
11

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Polling Schedule Optimization for Adaptive Monitoring to Scalable

Enterprise Systems

Fumio Machida, Masahiro Kawato, Yoshiharu Maeno

NEC Service Platforms Research Laboratories

1753, Shimanumabe, Nkahara-ku, Kawasaki, Knagawa 211-8666, Japan

{h-machida@ab, m-kawato@ap, y-maeno@aj}.jp.nec.com

Abstract

Adaptive monitoring is a promising technique to

automate configurations of a monitoring server in

enterprise systems according to the dynamic system

reconfigurations such as server scale-out and virtual

machine migration. Even after the system

reconfiguration, the monitoring server need to be

configured properly for providing the fresh

information to clients with stabilized server load. In

this paper, we propose an adaptive monitoring system

that automatically changes the monitoring schedule to

satisfy the required freshness under the limited server

load after system reconfigurations. The adaptive

monitoring system consists of a polling-based

monitoring architecture and an algorithm for polling

schedule generation. Since the problem for polling

schedule generation is classified in NP-hard, we

propose an approximation algorithm. According to the

results from the experiments with real system

reconfiguration scenarios, the adaptive monitoring

system improves the variation coefficients of changes

of CPU usages and network traffics in the monitoring

server by at most 80%. We extend the proposed

adaptive monitoring system to be scalable by

introducing a hierarchical architecture.

Keywords: Adaptive monitoring, Polling schedule,

Virtualization, System reconfigurations, Information

freshness

1. Introduction

The emergence of virtual machine technologies

enlarges the flexibility of the current enterprise systems.

Virtual machine software such as Xen [8], VMware

Infrastructure [22] and Microsoft Virtual Center [23]

offer a function to create multiple execution

environments on a single computer. Enterprise systems

can be scale out easily by using virtual machine

software and creating a virtual machine on the existing

physical environments. System reconfigurations like

change of server allocation, server scale out,

components replacement and software updates are

usually required in common enterprise system

administration. Virtual machine can reduce the troubles

related to hardware during system reconfigurations

because virtual machine does not depend on the

physical devices directly.

Although virtual machine enables easy system

reconfigurations, frequent system reconfigurations

increase administrative operations for the management

systems to adapt to the reconfigured target systems. For

example, when an administrator adds some virtual

machines to the existing systems, he or she has to

register the additional targets to monitoring systems or

some management tools, and apply appropriate settings.

The process of the reconfiguration can be executed

automatically by using virtual machines. However,

registrations and configuration changes of existing

systems need manual operations of administrators.

Configuration changes after system reconfigurations

are especially important for monitoring systems.

Missing registrations and improper setting of

monitoring intervals lead to the degradation of the

availability and performance of the systems.

We proposed an adaptive monitoring system to

reduce administrative operations for reconfigurable

enterprise systems. The reduction of the operations for

the monitoring settings after system reconfigurations

enables easy and speedy adaptation to the target

systems. The proposed method generates a monitoring

schedule that is a set of monitoring setting satisfying

the required freshness of the monitored information and

the limited monitoring server load. The system

administrator does not need to estimate the impact on

the performance and the availability result from the

12

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

change of monitoring settings. The schedule generation

problem is an integer programming that is classified as

NP-hard [7]. If the target system consists of dozens of

servers, an optimal schedule is not computable in

realistic time. Therefore, we proposed an

approximation algorithm for schedule generation. The

proposed algorithm generates an optimal schedule

under a specific condition. Furthermore, we extend the

proposed adaptive monitoring system to be scalable by

introducing a hierarchical architecture. A single

monitoring server is not realistic for managing

thousands of monitoring targets in terms of the load of

monitoring server. In the monitoring system using

multiple monitoring servers, the query turnaround time

and information freshness depend on the number of

transit monitoring servers and schedules. To satisfy the

requirements from clients for query response time and

information freshness, the schedules for multiple

monitoring servers need to be optimized. We

formulized the problem to decide schedules for

multiple monitoring servers configured hierarchically

and an approximation algorithm to solve the problem.

The rest of this paper is organized as follows.

Section 2 describes the requirements for an adaptive

mechanism for monitoring server in enterprise systems.

Section 3 presents our adaptive monitoring architecture

and an algorithm for polling optimization. Section 4

shows experimental results. Section 5 describes the

extension of the adaptive monitoring system and the

schedule generation algorithm. Section 6 describes

related work and, finally, Section 7 provides the

conclusion.

2. Enterprise System Monitoring

Most of enterprise systems have monitoring systems

to manage system resources such as servers, network

devices, storages and applications. Some commercial

products such as HP OpenView Network Node

Manager (NNM) [17] and IBM Tivoli NetView [18]

provides functions for monitoring resources based on

(Simple Network Management Protocol) SNMP [10].

ZABBIX[19], OpenNMS [20] and Nagios [21] come

to be known as powerful free monitoring tools that can

be used for enterprise-level systems.

Adaptive monitoring appeared in our previous work

is a promising technique for enterprise systems to adapt

to the change of system configurations and states [1].

The number of monitoring targets in enterprise systems

increases and changes dynamically according to the

system reconfiguration caused by business

requirements and system upgrades. The adaptive

monitoring system reduces the administrative

operations for monitoring server by automatically

optimizes the monitoring configurations at the system

reconfigurations. Since virtual machines allow easy

system reconfiguration, the concept of adaptive

monitoring is especially important in the consolidated

server environment using virtual machines.

