desired input to the physical system).

The interpreter creates a vector of state variables ®𝑧𝑐 from
the state description of a given class 𝑐. Each state variable
stands for a physical object property (i.e., a set of results from
interpretation methods performed on sensor measurements).
The state variables are utilized in the state equation of the
physical object. This equation is created from the set of
methods 𝐺𝑐 belonging to the given class 𝑐. Each method
𝑔 ∈ 𝐺𝑐 describes a change of state ®𝑧′𝑐,𝑔 for an object of the
given class. Such a method’s parameters correspond to external
influences caused by actuators. The interpreter converts them
to a vector of input variables ®𝑢𝑔 for the method 𝑔. Each method
describes a change of state, which depends on the state of
the object, the specified internal dynamics, and reactions to
external influences. The function 𝑓𝑔 describes this change of
state.

®𝑧′𝑐,𝑔 (𝑡) = 𝑓𝑔 (®𝑧𝑐, ®𝑢𝑔, 𝑡) (11)

Opponen tOf fense {
∃𝑜𝑝𝑝 ∈ 𝑂𝑝𝑝𝑃𝑙𝑎𝑦𝑒𝑟 , ∀𝑏𝑎𝑙𝑙 ∈ 𝐵𝑎𝑙𝑙, ∀𝑔𝑜𝑎𝑙 ∈ 𝑀𝑦𝐺𝑜𝑎𝑙 :

d i s t a n c e (b a l l . p , opp . p) <= 0 . 5 [m] ;
a n g l e (b a l l . v , g o a l . p − b a l l . p) < 90[deg] ;
a n g l e (b a l l . v , g o a l . p − b a l l . p) > 180[deg] ;
a n g l e (opp . v , g o a l . p − opp . p) < 90[deg] ;
a n g l e (opp . v , g o a l . p − opp . p) > 180[deg] ;

}

Figure 8. Examples of an application context for defensive player behavior
in robot soccer.

Application Programmer

Interpreter

Class
Specifications

Context
Specifications

Required
Physical
Quantities

Target State
Specification

Constraint
Solver

State Equations,
Constraints,
Actuator Requirements

Observer

Property
Descriptions,
Environmental
Context
Specifications

State
Variable
Values

Controller

Actuator
Input Space

Actuator
Information

Environment

Sensor
Drivers

Actuator
Drivers

Sensor
Measurements

Actuator
Inputs

Sensors Actuators

Figure 9. Architecture of the Runtime Environment.

If the function 𝑓𝑔 is linear or linearized, the equation can be
rewritten as a system of first-order differential equations.

®𝑧′𝑐,𝑔 (𝑡) = 𝐴𝑔®𝑧𝑐 (𝑡) + 𝐵𝑔 ®𝑢𝑔 (𝑡) (12)

If the overall behavior of the class is linear or linearized, its
state change can be described by the sum of all the methods’
state changes, as the principle of superposition holds.

®𝑧′𝑐 (𝑡) =
∑︁
𝑔∈𝐺𝑐

®𝑧′𝑐,𝑔 (𝑡) =
∑︁
𝑔∈𝐺𝑐

(𝐴𝑔®𝑧𝑐 (𝑡) + 𝐵𝑔 ®𝑢𝑔 (𝑡)) (13)

Since the constraint solver evaluates the constraints periodi-
cally in discrete steps, the interpreter converts the described
equation into a time-discrete variant.

®𝑧𝑐 (𝑘 + 1) =
∑︁
𝑔∈𝐺𝑐

(𝐴𝑔®𝑧𝑐 (𝑘) + 𝐵𝑔 ®𝑢𝑔 (𝑘)) (14)

As the developer may provide multiple classes 𝑐 (𝑖) for differ-
ent physical objects of interest, the interpreter creates such a
state equation for each of the classes.