As a related technique to support the adaptive

monitoring, discovery is a well-known useful technique

to find a newly attached device in the network [9].

NNM provides the discovery function by collecting

Address Resolution Protocol (ARP) tables in the target

network. If a new server is connected to the target

network, the monitoring tool supporting discovery can

detect this new target. Although the detection of the

new target is automated by discovery, the appropriate

configurations for monitoring are up to the

administrators. The administrators have to categorize

the detected target and set the appropriate monitoring

schedule not to have an adverse impact on the existing

system.

Our adaptive monitoring system focuses on the

quality of the monitoring service, specifically,

information freshness and load of monitoring server.

Appropriate configurations for monitoring server are

important to maintain the quality of monitoring.

Freshness is one of the important metrics for quality of

resource monitoring [2]. If a monitoring interval is set

to a large value, the data stored in the monitoring

server is not up to date. The elapsed time from data

generation exceeds the required time to live (TTL) and

it causes the freshness degradation. To keep the

freshness in the required level is important for

monitoring aware applications and middleware. The

stale (i.e. not fresh) information may cause the

incorrect decision and control of monitoring aware

applications. The load of the monitoring servers is

another quality concern of monitoring systems.

Monitoring processes consume system resources such

as CPU time and network bandwidth. Excessive

processes for information collection in a short time

adversely affects system components sharing system

resources as well as monitoring server. The processes

for information collection need to be scheduled not to

gather in a short time period.

3. Adaptive Monitoring System

In this section, we describe an architecture of an

adaptive monitoring system and an algorithm for

polling schedule generation.

3.1. Architecture

13

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

We designed an adaptive monitoring architecture

based on the Web Service Polling Engine (WSPE) [2]

that is a resource information service for server clusters.

WSPE collects resource information from target server

nodes via web service protocols, store the information

into the temporal cache, and provide the information to

the cluster users through the query interface. To keep

the fresh information in the cache, WSPE updates the

cache repeatedly as per the predefined update schedule.

We improved this architecture to reconfigure the

update schedule dynamically adapting to the system

reconfigurations.

Information Collector

Schedule Optimizer

Event Handler

Cache

provider states

query client management tool / administrator

provider

query notify changes

collect resource information

monitoring server

Polling Schedule

•required freshness
•limit of server load

PC: polling count

update

lookup

generate

invoke

Figure 1. Adaptive monitoring system architecture

Figure1 shows an overview of the proposed

monitoring architecture. The monitoring server consists

of Information Collector, Schedule Optimizer, Event

Handler, Cache and Polling Schedule. The

Information Collector collects resource information

from providers running on the target servers and

updates the Cache with collected resource information.

All queries from clients are performed on the Cache.

The availability of each provider is also checked in the

information collection process and is managed as

provider states. An unavailable resource is dropped

from the polling targets. The Information Collector

counts the Polling Count (PC) that indicates the

number of occurrences of polling cycles from the start-

up. The target information that needs to be updated in

one polling cycle is specified in the Polling Schedule.

The Polling Schedule is determined so as to keep the

freshness of resource information in the cache and the

limit of server load. Since an optimum Polling

Schedule is changed by the configuration and

availabilities of target systems, the Schedule Optimizer

calculates an optimum Polling Schedule in adapting to

the latest system configurations. The trigger of

schedule optimization is handled by Event Handler that

receives several notifications about system

reconfigurations from management middleware or

administrators and determines the needs for schedule

optimization. When the Schedule Optimizer receives a

request for schedule optimization, it identifies the latest

system configurations and generates a new Polling

Schedule by a schedule optimization algorithm that is

described in the later section.

The Polling Schedule is specified by the Next PC

and the Interval PC for each resource as shown in

Figure 2. The Next PC specifies the next PC at which

to update resource information. When the PC in the

Information Collector reaches a value of a Next PC,

the Information Collector adds this target to the polling

targets and collects the latest resource information from

the provider. In order to reduce the risk of unexpected

peak load caused by polling processes, dispersed

values should be used for the Next PCs of different

resources. If a large number of target resources have

the same value of Next PC, the next polling process has

to collect a large amount of resource information in one

polling cycle and it may induce a heavy workload on

the monitoring server. On the other hand, the Interval

PC specifies the number of polling cycles between two

consecutive updates. After a polling process to update

resource information finishes, the value of the Next PC

is calculated by adding the previous value of the Next

PC to the Interval PC. The smaller value of Interval PC

is preferable to keep the required freshness. The

optimum Interval PCs are determined in consideration

of the tradeoff between the required freshness and

monitoring server load.

Update

host01 1 3

host02 2 3

host03 3 3

vm01 1 5

vm02 2 5

Next PC Interval PC
PC1 2 3 4 5 6 7 8 9 10 11 12

host01

host02

host03

vm01

vm02

Time chartData structure

Resource

The number of update processes at PC=6 is 2
Figure 2. An example of update schedule

The max number of update processes in one cycle of

polling must be limited to a certain range of values in

consideration of the peak load of the monitoring server.

Unexpected peak load called flush peak sometimes

causes serious system trouble. Since the load of

monitoring server depends on the number of target

resources having the same Next PC, the peak load of

the monitoring server is predictable by the Polling

Schedule in the proposed system. By optimizing the

Polling Schedule to keep the number of updates in one

14

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

polling cycle in a certain level, we can avoid the risk of

the flush peak.

monitoring targets

Monitoring Profile

Gold 2 sec 5 sec

Silver 2 sec 10 sec

Bronze 5 sec 15 sec

lower limit upper limit Profile

Gold Silver Bronze

Monitoring
Server

required TTL 3 s 3 s 7 s 7 s 8 s 11 s 13 s 13 s

Figure 3. Monitoring profile to group resources

The monitoring profile figured in Figure 3 is

introduced for grouping the target resources that have

the same class of quality level. As the quality of the

resource information, the freshness is specified by the

TTL in detail. TTL indicates the elapsed time from

data generation. The monitoring profile defines the

lower limit and the upper limit of the update interval.

Since a monitoring profile corresponds to a specific

quality level, system administrator create a new

monitoring profile when a new quality level is required.

Each resource is assigned a monitoring profile and

does not belong to the multiple monitoring profiles.

Administrators simply manage the allocation of each

resource to the specific monitoring profile instead of

editing TTL for each resource. By using monitoring

profile, the operation for the target addition and the

change of monitoring frequency becomes much easier.

3.2. Schedule Generation Problem

The method to generate an optimal polling schedule

is an essential part of the adaptive monitoring system.

The polling schedule has to satisfy the required

freshness of resource information and minimize the

number of concurrent updates.

First, the Interval PC for each resource ri is decided

by the allocated monitoring profile p and the current

polling interval tpoll. The minimum integer j that

satisfies the limits defined in the profile is chosen as

Interval PC. The Interval PC is expressed as the

following expression:

}ULLL,|min{)(IntervalPC poll ppi
jtjjr ≤⋅≤∈= N

 (1)

where LLp is the lower limit of the update interval for

monitoring profile p and ULp is the upper limit of that.

If any possible values are not found, the

administrator should modify the monitoring profile or

the polling interval to get a possible Interval PC.

Meanwhile, the limited number of concurrent updates

(LCU) in a polling cycle is decided in consideration to

the acceptable load of the monitoring server.

Next, the Next PC for each resource is decided so

that the number of the concurrent updates is not over

the LCU. The number of the concurrent updates is

changed by each PC and the way to set the Next PC.

Since the update processes are executed repeatedly

according to each Interval PC, the change in the

number of the concurrent updates appears with a period

of the least common multiple of Interval PCs (LCMI).

We define the polling schedule generation problem as

follows.

Problem: Polling Schedule Generation

For each resource information ri, the update interval

PC is defined as IntervalPC(ri)
�

N. Solve the

NextPC(ri)
�

N for all ri, so that the number of

concurrent updates is under the LCU at any k from 1 to

LCMI.

Solve:)(NextPC, iri∀

Where:

LCU),(U),LCMI1(
1

≤≤≤∀ ∑
=

n

i

irkkk (2)

 ≡−

=
otherwise0

))(IntervalPC(mod0)(NextPC1
),(U

ii

i

rrk
rk

 (3)

)(IntervalPC)(NextPC1 ii rr ≤≤ (4)

The schedule generation problem is an integer

programming of NextPC(ri), that is classified as NP-

hard. It takes exponential time of the number of targets

“n” to decide if any possible schedule exists or not. If

there are a large number of targets in the system, the

above problem cannot be solved in practical time.

3.3. Schedule Generation Algorithm

To solve the schedule generation problem in

practical time, we propose an algorithm by using an

approximate method.

Algorithm 1:

1) Make groups that have the same value of

IntervalPC(ri).

})(IntervalPC|{ jrrG iij == (5)

Define J as a set of possible values as j.

15

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

2) For each group, generate schedule that minimizes

the concurrent updates. Label all ri in Gj as ri,k

)1(jGk ≤≤ and set the NextPC(ri,k) based on this

label.

))(IntervalPC(mod)(NextPC , iki rkr = (6)

The number of max concurrent updates for Gj

is calculated by:

j

G j

3) Combine all generated schedules and calculate

sum of the number of concurrent updates.

∑
∈

Jj

j

j

G (7)

Compare the sum of the number of concurrent

updates to the LCU. If the sum of the number of

concurrent updates is smaller than LCU, output

the generated schedule as a possible schedule.

Otherwise, give up the schedule generation.

Algorithm 1 divides the all ri into the groups that

have the same value of IntervalPC(ri) and solves the

partial optimal schedule for each group. By gathering

the partial schedules, the max number of concurrent

updates is minimized in most situations. Furthermore,

the algorithm always outputs a result in O(n) time.

If each pair of IntervalPC(ri)s of the different

groups is relatively prime, the Algorithm 1 always

solves the optimal schedule (i.e. minimize the number

of the concurrent updates) by the following theorems.

Theorem 1:

When all of the IntervalPC(ri) have the same value,

the max number of the concurrent updates of the

schedule is equal to or more than

)(IntervalPC ir

n ,

where n is the number of targets.

Proof 1:

Let α be the max number of the concurrent

updates. All of ri have to be updated during

IntervalPC(ri) within α update processes.

)(IntervalPC irn ⋅≤ α (8)

Because α is an integer value, the following condition

is obtained.

≥

)(IntervalPC ir

n
α

 (9)

■

Theorem 2:

Gp and Gq are groups of resource information that

has intervals of p and q. If p is coprime to q, the max

number of the concurrent updates of the update

schedule for all elements of Gp and Gq is equal to or

more than

+

q

G

p

G qp .

Proof 2:

For any rp1 ∈ Gp and any rq1 ∈ Gq, the PC to

update: tp(rp1) and tq (rq1) are generally represented by:

)(NextPC)(11 pppp
rpmrt +⋅= (10)

)(NextPC)(11 qqqq rqmrt +⋅= (11)

where, mp and mq are any positive integer values.