Figure 9 includes a depiction of the outputs of the interpreter
module. For each method of a class, the interpreter creates
constraints from the actuator requirements that are forwarded
to the constraint solver. These constraints allow allocating the
available actuator inputs to the corresponding input variables.
For example, a mobile robot with a specified mass is able
to provide the corresponding inputs to the kick-method
in Figure 4. Additionally, the target state descriptions are
added to the constraint system for determining the required
actuator actions to reach the programmer’s goals (e.g., moving
soccer robots such that a defensive positioning is achieved,
as described in Figure 7). The interpreter also forwards the

39

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application context specifications to the constraint solver. This
allows the solver to decide which target state descriptions are
in effect based on the current system state (e.g., choosing
the defensive positioning constraints when the opponent is
attacking, as described in Section V-D). From the given system
of equations, requirements, and constraints, the constraint
solver is able to compute a sequence of actuator inputs, which
lead to a desired target state.

Furthermore, the interpreter module provides an interface to
the programmer that supplies information on which physical
quantities are possibly measured to observe the desired phys-
ical object properties. To achieve this, the interpreter utilizes
information on the available interpretation methods in the
system and the state descriptions of the physical objects. From
that, the interpreter deduces which physical quantities have to
be measured by the required sensor classes to perform each
interpretation method for determining the different properties.
The interpreter’s information on which physical quantities
may have to be measured by the system sensors allows the
developer to examine the system space for contexts of interest
that influence these physical quantities (see Section IV-B).
Therefore, the programmer is able to precisely identify such
contexts and create the corresponding specifications. He or she
subsequently provides these specifications to the interpreter
which forwards them to the observer module.

B. Observer

The observer module creates and maintains a digital rep-
resentation of the state of the physical system. It gathers
measurements from the available sensors of the system, similar
to the data aggregation and dissemination process described
in [11]. This allows for gathering and distributing data of
the system based on given rules (i.e., according to the object
specification).

These rules can be interpreted as the programmer’s specifi-
cations for the properties of physical objects of interest. Sensor
measurements may not always directly relate to these property
descriptions, e.g., the shape of an object is not directly mea-
sured by a camera but can be deducted from its output pixel
array. The observer achieves such deductions by executing
appropriate interpretation methods (see Section IV). Therefore,
it utilizes a dictionary of the available interpretation methods
within the system. This dictionary maps object properties to
the available interpretation methods that are able to measure
the corresponding properties. Each interpretation method en-
compasses information on its required input types. These types
refer to the sensor classes that provide corresponding outputs
(e.g., the method of image recognition requires the outputs of
cameras). The output of the methods themselves corresponds
to the requested physical object property and may be valid
for a region of space (instead of a single location). This
depends on the chosen sensors (i.e., which regions of space
they are measuring) and the method itself as it may enlarge
or shrink the regions for which the sensor measurements are
valid. An example of this is interpolation on temperature
sensors. A temperature sensor measures the temperature for

a single location in space. When a method like interpolation
is performed on a set of temperature sensors, the result of the
method is valid for a larger region in space. In contrast, when
executing triangulation on a set of cameras the resulting region
is smaller than the cameras’ measured regions.

When considering the regions for which sensor measure-
ments are valid the observer has to consider the environ-
mental context specifications provided by the programmer.
They restrict the interpretability of sensor measurements and
allow to reason on which sensor measurements are related
(i.e., if their context regions overlap, see [15]). For example,
an interpolation between temperature sensors measuring the
interior and exterior of a car is not feasible. Therefore, these
context descriptions are necessary for the observer module to
determine which groups of sensors are suitable as inputs for
interpretation methods.

The observer has to consider the regions for which the
results of interpretation methods are valid for identifying
physical objects of interest. The state of an object can be seen
as a set of properties (i.e., attributes) and rules that have to be
fulfilled for the object to be present at a given location. the
observer assesses whether a rule is fulfilled or not by analyzing
the outputs of the corresponding interpretation methods. If
the rules for all object properties are fulfilled for a region,
the object is present there and the observer instantiates the
corresponding state vector. The module may create multiple
object instances if there are distinct regions in space in which
objects are located. It creates a state vector for each of the
regions as it interprets every region as a separate object for
each of which the constraint solver maintains a state equation.
The observer maintains all the created object instances by
updating their states. These updates are applied whenever
new results of the corresponding interpretation methods are
available. After an update, the module forwards the new state
vectors to the constraint system.