Here, for any NextPC(rp1) and any NextPC(rq1),

there exists a pair of mp and mq satisfying tp(rp1) = tq

(rq1) modulo pq. This is derived from the Chinese

remainder theorem [6].

Therefore, there exists a case where the number of

concurrent updates is 2 for any pair of rp1 and rq1. The

max number of the concurrent updates, α , is given by:

qp ααα += (12)

where
pα and

q
α are the max number of the

concurrent updates for Gp and Gq.

From the Theorem 1, the following condition is

obtained.

+

≥

q

G

p

G qp
α

 (13)

■

Because the max number of the concurrent updates

of the schedule generated by the Algorithm 1 is

∑
∈

Jj

j

j

G , the output schedule is always optimal if each

pair of IntervalPC(ri)s of the different groups is

relatively prime.

4. Evaluation

This section describes the experimental evaluations

of the proposed adaptive monitoring system using a

system reconfiguration scenario.

4.1. Monitoring load estimation

The load of the monitoring server such as CPU

usage and the amount of the network traffic depends on

the number of concurrent update processes. By

investigating the relationship between the load of the

monitoring server and the number of the concurrent

updates, the load of the monitoring server at real

16

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

y = 0.5336x + 1.5633
R² = 0.9989

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 C

P
U

 u
s
a
g

e
 (
%

)

Number of concurrent updates

y = 0.6471x + 3.0902
R² = 0.9935

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

M
a
x
 C

P
U

 u
s
a
g

e
 (
%

)

Number of concurrent updates

y = 24.44x + 1.8874
R² = 0.9997

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 T

ra
n

m
is

s
io

n
 (
K

b
p

s
)

Number of concurrent updates

y = 34.757x + 6.4035
R² = 0.999

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8

M
a
x
 T

ra
n

m
is

s
io

n
 (
K

b
p

s
)

Number of concurrent updates

(a) Average CPU usage (b) Max CPU usage (c) Average NW Transmission (d) Max NW Transmission

Figure 4. The relationship between the number of concurrent updates and the monitoring loads

execution can be estimated from the installed polling

schedule.

The experimental environment has a monitoring

server that has 3GHz Intel Pentium4 processor and 2.3

GB of RAM. On this server, WSPE collects resource

information from several physical and virtual machines.

Each target provides 12 KB of resource information.

All nodes used in the experiments are connected by

100 Mbps ethernet.

In this testing environment, we measured several

system metrics like CPU usages, memory usages, disk

I/O and network traffics by varying the number of

concurrent updates. The relationship between the

system metrics and the number of concurrent updates

can be characterized by regression analysis. Figure 4

(a) shows the plots of the measured values of CPU

usages under the limited number of the concurrent

updates. The relationship is expressed as the following

expression by applying the least square method to the

observed values.

5633.15336.0 +⋅= xy (14)

where x is the number of concurrent updates in a

polling cycle and y is the average CPU usage. The

regression coefficients change depending on the

resource capacities and states of usage. For example,

the more CPU power the monitoring server can use, the

smaller value the gradient of the regression line for the

CPU usage. As far as this experimental environment is

used, the average CPU usage of the monitoring server

is predictable by the obtained regression formula. In

addition to the average CPU usage, the max CPU usage,

the average and max network transmission traffic also

have the linear relation with the number of concurrent

updates (see Figure 4). The other performance data

such as network receive traffic, memory usage and disk

I/O does not have linear relationship with the number

of concurrent updates in our testing environment. From

the results of this investigation, we can find an

appropriate value of the number of concurrent updates

to keep the load of monitoring server in a certain level.

4.2. Adaptation to system reconfigurations

vm01

hostA1

vm02

hostA2

hostB1

hostB2

hostB3

hostB4

hostB5

vm01

hostA1

vm02

hostA2

hostB1

hostB2

hostB3

hostB4

hostB5

hostC1

hostC2

hostC3

hostC4

hostC5

hostC6

hostC7

hostC8

hostC9

hostC10

hostC11

hostC12

hostC13

hostC14

hostC15

Step1: Initial state

Step2: Addition of Cluster-C

cluster-A cluster-B

cluster-A cluster-B cluster-C

vm01

hostA1

vm02

hostA2

vm01

hostA1

hostA2

hostC1

hostC2

hostC3

hostC4

hostC5

hostC6

hostC7

hostC8

hostC9

hostC10

hostC11

hostC12

hostC13

hostC14

hostC15

hostC1

hostC2

hostC3

hostC4

hostC5

hostC6

hostC7

hostC8

hostC9

hostC10

hostC11

hostC12

hostC13

hostC14

hostC15

vm03

Step3: Removal of Cluster-B

Step4: VM defragmentation on Cluster-A

cluster-A cluster-C

cluster-A cluster-C

Figure 5. VM defragmentation scenario

The monitoring adaptation mechanism was

evaluated by a scenario involving the virtual machine

defragmentation as depicted in Figure 5. The

monitoring setting is automatically changed by the

proposed adaptation mechanism for each step of the

17

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

scenario. The experimental environment consists of

three different clusters, cluster-A, cluster-B and cluster-

C. The cluster-A is established on the virtualized

environment using Xen 2.0 on Fedora Core 4. Cluster-

B consists of 5 nodes and Cluster-C has 15 nodes.

In the first step of the scenario (step 1), the cluster-

A and the cluster-B are monitored from the monitoring

server running on a management server. In the second

step (step 2), the cluster-C is added to the monitored

target of the monitoring server. In the third step (step 3),

the cluster-B is removed from the monitored target. In

the final step (step 4), the defragmentation of virtual

machines on the cluster-A is performed. The

defragmentation moves the virtual machine instance

vm02 to the hostA1, then merges instances of vm01

and vm02, and finally starts a new virtual machine

instance vm03 in the created resource space on the

hostA2. In this experiment, the merge process simply

stops the vm02 and expands the resource allocation to

vm01.

All physical servers and virtual machines have

corresponding monitoring profiles. Table 1 shows the

four different monitoring profiles used in the

experiments. The polling interval tpoll is set to 1 second

and the value of LCU is set to 8. For each step of the

scenario, the optimization algorithm generates the

optimal update schedule that meets the conditions

specified in monitoring profiles and minimizes the

number of concurrent updates under LCU. The

generated update schedules for each step are shown in

Table 2.

Besides the optimization approach, the simple

polling approach and the without-optimization

approach were also evaluated by this scenario for the

sake of comparison. The simple polling approach

updates all of information at regular intervals like

SNMP polling. The regular interval was set to 10

seconds. The without-optimization approach updates

resource information at specific intervals requested

from each monitoring profile. Although this approach

satisfies the conditions of the monitoring profiles, the

number of concurrent updates is not bounded.

Table 1. Monitoring profiles
 lower limit upper limit

Platinum 3s 10s

Gold 5s 15s

Silver 7s 20s

Bronze 11s 30s

Table 2. Update schedules for each step

c
lu

ster

n
o

d
e

p
r
o

file

In
ter

v
a

l

P
C

Next PC

S
tep

 1

S
tep

 2

S
tep

 3

S
tep

 4

A

hostA1 Platinum 3 1 1 1 1

hostA2 Platinum 3 2 2 2 2

vm01 Bronze 11 1 1 1 1

vm02 Bronze 11 2 2 2

vm03 Bronze 11 2

B

hostB1 Platinum 3 3 3

hostB2 Platinum 3 1 1

hostB3 Platinum 3 2 2

hostB4 Platinum 3 3 3

hostB5 Platinum 3 1 1

C

hostC1 Gold 5 1 1 1

hostC2 Gold 5 2 2 2

hostC3 Gold 5 3 3 3

hostC4 Gold 5 4 4 4

hostC5 Gold 5 5 5 5

hostC6 Gold 5 1 1 1

hostC7 Gold 5 2 2 2

hostC8 Gold 5 3 3 3

hostC9 Gold 5 4 4 4

hostC10 Gold 5 5 5 5

hostC11 Silver 7 1 1 1

hostC12 Silver 7 2 2 2

hostC13 Silver 7 3 3 3

hostC14 Silver 7 4 4 4

hostC15 Silver 7 5 5 5

���������������
����� ����� ����	 ����

�� ��
������ ���������� ��������� ������ ������ ��� ���������������

����� ����� ����	 ����

�� ��

������ ���������� ��������� ������������ ���
(a) CPU usage (b) Network Transmissions (c) Network Receives

��������
��	�	�

����� ����� ����	 ����

�� ��

������ ���������� ��� ������ ������������ ���

Figure 6. Variation coefficients of CPU usages and network traffics

18

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

�����������������������������
 !"#� !"#� !"#$!"#�%&'&()&*+,-./0123 456 7 89:;<= ;><<9?@ 456 7 AB> >;C9:9DEC9>?456 7 >;C9:9DEC9>? 5FG 7 89:;<= ;><<9?@5FG7 AB> >;C9:9DEC9>? 5FG 7 >;C9:9DEC 9>?�������$�����H�����

 !"#� !"#� !"#$!"#�I*+J2KL22LMJ*+,-./0123 456 7 89:;<= ;><<9?@ 456 7 AB> >;C9:9DEC9>?456 7 >;C9:9DEC 9>? 5FG 7 89:;<= ;><<9?@5FG7 AB> >;C9:9DEC 9>? 5FG 7 >;C9:9DEC9>?�����
����

 !"#� !"#� !"#$!"#�NOPQRST&UV3 456 7 89:;<= ;><<9?@ 456 7 AB> >;C9:9DEC 9>?456 7 >;C9:9DEC9>? 5FG7 89:;<= ;><<9?@5FG 7 AB> >;C9:9DEC9>? 5FG7 >;C9:9DEC9>?
(a) CPU usage (b) Network Transmissions (c) Network Receives

Figure 7. Max and average values of CPU usages and network traffics

0

1

2

3

4

5

6

0 1 2 3 4 5 6

e
s

ti
m

a
te

d
 v

a
lu

e
 (
%

)

observed value (%)

4

5

6

7

8

9

10

4 5 6 7 8 9 10

e
s
ti

m
a
te

d
 v

a
lu

e
 (

%
)

observed value (%)

50

70

90

110

130

150

50 70 90 110 130 150

e
s
ti

m
a

te
d

 v
a

lu
e

 (
K

b
p

s
)

observed value (Kbps)

50

90

130

170

210

250

50 90 130 170 210 250

e
s
ti

m
a

te
d

 v
a

lu
e

 (
K

b
p

s
)

observed value (Kbps)

(a) Average CPU usage (b) Max CPU usage (c) Average NW Transmission (d) Max NW Transmission

Figure 8. Observed values versus estimated values by regression functions

We observed the variation coefficients of CPU

usages and network traffics for each step of the

scenario (see Figure 6). All these variation coefficients

were calculated from the time-series performance data

of three minutes duration in each step. The variation

coefficient of optimization approach is the lowest in

any case and the values do not change significantly

over the steps. Compared to the without-optimization

approach, the variation coefficient of network

transmission traffic is reduced by 80% at step 3 (see

Figure 6 (b)). The results indicate that the proposed

adaptive monitoring system stabilize the load of

monitoring server by optimizing the polling schedule

according to the system reconfigurations.