C. Constraint Solver

The constraint solver computes a set of sufficient actuator
inputs to reach a state of the target state space. As inputs, it
takes the system state equation, the measured current state,
the actuator requirements, and information about the currently
available actuators. Through the actuator requirements, the
constraint solver is able to decide which actuators are able
to influence the perceived physical objects. By this, location-
aware control of the actuators is enabled without the program-
mer having to explicitly examine individual devices. Through
the actuators’ influence on the physical world and the internal
dynamics of the objects, object states evolve over time. The
solver evaluates the constraints periodically to check whether
a target state is reached and to update the set of actuator
inputs to react to environmental influences (i.e., disturbances)
accordingly.

Mathematically, the constraint solver’s task is to find a state
trajectory for the system state. The trajectory depends on a set
of actuator inputs between the current point in time 𝑡0 and

40

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a chosen point in time 𝑡1 before a deadline 𝑑, such that all
constraints hold for the state at time 𝑡1.

®𝑧Σ (𝑡1) = ®𝑧Σ (𝑡0) +
∫ 𝑡1

𝑡0

®𝑧′Σ (𝑡)𝑑𝑡, 𝑡1 ≤ 𝑑 (15)

This allows to create a sequence of actions such that a target
state is reached according to the programmer’s intentions.

D. Controller

The controller module manages the set of available actua-
tors. For each actuator, the controller module maintains infor-
mation about the actuator’s state (e.g., its position, orientation,
reach, etc.) and which inputs it is able to provide. It offers this
information to the constraint solver whenever an evaluation
round starts. This enables the constraint solver to evaluate the
actuator requirements for determining which actuators are able
to provide the desired inputs.

The controller module uses the constraint solver’s results
(i.e., a sequence of sufficient inputs to reach a target state)
and distributes it to the corresponding actuators. As the module
is executed in a distributed fashion, a consistent view of the
available actuators and their information has to be maintained
and a consensus for distributing the required inputs has to be
found.

VII. CONCLUSION AND FUTURE WORK

The presented programming model allows the developer to
focus on the description of a physical system and its target
state. It allows him or her to specify explicitly what a desired
state for a physical system is and how this state changes,
based on possible actuator inputs and internal dynamics. This
abstracts from the need to manage a changing set of actua-
tors and sensors directly, as the information required of the
programmer is reduced to defining the influences of actuators
on the system and specifying properties of physical objects.
Furthermore, the developer has to specify the physical contexts
in which the system sensors may reside. This is necessary,
as not all sensor measurements may relate to each other
due to their capabilities, positioning, and spatial limitations.
This necessitates a precise knowledge of the physical system
and its characteristics by the programmer. In return, our
programming model achieves virtualization of devices such
that it provides distribution, motion, and location transparency
to the developer.

To facilitate this, we present a RTE that links the pro-
grammer’s view to the physical devices. It encompasses an
interpreter, an observer module, a controller module, and a
constraint solver. The observer module maintains a digital
representation of the physical system state, based on the phys-
ical object descriptions. Additionally, it manages the available
sensors, including information on their capabilities such that
it is able to derive which sensors are able to observe physical
objects of interest. The interpreter translates the programmer’s
system specification to a set of constraints and equations such
that the constraint solver is able to utilize them. The constraint
solver derives target states and required actuator inputs for

the physical system from the programmer’s specification and
the current state of the system. The constraint solver’s results
are passed to the controller module. It utilizes this data to
control the corresponding actuators in order to reach a target
state. In conjunction, this allows the RTE the location-aware
management of devices and physical objects of interest without
the developer being directly involved.