Meanwhile the max values of CPU usages and

network traffics during the three minutes for each step

are shown in Figure 7. The results provide a study of

risk for flash peak of the resource usage. The

optimization approach can lower down the max values

of CPU usages and the network traffics by dispersing

the update processes over time. Compared to the

without-optimization approach, the max transmission

traffic is reduced by 62% at step3 (see Figure 7 (b)).

The proposed optimization approach reduces the risk

of the flash peak.

Additionally the approximate max values are

predicted by using the regression function described in

Section 4.1. Figure 8 shows the relationship between

the measured values and estimated values. The results

show that the estimation provides a good indicator for

availability of the monitoring server.

5. Scalable adaptive monitoring

In this section, we extend the adaptive monitoring

system to hierarchical configurations. To satisfy the

requirements for TTLs from lots of clients, we propose

an algorithm for multiple schedules generation.

5.1. Requirements for scalable monitoring

Large scale enterprise systems distributed in

multiple locations have thousands of monitoring targets

such as servers, routers, switches and applications. A

single monitoring server is not enough to collect the

resource information from thousands of monitoring

targets from the concern for the load of monitoring

19

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

server and network. Generally, for such a large-scale

system, multiple monitoring servers are configured

hierarchically to integrate the resource information.

HP's NNM can manage 25000 of devices by organizing

monitoring servers hierarchically. MDS [15] and

Ganglia [16] support hierarchical architecture to

aggregate resource information from thousands of

nodes in the grid environment.

Although the hierarchically architecture improves

the scalability of monitoring systems, the overhead of

multiple monitoring servers degrades the query

performance and freshness of resource information.

Users and applications using the monitored information

require the specific level of the query performance and

information freshness. Configurations for monitoring

servers for satisfying the quality requirements are much

more complex than the case with a single server.

Adaptive monitoring that reduces the manual

operations for monitoring settings after system

reconfiguration is also valuable in the large scale

enterprise systems.

For the large scale enterprise systems, we extend the

WSPE to hierarchical configurations. Each WSPE

handles the event of system reconfigurations and adapts

the polling schedule automatically to the target systems.

By optimizing the polling schedule in each WSPE, all

of requirements are satisfied under the capacity

limitations of monitoring servers.

5.2. Hierarchical configuration of WSPEs

WSPE

cache

schedule

WSPE

cache

schedule

WSPE

cache

schedule

WSPE

cache

schedule

WSPE

cache

schedule

clientclientclient

clientclientclient

clientclientclient

clientclientclient

targets targets targets
Figure 9. Hierarchically-configured WSPEs

Figure 9 shows a hierarchical configuration of

WSPEs to collect resource information from widely-

distributed systems. Each WSPE has own polling

schedule to keep the freshness of the resource

information in the cache. Some WSPEs collect

resource information from the other WSPE instead of

collecting directly from the target resources. It reduces

traffics to the target resources and distributes the load

of monitoring servers. Clients query the resource

information to the nearest WSPE that has the target

information in the cache. The query response time is

estimated by the turnaround time from the client to the

nearest WSPE.

The TTL of resource information ri in the query

results depends on the polling intervals of all WSPEs

on the path from the client ch to the target resource ri.

Here we denote the polling interval for resource ri in

the WSPE wj as tpoll(wj, ri). Let Wh,i be the set of

WSPEs on the path from the client ch to the target

resoruce ri. The TTL of resource information ri for the

client ch is bounded as the following expression:

∑
∈

+≤

ihjw

ijihih rwtrwctrct
,W

poll

1

respTTL),(),,(),((15)

where tresp(ch, w
1
, ri) is the time taken to deliver the

information ri from the nearest WSPE
h,iw W1

∈ (see

Figure 10).

ch w1 wj ri

tresp(ch,w
1,ri)

treq(ch,w
1,ri)

tpoll(wj,ri)

Wh,i

tpoll(w
1,ri)

client WSPE WSPE target

Figure 10. Model of hierarchical WSPEs

Let treq(ch, w
1
, ri) be the time taken to request the query

for ri from ch to w
1
. The query response time is

expressed as follows:

),,(),,(),,(1

resp

1

req

1

query ihihih rwctrwctrwct += . (16)

If the tquery(ch, w
1
, ri) does not meet the required

performance of ch due to the limitations of network

performance or server capacity, an additional

placement of a WSPE near the client improves the

query performance at the expense of the information

freshness.

We assume the number of WSPEs and networks are

given by the requirements for the query response time

of each client and the limitation derived from the

network topology. We discuss the problem of polling

schedule optimization to guarantee the required TTLs

for all clients under the limitations of server loads.

5.3. Multiple Polling Schedules Generation

Polling schedules for all WSPEs need to be

optimized for satisfying the requirements for TTL of

20

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

resource ri from the client ch: RTTL(ch, ri) under the

limitation of server loads given by the LCU of each

WSPE. For a single WSPE, the Interval PCs are

determined by the formula (1) based on the monitoring

profiles. However, for the hierarchically-configured

WSPEs where many clients request to guarantee the

TTL of resource information, the Interval PCs need to

be determined by considering the requested RTTLs and

polling intervals of other WSPEs.

The problem to solve the polling schedules of

WSPEs under the conditions about RTTLs and LCUs

is defined as follows.

Problem: Multiple Polling Schedules Generation

Solve the IntervalPC(wj, ri) and NextPC(wj, ri) for

each WSPE wj to satisfy all requirements of RTTL(ch,

ri), under the limitations of the number of concurrent

updates LCU(wj).

Solve:),(NextPC),,(IntervalPC,, ijij rwrwji ∀∀

Where:

),RTTL(),(, TTL ihih rcrcth ≤∀ (17)

)LCU(),,(U,
1

j

n

i

ij wrwkk ≤∀ ∑
=

 (18)

 ≡−

=
otherwise0

)),(IntervalPC(mod0),(NextPC1

),,(U

ijij

ij

rwrwk

rwk

 (19)

),(IntervalPC),(NextPC1 ijij rwrw ≤≤ (20)

Constraint (17) states the limitation from the

requirements for RTTL(ch, ri). Constraints (18) and

(19) state the limitation of the LCUs. The problem of

multiple polling schedules generation is an integer

programming and NP-hard as well as the schedule

generation problem discussed in Section 3.2.

5.4. Multiple Schedules Generation Algorithm

We propose an algorithm to generate multiple

polling schedules satisfying the requirements of RTTLs

and the limitations of LCUs for hierarchically-

configured WSPEs. The proposed algorithm generates

polling schedules satisfying the constraints (18) by

applying algorithm 1 for each WSPE and readjusts the

Interval PCs so as to satisfy the constraints (17) by

changing the assignment of monitoring profiles.

Algorithm 2:

1) Generate polling schedules for all wj by applying

algorithm 1 with the default monitoring profiles

and the limitation of LCU that are set in each

WSPE.

2) For all requirements for TTL of resource ri from

the client ch, check if the max value of tTTL(ch, ri)

calculated by (15) is below the RTTL(ch, ri). If all

RTTLs are satisfied, output the schedules and

finish the schedule generation process. Otherwise,

go to the following steps to readjust the polling

schedules.

3) Let w
k
)W1(,ihk ≤≤ be the sequence of WSPEs

on the path to the ri from ch. The sequence starts

from w
1
 that is the nearest WSPE from ch. In the

sequence, search a w
k
 that can readjust schedule

so as to satisfy the requirements of RTTL(ch, ri)

by the following step 4. If the w
k
 that can readjust

schedule is not found by the iteration of step 4,

give up the multiple schedule generation.

4) In the given w
k
, for resource ri, change the

allocation of profile that satisfies both of the

following conditions.

)(),(-),RTTL(UL

)(),(-),RTTL(LL

pollTTL

pollTTL

iihihp

iihihp

rtrctrc

rtrctrc

+≥

+≤

 (21)

where LLp is the lower limit of the update interval

for monitoring profile p and ULp is the upper limit

of that. If any profile p that satisfies the

conditions (21), calculate a new IntervalPC(wj, ri)

by the expression (1) with the new profile and

generate a schedule by the algorithm 1. Repeat

finding the possible profiles until get the schedule

or check all profiles.

Since the algorithm 2 is an approximation algorithm,

it does not always output the multiple polling schedules

even if there is a possible solution. However, the

algorithm can change the polling schedules locally to

satisfy the requirements of RTTL(ch, ri) instead of

globally optimization. The algorithm gives the

advantage to adapt the existing polling schedules to the

change of RTTL(ch, ri). Since the monitoring profiles

are edited by system administrator as necessary, the

number of monitoring profiles is limited. The routine of

step 4 is processed in the finite execution time.

6. Related work

Scalable performance monitoring systems have

been well studied in the context of grid computing. A

white paper summarized and evaluated lots of

presented grid monitoring systems [13]. Some

advanced monitoring systems such as Remos [11] and

Network Weather Service (NWS) [12] have a function

21

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

to forecast the performance changes. In contrast to

several existing works for the grid monitoring systems,

we focus on the quality of the monitoring service,

namely freshness of resource information, in the large

scale enterprise systems.

The quality of monitoring is important especially in

the grid and autonomic computing. The monitoring

requirements differ across applications hosted on the

server and change over time corresponding to the

system configurations. QMON [4] provides a function

to classify and configure the quality of monitoring

based on service level agreement (SLA). QMON

changes the monitoring configuration dynamically by

using the concept of "monitoring channel". However,

the current QMON does not support the adaptation

mechanism to the target system reconfiguration such as

server addition and deletion.

Although freshness is important for applications

using monitored data, the significant emphasis on the

freshness results in a "flash crowd" caused by

monitoring processes [14]. The monitoring system

must manage the server load to avoid the flash crowd.

Our experimental results show that the flash crowd is

avoidable by the optimized schedule.

For the network management, an efficient polling

technique for SNMP is proposed [5]. This technique

provides a function to minimize the polling queries to

the SNMP agents by using the usage parameters

defined by the applications. However, any method to

avoid the flash crowd is not supported.

The necessity of the polling optimization is also

described in the grid monitoring system using slacker

coherence model [3]. The slacker coherence model is

useful to minimize the polling with consideration to the

out-of-sync period of the data. Although this model

considers the load of the target nodes, the server-side

load is not considered. Therefore, there is no guarantee

that the flash crowd does not occur.