Therefore, the presented programming model and RTE ab-
stract from implicit conversions between digital computations
and physical phenomena, which leads to the physical seman-
tics of the program being made explicit. They are less com-
plicated to understand and errors in the translation between
digital and physical quantities are prevented. Additionally, the
RTE transparently handles changing sets of devices as the
programmer is concerned with the influences on the physical
system of interest rather than their cause.

For future work, we intend to provide a formal description
of actuator specifications, which allows deducing their prop-
erties with regard to how they influence their environment.
Further research will be focused on describing the interactions
between arbitrary physical objects, which are currently viewed
as disturbances. To test the described approach, we will create
a prototypical implementation of the RTE. In this regard,
efficient data structures are necessary for the management of
physical context information, sensor and actuator capabilities,
as well as digital representations of physical objects. Fur-
thermore, we intend to provide verifications of the real-time
capabilities of the RTE. Additional research will concentrate
on implementing consensus and consistency algorithms for the
RTE, as a consistent view of the environment and optimal
utilization of the devices have to be ensured.

REFERENCES

[1] M. Richter, T. Werner, and M. Werner, “A Programming Model for
Heterogeneous CPS from the Physical Point of View,” in The Sixteenth
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies, 2022, pp. 1–6.

[2] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Trans. on Industrial Informatics, vol. 10, no. 4, pp. 2233–2243,
2014.

[3] X. Yu and Y. Xue, “Smart grids: A cyber–physical systems perspective,”
in Proc. of the IEEE, vol. 104, 2016, pp. 1058–1070.

[4] F. Basile, P. Chiacchio, and J. Coppola, “A cyber-physical view of
automated warehouse systems,” in 2016 IEEE Int. Conf. on Automat.
Science and Eng. (CASE), 2016, pp. 407–412.

[5] N. Jazdi, “Cyber Physical Systems in the Context of Industry 4.0,” in
IEEE Int. Conf. on Automat., Quality and Testing, Robotics, 2014, pp.
103–105.

[6] E. A. Lee, “Cyber physical systems: Design challenges,” in 11th
IEEE symposium on Object Oriented Real-Time Distributed Computing
(ISORC), 2008, pp. 363–369.

[7] M. Viroli et al., “From distributed coordination to field calculus and
aggregate computing,” Journal of Logical and Algebraic Methods in
Programming, vol. 109, no. 100486, pp. 1–29, 2019.

[8] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 3.3, 2nd ed., 2014.

[9] E. Hossain, MATLAB and Simulink Crash Course for Engineers, 2022,
ch. Introduction to Simulink, pp. 317–359.

[10] R. Newton, G. Morrisett, and M. Welsh, “The regiment macropro-
gramming system,” in 2007 6th Int. Symp. on Inf. Process. in Sensor
Networks, 2007, pp. 489–498.

[11] S. Ebers et al., “Hovering data clouds for organic computing,” in Organic
Comput. — A Paradigm Shift for Complex Syst., 2011, pp. 221–234.

41

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] C. Julien and G.-C. Roman, “Egocentric context-aware programming in
ad hoc mobile environments,” in Proc. of the 10th ACM SIGSOFT Symp.
on Found.s of Softw. Eng., 2002, pp. 21–30.

[13] Y. Ni, U. Kremer, and L. Iftode, “Spatial views: Space-aware program-
ming for networks of embedded systems,” in Lang.s and Compilers for
Parallel Comput., 2004, pp. 258–272.

[14] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode, “Spa-
tial programming using smart messages: design and implementation,” in
24th Int. Conf. on Distrib. Comput. Syst., 2004, pp. 690–699.

[15] M. Richter, C. Jakobs, T. Werner, and M. Werner, “Using Environ-
mental Contexts to Model Restrictions on Sensor Capabilities,” in The
Seventeenth International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, 2023, to be published.

[16] J. Jaffar and M. J. Maher, “Constraint logic programming: A survey,”
in The Journal of Logic Programming, 1994, pp. 503–581.

42

International Journal on Advances in Intelligent Systems, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/intelligent_systems/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