7. Conclusion

This paper proposed the adaptive monitoring system

to reduce the administrative operations in the large-

scale enterprise systems. The monitoring server

guarantees the freshness of resource information in the

cache by the polling based cache updates. The update

processes are scheduled to satisfy the requirements of

freshness and the limitation of monitoring server load.

We presented a schedule generation algorithm and

proved that the algorithm generates an optimal

schedule minimizing the max number of concurrent

updates. From the experimental results, the variation

coefficients of CPU usages and network traffics are

improved by at most 80%, and the max values at the

load peak are decreased by at most 62%. The results

show that the proposed method can stabilize the load of

monitoring server and can reduce the risk of flash peak

according to the current system configuration. We

presented as well the extension of the adaptive

monitoring system to be scalable with the algorithm for

generating multiple polling schedules. By applying the

proposed algorithm to hierarchically-configured

WSPEs, we can guarantee all requirements for

freshness of resource information from multiple users

under the limited loads of monitoring servers.

References

[1] F. Machida, M. Kawato and Y. Maeno, Adaptive

Monitoring for Virtual Machine Based Reconfigurable
Enterprise Systems, 3rd International Conference on
Autonomic and Autonomous Systems (ICAS2007),
2007.

[2] F. Machida, M. Kawato and Y. Maeno, Guarantee of
Freshness in Resource Information Cache on WSPE:
Web Service Polling Engine, 6th IEEE International
Symposium on Cluster Computing and the Grid
(CCGrid2006), 2006.

[3] R. Sundaresan, M. Lauria, T. Kurc, S. Parthasarathy and
Joel Saltz, Adaptive Polling of Grid Resource Monitors
Using a Slacker Coherence Model, 12th IEEE
International Symposium on High Performance
Distributed Computing (HPDC03), 2003.

[4] S. Agarwala, Y. Chen, D. Milojicic and K. Schwan,
QMON: QoS- and Utility-Aware Monitoring in
Enterprise systems, 3rd IEEE International Cofference
on Autonomic Computing (ICAC2006), 2006.

[5] M. Cheikhrouhou and J. Labetoulle, An Efficient
Polling Layer for SNMP, IEEE/IFIP Network
Operations and Management Symposium (NOMS2000),
2000.

[6] D. E. Knuth, The Art of Computer Programming,
Volume 2: Seminumerical Algorithms, 3rd Edition,
Section 4.3.2, page 286, Addison-Wesley, 1997.

[7] B. Korte, J. Vygen, Combinatorial Optimization:
Theory and Algorithms, Japanese Edition 2005, Section
15.7 NP-Hard Problems, Springer, 2005.

[8] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I.
Pratt, A. Warfield, P. Barham and R. Neugebauer, Xen
and the Art of Virtualization, 19th ACM Symposium on
Operating Systems Principles (SOSP19), 2003.

[9] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S.
Seshadri, and A. Silberschatz, Topology discovery in
heterogeneous IP networks, 19th Annual Joint
Conference of the IEEE Computer and Communications
Societies (INFOCOM2000), 2000.

[10] J. Case, M. Fedor, M. Schoffstall and J. Davin, "Simple
Network Management Protocol (SNMP)", RFC 1157,
1990.

[11] P. Dinda, T. Gross, R. Karrer, B Lowekamp, N. Miller,
P. Steenkiste, and D. Sutherland, The architecture of the
remos system. In 10th IEEE International Symposium
on High Performance Distributed Computing (HPDC-
10), August, 2001.

22

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

[12] R. Wolski, Experiences with Predicting Resource
Performance On-line in Computational Grid Settings,
ACM SIGMETRICS Performance Evaluation Review,
Volume 30, Number 4, March, 2003, pp 41--49.

[13] M. Gerndt, R. Wismueller, Z. Balaton, G. Gombas, P.
Kacsuk, Z. Nemeth, N. Podhorzki, H. Truong, T.
Fahringer, M. Bubak, E. Laure and T. Margalef.
Performance Tools for the Grid: State of the Art and
Future, Automatic Performance Analisis: Real Tools
White Paper, 2004.

[14] R. Desai, S. Tilak, B. Gandhi, M. J. Lewis and N. B.
Abu-Ghazaleh, Analysis of Query Maching Criteria and
Resource Monitoring Models for Grid Application
Scheduling, 6th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid2006), 2006.

[15] K. Czajkowski, S. Fitzgerald, I. Foster, and C.
Kesselman, Grid Information Services for Distributed
Resource Sharing, In Tenth IEEE International
Symposium on HighPerformance Distributed
Computing (HPDC10), IEEE Press, August 2001.

[16] M. L. Massie, B. N. Chun, and D. E. Culler, The
Ganglia Distributed Monitoring System: Design,
Implementation, and Experience, Parallel Computing,
Vol. 30, Issue 7, July, 2004.

[17] HP OpenView Network Node Manager (NNM): http://h
20229.www2.hp.com/products/nnm/index.html

[18] IBM Tivoli NetView: http://www-306.ibm.com/softwar
e/tivoli/products/netview/

[19] ZABBIX: http://www.zabbix.org/

[20] OpenNMS:
http://www.opennms.org/index.php/Main_Page

[21] Nagios: http://nagios.org/

[22] VMware: http://www.vmware.com/

[23] Microsoft Virtual Center: http://www.microsoft.com/wi
ndowsserversystem/virtualserver/

